悬臂梁分析报告

悬臂梁分析报告
悬臂梁分析报告

悬臂梁受力分析报告

高一博

2016.11.13

西安理工大学

机械与精密仪器工程学院

摘要

利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。

关键词:悬臂梁,变形分析,应力分析

目录

一.问题描述: (4)

二.分析的目的和内容: (4)

三.分析方案和有限元建模方法: (4)

四.几何模型 (4)

五.有限元模型 (4)

六.计算结果: (5)

七.结果合理性的讨论、分析 (8)

八.结论 (8)

参考文献 (8)

一.问题描述:

现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。

其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。

二.分析的目的和内容:

1.观察悬臂梁的变形情况;

2.观察分析悬臂梁的应力变化;

3.找出其最大变形和最大应力点,分析形成原因;

三.分析方案和有限元建模方法:

1.使用ANSYS-modeling-create-volumes-block建模,

2.对梁进行材料定义,网格划分。

3.一端固定,另外一端施加一个向下的200N的力。

4.后处理中查看梁的应力和变形情况。

四.几何模型

500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。

五.有限元模型

单元类型:solid brick8node45

材料参数:弹性模量2e+11pa,泊松比0.3

边界条件:一端固定,一端施加载荷

载荷:F=200N

划分网格后的悬臂梁模型

六.计算结果:

变形位移图

等效应力图

局部应力图

七.结果合理性的讨论、分析

1.位移分析:在变形位移图上,在约束端位移最小为零,受压端位移最大。与实际结果

一致。

2.应力分析:在应力图上,应力最大处在约束端,而最小的位于受压端,与变形图相对

应。通过材料力学计算可知约束端的所受弯矩最大。两个结果印证无误。

3.局部应力分析:在局部应力图上,可以看出在固定端上表面存有较大的应力,且为拉

应力,受压端直角尖处有最大应力,从形成原因上分析属于尖角处应力集中。八.结论

由ANSYS分析得到的悬臂梁的应力图和位移图能够较为直观地反映位移和应力的分布情况,且准确性高,为结构校核和结构优化提供的极大的便利。

参考文献

1.《有限元分析软件ANSYS在结构分析中的应用》,王世军

2.《机械工程中的有限元法》,王世军

3,闻邦椿《机械设计手册》,机械工业出版社,2010

悬臂梁分析报告

悬臂梁受力分析报告 高一博 2016.11.13 西安理工大学 机械与精密仪器工程学院

摘要 利用ANSYS对悬臂梁进行有限元静力学分析,得到悬臂梁的最大应力和挠度位移。从而校验结构强度和尺寸定义,从而对结构进行最优化设计修正。 关键词:悬臂梁,变形分析,应力分析

目录 一.问题描述: (4) 二.分析的目的和内容: (4) 三.分析方案和有限元建模方法: (4) 四.几何模型 (4) 五.有限元模型 (4) 六.计算结果: (5) 七.结果合理性的讨论、分析 (8) 八.结论 (8) 参考文献 (8)

一.问题描述: 现有一悬臂梁,长500MM,一端固定,另外一端施加一个竖直向下的集中力200N。 其截面20MMX20MM的矩形,现在要分析该梁的在集中力作用下产生的位移,应力和局部应力。 二.分析的目的和内容: 1.观察悬臂梁的变形情况; 2.观察分析悬臂梁的应力变化; 3.找出其最大变形和最大应力点,分析形成原因; 三.分析方案和有限元建模方法: 1.使用ANSYS-modeling-create-volumes-block建模, 2.对梁进行材料定义,网格划分。 3.一端固定,另外一端施加一个向下的200N的力。 4.后处理中查看梁的应力和变形情况。 四.几何模型 500X20X20的梁在在ANSYS中进行绘制.由于结构简单规则,无需简化。 五.有限元模型 单元类型:solid brick8node45 材料参数:弹性模量2e+11pa,泊松比0.3 边界条件:一端固定,一端施加载荷 载荷:F=200N 划分网格后的悬臂梁模型

悬臂梁的受力分析与结构优化

悬臂梁的受力分析与结构优化 吴鑫龙3136202062 【摘要】悬臂梁不管是在工程设计还是在机械设计中都有着广泛的应用,其有着结构简单,经济实用等优点。但受到其自身结构的限制,一般悬臂梁的力学性能和使用性能都会受到很大的限制。本篇主要探究悬臂梁在使用中的受力情况并从材料力学的角度来对其进行优化设计,并对新设计悬臂梁进行分析。 【Abstract 】Cantilever whether in engineering or mechanical design have a wide range of applications, it has a simple structure, economical and practical advantages. But by its own structural limitations, the general cantilever mechanical properties and performance will be greatly limited. This thesis is focus on exploring the cantilever in use from the perspective of the forces and the mechanical design to be optimized., and analysis the new design cantilever . 【关键词】悬臂梁受力设计 【Keywords】cantilever force analysis optimization 背景及意义 悬臂梁是指梁的一端为不产生轴向、垂直位移和转动的固定支座,另一端为自由端(可以产生平行于轴向和垂直于轴向的力)。在实际工程分析中,大部分实际工程受力部件都可以简化为悬臂梁。但是悬臂梁的缺点在于它的受力性能不好,即使只是在悬臂梁末端施加一个较小的载荷,通过较长力臂的放大作用,也会对底部连接处产生一个很大的弯矩。因此,对悬臂梁强度校核前的受力分析和对其进行优化设计对工程和机械领域的发展都有着极大的意义。 一般悬臂梁的受力分析 一般悬臂梁,既没有经过任何结构和形状改变的普通悬臂梁。

ABAQUS简支梁分析报告(梁单元和实体单元)

基于ABAQUS简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另外, 还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE仿真分析具体细节操作并没有给出详细的操作,不过在后面上 传了对应的cae,odb,inp文件。不过要注意的是本文采用的是ABAQUS2016 进行计算,低版本可能打不开,可以自己提交inp文件自己计算即可。可以到 小木虫搜索:“基于ABAQUS简支梁受力和弯矩的相关分析”进行相应文件 下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在 梁的两端受集中载荷,梁的大直径D=180mm,小直径d=150mm,a=200mm, b=300mm,l=1600mm,F=300000N。现通过梁单元和实体单元分析简支梁的受 力情况,变形情况,以及分析其剪力和弯矩等。材料采用45#钢,弹性模量 E=2.1e6MPa,泊松比v=0.28。 图1 简支梁结构简图 1.梁单元分析 ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb,beam-shaft.inp。 在建立梁part的时候,采用三维线性实体,按照图1所示尺寸建立,然后 在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截 面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建 两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把 创建好的梁赋给梁结构。 图3 创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后 处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界 条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

ANSYS悬臂梁的自由端受力的有限元计算[1]

悬臂梁自由端受力的有限元计算 任柳杰10110290005 一、计算目的 1、掌握ANSYS软件的基本几何形体构造、网格划分、边界条件施加等方法。 2、熟悉有限元建模、求解及结果分析步骤和方法。 3、利用ANSYS软件对梁结构进行有限元计算。 4、梁的变形、挠曲线等情况的分析。 5、一维梁单元,二维壳单元,三维实体单元对计算结果的影响。 6、载荷施加在不同的节点上对结果的影响。 二、计算设备 PC,ANSYS软件(版本为11.0) 三、计算内容 悬臂梁受力模型 如上图所示,一段长100[mm]的梁,一端固定,另一段受到平行于梁截面的集中力F的作用,F=100[N]。梁的截面为正方形,边长为10[mm]。梁所用的材料:弹性模量E=2.0 105[MPa],泊松比0.3。 四、计算步骤(以梁单元为例) 1、分析问题。 分析该物理模型可知,截面边长/梁长度=0.1是一个较小的值,我们可以用梁单元来分析这样的模型。当然,建立合适的壳单元模型和实体单元模型也是可以的。故拟采用这三种不同的 方式建立模型。以下主要阐述采用梁单元的模型的计算步骤。 2、建立有限元模型。 a)创建工作文件夹并添加标题; 在个人的工作目录下创建一个文件夹,命名为beam,用于保存分析过程中生成的各种文件。 启动ANSYS后,使用菜单“File”——“Change Directory…”将工作目录指向beam 文件夹;使用/FILNAME,BEAM命令将文件名改为BEAM,这样分析过程中生成的文件均 以BEAM为前缀。 偏好设定为结构分析,操作如下: GUI: Main Menu > Preferences > Structural b)选择单元; 进入单元类型库,操作如下: GUI: Main Menu > Preprocessor > Element Type > Add/Edit/Delete > Add… 对话框左侧选择Beam选项,在右侧列表中选择2D elastic 3选项,然后单击OK按钮。

悬臂梁结构设计

梁、柱、墙、板筋的一般计算规则 一、梁 (1)框架梁 一、首跨钢筋的计算 1、上部贯通筋 上部贯通筋(上通长筋1)长度=通跨净跨长+首尾端支座锚固值 2、端支座负筋 端支座负筋长度:第一排为Ln/3+端支座锚固值;第二排为Ln/4+端支座锚固值 3、下部钢筋 下部钢筋长度=净跨长+左右支座锚固值 以上三类钢筋中均涉及到支座锚固问题,那么总结一下以上三类钢筋的支座锚固判断问题:支座宽≥Lae且≥0.5Hc+5d,为直锚,取Max{Lae,0.5Hc+5d}。 钢筋的端支座锚固值=支座宽≤Lae或≤0.5Hc+5d,为弯锚,取Max{Lae,支座宽度-保护层+15d }。 钢筋的中间支座锚固值=Max{Lae,0.5Hc+5d} 4、腰筋 构造钢筋:构造钢筋长度=净跨长+2×15d;抗扭钢筋:算法同贯通钢筋 5、拉筋 拉筋长度=(梁宽-2×保护层)+2×11.9d(抗震弯钩值)+2d;拉筋根数:如果我们没有在平法输入中给定拉筋的布筋间距,那么拉筋的根数=(箍筋根数/2)×(构造筋根数/2);如果给定了拉筋的布筋间距,那么拉筋的根数=布筋长度/布筋间距。 6、箍筋 箍筋长度=(梁宽-2×保护层+梁高-2×保护层)×2+2×11.9d+8d 箍筋根数=(加密区长度/加密区间距+1)×2+(非加密区长度/非加密区间距-1)+1 注意:因为构件扣减保护层时,都是扣至纵筋的外皮,那么,我们可以发现,拉筋和箍筋在每个保护层处均被多扣掉了直径值;并且我们在预算中计算钢筋长度时,都是按照外皮计算的,所以软件自动会将多扣掉的长度在补充回来,由此,拉筋计算时增加了2d,箍筋计算时增加了8d。 7、吊筋 吊筋长度=2×锚固(20d)+2×斜段长度+次梁宽度+2×50,其中框梁高度>800mm夹角=60°≤800mm夹角=45° 二、中间跨钢筋的计算 1、中间支座负筋 中间支座负筋:第一排为:Ln/3+中间支座值+Ln/3;第二排为:Ln/4+中间支座值+Ln/4 注意:当中间跨两端的支座负筋延伸长度之和≥该跨的净跨长时,其钢筋长度: 第一排为:该跨净跨长+(Ln/3+前中间支座值)+(Ln/3+后中间支座值); 第二排为:该跨净跨长+(Ln/4+前中间支座值)+(Ln/4+后中间支座值)。 其他钢筋计算同首跨钢筋计算。LN为支座两边跨较大值。 2、其他梁 一、非框架梁 在03G101-1中,对于非框架梁的配筋简单的解释,与框架梁钢筋处理的不同之处在于: 1、普通梁箍筋设置时不再区分加密区与非加密区的问题; 2、下部纵筋锚入支座只需12d; 3、上部纵筋锚入支座,不再考虑0.5Hc+5d的判断值。

悬臂梁—有限元ABAQUS线性静力学分析报告实例

线性静力学分析实例——以悬臂梁为例 线性静力学问题是简单且常见的有限元分析类型,不涉及任何非线性(材料非线性、几何非线性、接触等),也不考虑惯性及时间相关的材料属性。在ABAQUS 中,该类问题通常采用静态通用(Static,General)分析步或静态线性摄动(Static,Linear perturbation)分析步进行分析。 线性静力学问题很容易求解,往往用户更关系的是计算效率和求解效率,希望在获得较高精度的前提下尽量缩短计算时间,特别是大型模型。这主要取决于网格的划分,包括种子的设置、网格控制和单元类型的选取。在一般的分析中,应尽量选用精度和效率都较高的二次四边形/六面体单元,在主要的分析部位设置较密的种子;若主要分析部位的网格没有大的扭曲,使用非协调单元(如CPS4I、C3D8I)的性价比很高。对于复杂模型,可以采用分割模型的方法划分二次四边形/六面体单元;有时分割过程过于繁琐,用户可以采用精度较高的二次三角形/四面体单元进行网格划分。 悬臂梁的线性静力学分析 1.1 问题的描述 一悬臂梁左端受固定约束,右端自由,结构尺寸如图1-1所示,求梁受载后的Mises应力、位移分布。 ν 材料性质:弹性模量3 = E=,泊松比3.0 2e 均布载荷:F=103N 图1-1 悬臂梁受均布载荷图 1.2 启动ABAQUS 启动ABAQUS有两种方法,用户可以任选一种。 (1)在Windows操作系统中单击“开始”--“程序”--ABAQUS 6.10 --

ABAQUS/CAE。 (2)在操作系统的DOS窗口中输入命令:abaqus cae。 启动ABAQUS/CAE后,在出现的Start Section(开始任务)对话框中选择Create Model Database。 1.3 创建部件 在ABAQUS/CAE顶部的环境栏中,可以看到模块列表:Module:Part,这表示当前处在Part(部件)模块,在这个模块中可以定义模型各部分的几何形体。可以参照下面步骤创建悬臂梁的几何模型。 (1)创建部件。对于如图1-1所示的悬臂梁模型,可以先画出梁结构的二维截面(矩形),再通过拉伸得到。 单击左侧工具区中的(Create Part)按钮,或者在主菜单里面选择Part--Create,弹出如图1-2所示的Create Part对话框。 图1-2 Create Part对话框 在Name(部件名称)后面输入Beam,Modeling Space(模型所在空间)设

abaqus有限元分析报告开裂梁要点

Abaqus梁的开裂模拟计算报告 1.问题描述 利用ABAQUS有限元软件分析如图1.1所示的钢筋混凝土梁的裂缝开展。参考文献Brena et al.(2003)得到梁的基本数据: 图1.1 Brena et al.(2003)中梁C尺寸 几何尺寸:跨度3000mm,截面宽203mm,高406mm的钢筋混凝土梁 由文献Chen et al. 2011得材料特性: 1.混凝土:抗压强度f c’=35.1MPa,抗拉强度f t= 2.721MPa,泊松比ν=0.2,弹性模量 E c=28020MPa; 2.钢筋:弹性模量为E c=200GPa,屈服强度f ys=f yc=440MPa,f yv=596MPa 3.混凝土垫块:弹性模量为E c=28020MPa,泊松比ν=0.2 2.建模过程 1)Part 打开ABAQUS使用功能模块,弹出窗口Create Part,参数为:Name:beam;Modeling Space:2D;Type:Deformable;Base Feature─Shell;Approximate size:2000。点击Continue 进入Sketch二维绘图区。由于该梁关于Y轴对称,建模的时候取沿X轴的一半作为模拟对象。 使用功能模块,分别键入独立点(0,0),(1600,0),(1600,406),(406,0),(0,0)并按下下方提 示区的Done,完成草图。 图2.1 beam 部件二维几何模型

相同的方法建立混凝土垫块: 图2.2 plate 部件二维几何模型 所选用的点有(0,0),(40,0),(40,10),(0,10) 受压区钢筋: 在选择钢筋的base feature的时候选择wire,即线模型。 图2.3 compression bar 部件二维几何模型 选取的点(0,0),(1575,0) 受拉区钢筋: 图2.4 tension bar 部件二维几何模型 选取的点(0,0),(1575,0) 箍筋: 图2.5 stirrup 部件二维几何模型 选取的点为(0,0),(0,330) 另外,此文里面为了作对比,部分的模型输入尺寸的时候为m,下面无特别说明尺寸都为mm。

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS 简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于ABAQUS2016,首先用梁单元分析了梁受力作用下的应 力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另 外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE 仿真分析具体细节操作并没有给出详细的操作,不过在后面上 传了对应的cae, odb , inp 文件。不过要注意的是本文采用的是 ABAQUS2016 进行计算,低版本可能打不开,可以自己提交 inp 文件自己计算即可。可以到 小木虫搜索:“基于ABAQUS 简支梁受力和弯矩的相关分析”进行相应文件 下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在 梁的两端受集中载荷,梁的大直径 D=180mm ,小直径d=150mm ,a=200mm , b=300mm , l=1600mm , F=300000N 。现通过梁单元和实体单元分析简支梁的受 力情况,变形情况,以及分析其剪力和弯矩等。材料采用 45#钢,弹性模量 E=2.1e6MPa,泊松比 v=0.28。 1.梁单元分析 ABAQUS2016 中对应的文件为 beam-shaft.cae , beam-shaft.odb , beam- shaft.inp 。 在建立梁part 的时候,采用三维线性实体,按照图1所示尺寸建立,然后 在台阶及支撑梁处进行分割,结果如图 2所示 l b b a a A A C B A 图1简支梁结构简图

图2建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为 (0,0,-1)(点击图3中的n2, n 1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。 图3创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

Abaqus梁结构经典计算

Abaqus梁结构经典计算 一榀轻钢结构库房框架,结构钢方管构件,材质E=210GPa,μ=, ρ=7850kg/m3(在不计重力的静力学分 析中可以不要)。F=1000N,此题要计入重力。计算水平梁中点下降位移。 文件与路径 顶部下拉菜单File, Save As ExpAbq02。 一部件 创建部件,命名为Prat-1。 3D,可变形模型,线,图形大约范围20(m)。 选用折线绘出整个图示屋架。 退出Done。 二性质 1 创建截面几何形状:Module,Property,Create Profile, 将截面(1)命名为Profile-1,选Box型截面,按图输入数据,关闭。直至完成截面(3)。 2 定义各段梁的方向: 选中所有立杆,输入截面主惯性轴1方向单位矢量(1,0,0),选中横梁和斜杆,输入截面主轴1方向单位矢量(0,1,0),关闭。还有好办法,请大家自己捉摸。

3 定义截面力学性质: 将截面(1) Profile-1命名为Section-1,梁,梁,截面几何形状选 Profile-1,输入E=210GPa,G=,ν=,ρ=7850,关闭。直至完成截面(3) Section-3。 4 将截面的几何、力学性质附加到部件上: 选中左右立柱和横梁,将各Section-1~3信息注入Part-1的各个杆件上,要对号入座。 5 保存模型: 将本题的CAE模型保存为。 三组装 创建计算实体,以Prat-1为原形,用Independent方式或Dependent生成实体。 四分析步 创建分析步,命名为Step-1,静态Static,通用General。 注释:无,时间:不变,非线性开关:关。 五载荷 1 施加位移边界条件: 命名为BC-1,在分析步Step-1中,性质:力学,针对位移和转角。 选中立柱两脚,约束全部自由度。 2 创建载荷: 命名为Load-1,在分析步Step-1中,性质:力学,选择集中力。 选中顶点,施加Fy=F2=-1000(N)。 六网格 对部件Prat-1进行。 1 撒种子: 针对部件,全局种子大约间距。 2 划网格: 针对部件,OK。 3 保存你的模型: 将本题的CAE模型保存为。

abaqus简支梁分析报告

钢筋混凝土梁尺寸下图1所示,该梁为对称结构,两端简支,承受对称的位移荷载,两位移荷载间距为1000mm,方向向下,大小为10mm。简支梁上部配有两根直径为10mm的架立钢筋,下部配有两根直径为18mm的受力纵筋,直径为10mm的箍筋满布整个简支梁。 混凝土的材料参数如下:C45,f ck=26.9MPa,E c=3.35×104MPa;C55,f ck=35.5MPa,E c=3.55×104MPa; 架立钢筋和箍筋的材料参数如下:f yk=235MPa,f uk=315MPa,E s=200GPa;纵筋的材料参数如下:f yk=275MPa,f uk=345MPa,E s=200GPa 图1 采用ABAQUS软件对上图1中的钢筋混凝土梁进行非线性分析,要求采用abaqus standard求解器 要求出具分析报告,报告包含以下几个章节:模型说明(3分)、单元类型及尺寸(2分)、材料模型(3分)、相互作用关系说明(2分)、边界条件(2分)等有限元分析要素。 结果包括: 1、应力云图,针对钢筋等提供Mises第一主应力。(7分) 2、应变云图,混凝土提供LE应变。(7分)

3、荷载—跨中挠度曲线。(7分) 4、跨中主筋荷载—应变曲线。(7分) 注:各尺寸大小如下表1所示 提示:集中位移荷载可模拟加载装置(例如加载板宽100mm)以解决分析收敛问题,加载板宽度需在报告中进行说明。 报告提交日期:2017年11月13日。 表1 学生学号与分析参数对应表

钢筋混凝土梁abaqus 分析报告 学院: 姓名: 学号: 指导老师: 年月日

钢筋混凝土的分析参数分析参数如下:b=200mm,h=300mm,L=3200mm,箍筋间距为100mm,混凝土采用C45标号。 第一章数值模型 模型说明 混凝土梁尺寸为200mm*300mm*3200mm,模型如图所示: 箍筋尺寸为140mm*240mm,断面面积为78.5398mm2,采用三维线模型,如图所示:

(完整版)Abaqus分析实例(梁单元计算简支梁的挠度)精讲

Abaqus分析实例(梁单元计算简支梁的挠度)精讲 对于梁的分析可以使用梁单元、壳单元或是固体单元。Abaqus的梁单元需要设定线的方向,用选中所需要的线后,输入该线梁截面的主轴1方向单位矢量(x,y,z),截面的主轴方向在截面Profile设定中有规定。 注意: 因为ABAQUS软件没有UNDO功能,在建模过程中,应不时地将本题的CAE模型(阶段结果)保存,以免丢失已完成的工作。 简支梁,三点弯曲,工字钢构件,结构钢材质,E=210GPa,μ=0.28,ρ=7850kg/m3(在不计重力的静力学分析中可以不要)。F=10k N,不计重力。计算中点挠度,两端转角。理论解:I=2.239×10-5m4,w中=2.769×10-3m,θ边=2.077×10-3。 文件与路径: 顶部下拉菜单File, Save As ExpAbq00。 一部件 1 创建部件:Module,Part,Create Part, 命名为Prat-1;3D,可变形模型,线,图形大约范围10(程序默认长度单位为m)。 2 绘模型图:选用折线,从(0,0)→(2,0)→(4,0)绘出梁的轴线。 3 退出:Done。 二性质 1 创建截面几何形状:Module,Property,Create Profile, 命名为Profile-1,选I型截面,按图输入数据,l=0.1,h=0.2,b l=0.1,b2=0.1,t l=0.01,t2=0.01,t3=0.01,关闭。 2 定义梁方向:Module,Property,Assign Beam Orientation,

选中两段线段,输入主轴1方向单位矢量(0,0,1)或(0,0,-1),关闭。 3 定义截面力学性质:Module,Property,Create Section, 命名为Section-1,梁,梁,截面几何形状选Profile-1,输入E=210e9(程序默认单位为N/m2,GPa=109N/m2), G=82.03e9,ν=0.28,关闭。 4 将截面的几何、力学性质附加到部件上:Module,Property,Assign Section, 选中两段线段,将Section-1信息注入Part-1。 三组装 创建计算实体:Module,Assembly,顶部下拉菜单Instance,Create, Create Instance,以Prat-1为原形,用Independent方式生成实体。 四分析步 创建分析步:Module,Step, Create Step,命名为Step-1,静态Static,通用General。注释:无,时间:不变,非线性 开关:关。 五载荷 1 施加位移边界条件:Module,Load,Create Boundary Condition, 命名为BC-1,在分析步Step-1中,性质:力学,针对位移和转角,Continue。选中梁左端,Done,约束u1、u2、u3、u R1、u R2各自由度。 命名为BC-2,在分析步Step-1中,性质:力学,针对位移和转角,Continue。选中梁右端,Done,约束u2、u3、u R1、u R2各自由度。 2 创建载荷:Module,Load,Create Load, 命名为Load-1,在分析步Step-1中,性质:力学,选择集中力Concentrated Force,Continue。选中梁中点,Done,施加F y(CF2)=-10000(程序默认单位为N)。 六网格 对实体Instance进行。 1 撒种子:Module,Mesh,顶部下拉菜单Seed,Instance, Global Seeds,Approximate g lobal size 0.2全局种子大约间距0.2。 2 划网格:Module,Mesh,顶部下拉菜单Mesh,Instance,yes。 七建立项目 1 建立项目:Module,Job,Create Job,Instance,

悬臂梁的受力分析

悬臂梁的受力分析 实验目的:学会使用有限元软件做简单的力学分析,加深对材料力学相关内容的理解,了解如何将理论与实践相结合。 实验原理:运用材料力学有关悬臂梁的的理论知识,求出在自由端部受力时,其挠度的大小,并与有限元软件计算相同模型的结果比较 实验步骤: 1,理论分析 如下图所示悬臂梁,其端部的抗弯刚度为 3 3EI l ,在其端部施加力F ,可得到其端部挠度为:3 3Fl EI ,设其是半径为0.05米,长为1米,弹性 模量11 210E =?圆截面钢梁,则其可求出理论挠度值3 4 43Fl ER ωπ=,先分别给F 赋值为100kN ,200kN ,300kN ,400kN ,500kN .计算结果如下表: 2有限元软件(ansys )计算: (1)有限元模型如下图:

模型说明,本模型采用beam188单元,共用11个节点分为10个单元,在最有段施加力为F 计算得到端部的挠度如下表所示, 得到梁端部在收到力为100kN时Y方向的位移云图: 将理论计算结果与ansys分析结果比较如下表:

通过比较可得,理论值与软件模拟结果非常接近,在力学的学习中只要能熟练的掌握理论知识,在软件模拟过程中便可做到心中有数,在本实验中理论值是通过材料力学中得一些假设得到的一个解析解,而实验也是用了相同的假设,并将梁离散为十个单元,得到数值解,因此和理论值的误差是不可避免的,通过增加离散单元的个数可以有效的减少误差,但是增大了计算量,因此在实践中,只要选取合适的离散单元数,能够满足实践要求即可,这就需要有更加扎实有限元知识作为指导。 通过本次试验,让我对力学知识及力学知识的应用有了更进一步的了解,对今后的学习应该有一定的指导意义。 附:ansys命令流 /TITLE,liangfenxi /PREP7 !* ET,1,BEAM188 !* !* MPTEMP,,,,,,,, MPTEMP,1,0 MPDATA,EX,1,,2e11 MPDATA,PRXY,1,,0.3 SECTYPE, 1, BEAM, CSOLID, q, 0

abaqus有限元分析简支梁解析

1.梁C 的主要参数: 其中:梁长3000mm ,高为406mm ,上下部保护层厚度为38mm ,纵筋端部保护层厚度为25mm 抗压强度:35.1MPa 抗拉强度:2.721MPa 受拉钢筋为2Y16,受压钢筋为2Y9.5,屈服强度均为440MPa 箍筋:Y7@102,屈服强度为596MPa 2.混凝土及钢筋的本构关系 1、运用陈光明老师的论文(Chen et al. 2011)来确定混凝土的本构关系: 受压强度: 其中C a E ==28020,c f ρσ'=,0.002ρε= 2、受压强度与开裂位移的相互关系:

其中123.0, 6.93c c == 3、损伤因子: 其中c h = e=10(选取网格为10mm ) 4、钢筋取理想弹塑性 5、名义应力应变和真实应力及对数应变的转换: ln (1) ln(1)true nom nom Pl true nom E σσεσεε=+=+- 6、混凝土最终输入的本构关系如下: compressive behavior tensile behavior tension damage yield stress inelastic strain yield stress displacement parameter displacement 21.50274036 0 2.721 0 25.56359281 2.72247E-05 2.683556882 0.0003129 0.18766492 0.0003129 28.88477336 8.85105E-05 2.646628319 0.0006258 0.31902609 0.0006258 31.43501884 0.000177278 2.610210508 0.0009387 0.41606933 0.0009387 33.24951537 0.000292271 2.574299562 0.0012516 0.49065237 0.0012516 34.40787673 0.000430648 2.538891515 0.0015645 0.54973463 0.0015645 35.01203181 0.000588772 2.503982327 0.0018774 0.5976698 0.0018774 35.16872106 0.000762833 2.46956789 0.0021903 0.63732097 0.0021903 34.97805548 0.000949259 2.435644029 0.0025032 0.67064827 0.0025032 34.52749204 0.001144928 2.402206512 0.0028161 0.69903885 0.0028161 33.88973649 0.001347245 2.369251048 0.003129 0.72350194 0.003129 33.17350898 0.001541185 2.336773294 0.0034419 0.74478941 0.0034419 32.38173508 0.001737792 2.30476886 0.0037548 0.76347284 0.0037548 31.54367693 30.68161799 0.001936023 0.002135082 2.27323331 2.242162167 0.0040677 0.0043806 0.77999451 0.79470205 0.0040677 0.0043806

悬臂梁变形及应力分析

基于ANSYS 10.0 对悬臂梁的强度及变形分析 姓名:刘吉龙 班级:机制0803班 学号:200802070516

对悬臂梁的受力及变形分析摘要:本研究分析在ANSYS10.0平台上,采用有限元法对悬臂梁进行强度与变形分析、验证此悬臂梁设计的合理性。 一、问题描述 长度L=254 mm的方形截面的铝合金锥形杆,上端固定,下端作用有均布拉力P=68.9 Mpa,上截面的尺寸50.8×50.8 mm,下截面尺寸25.4×25.4 mm(见右图),弹性模量E=7.071×104 Mpa,泊松比μ=0.3,试用确定下端最大轴向位移δ和最大轴向应力。试将分析结果与理论解进行比较,说明有限元分析的误差。(理论解:最大轴向位移δ=0.1238 mm)。 二、建立有限元模型: 定义模型单元类型为:solid(实体)95号单元,材料常数为:弹性模量 E=7.071×104 Mpa,泊松比μ=0.3。 三、有限元模型图: 建立有限元模型时,观察模型的形状可知,我们可以先建立模型的上下底面,再根据有上下底面形成的八个关键点(keypoints)生成线,接着生成面,生成体。最后生成该悬臂梁的模型图,示图如下:

整个模型建立好之后即可对其划分网格,划分网格时,若选择自由划分则生成的网格比较混乱,不能比较准确的模拟该梁真实的受力变形情况。故我们选择智能划分模式,并且分别对模型的各个棱边(lines)进行均匀分割,这样可以划分出比较理想的网格,更利于我们的研究和分析。网格划分之后的模型图为: 四、加载并求解: 根据该悬臂梁的受力特点,我们在其下底面(比较大的底面)上进行六个自由度的位移约束,而在其上地面上施加大小为P=68.9 Mpa均布拉力,将载荷加载好之后便可进行运算求解,求解完成之后,我们得到其位移变形图如下:

悬臂梁的弯矩计算方法可参考材料力学

悬臂梁的弯矩计算方法可参考材料力学。你没有说清楚悬臂梁上作用的是什么样的荷载形式,所以没有办法直接给答案,给你下以几种,让你参考吧 (一)、受端部集中荷载作用时 其悬臂梁上的弯矩值是Px,其中P是端部集中力,x是从端部到另一端的距离。(二)、受均布荷载作用时 其悬臂梁上的弯矩值是qx2/2,其中q是均布线荷载,x是从端部到另一端的距离。 设为均布荷载下。悬臂梁悬臂净长L。 计算悬臂梁自重及其担负楼板面积的自重计g KN/m;(包括上下粉刷重) 计算悬臂梁担负楼板面积上的活荷载q KN/m;(楼面活荷载标准值查荷载规范GB50009-2001) 承载能力极限计算的荷载基本组合值为1.2g+1.4q=Q1 正常使用极限计算的荷载标准组合值为g+q=Q2 支座截面的弯矩=1/2Q×L^2。 (计算两种极限状态的弯矩分别代入Q1或Q2值)同问已知弯矩、板混凝土强度、钢筋型号,如何求板配筋??例如弯矩21.1KN/m,H=150mm,C25混凝土,二级钢求As 2011-11-01 11:18 提问者:影子伯爵之羽|浏览次数:808次 我来帮他解答 您还可以输入9999 个字 推荐答案 2011-11-01 14:02 二、设计依据 《混凝土结构设计规范》GB50010-2002 三、计算信息 1. 几何参数 截面类型: 矩形 截面宽度: b=1000mm 截面高度: h=150mm 2. 材料信息 混凝土等级: C25 fc=11.9N/mm2 ft=1.27N/mm2 钢筋种类: HRB335fy=300N/mm2 最小配筋率: ρmin=0.200% 纵筋合力点至近边距离: as=15mm 3. 受力信息 M=21.100kN*m

ABAQUS教材:第六章 梁单元的应用

第六章梁单元的应用 对于某一方向尺度 (长度方向)明显大于其它两个方向的尺度,并且以纵向应力为主的结构,ABAQUS用梁单元对它模拟。梁的理论是基于这样的假设:结构的变形可以全部由沿梁长度方向的位置函数来决定。当梁的横截面的尺寸小于结构典型轴向尺寸的1/10时,梁理论能够产生可接受的结果。典型轴向尺寸的例子如下: ·支承点之间的距离。 ·有重大变化的横截面之间的距离。 ·所关注的最高振型的波长。 ABAQUS梁单元假定梁横截面与梁的轴向垂直,并在变形时保持为平面。 切不要误解为横截面的尺寸必须小于典型单元长度的1/10,高度精细的网格可能包含长度小于横截面尺寸的梁单元,不过并不推荐这种方式,这种情况下实体单元更适合。 6.1 梁横截面的几何形状 可以给出梁横截面的形状和尺寸来定义梁的外形,也可以给出梁横截面工程性质(如面积和惯性矩)来定义一般梁的外形。 如果用梁横截面的形状和尺寸来定义梁的外形,ABAQUS提供了如图6-1所示的各种常用的梁横截面形式可资利用。使用其中的任意多边形横截面可以定义任意形状的薄壁截面梁。详情可参考ABAQUS/标注用户手册中15.3.9节。 图6-1梁横截面形状 在定义梁横截面的几何形状时,ABAQUS/CAE会提示输入所需尺寸,不同的横截面类型会有不同的尺寸要求。如果梁的外形与梁横截面的截面性质有关时,可以要求在分析过程中计算横截面的工程性质,也可以要求在分析开始前预先计算横截面的工程性质。当材料的力学特性既有线性又有非线性时(例如,截面刚度因塑性屈服而改变),可以选用第一种方式,而对线弹性材料,第二种方式效率更高。 也可以不给出横截面尺寸,而直接给出横截面的工程性质(面积、惯性矩和扭转常数),这时材料的力学特性既可以是线性的也可以是非线性的。这样就可以组合梁的几何和材料特性来定义梁对荷载的响应,同样,响应也可以是线性或非线性的。详情可参考ABAQUS/标准用户手册中15.3.7节。 6.1.1 截面计算点 梁横截面的几何形状和尺寸确定后,就要在分析过程中计算横截面的工程性质,

悬臂梁设计计算

钢丝绳经验公式 现场快速口算的经验公式:钢丝绳最小破断拉力≈D*D/20 (吨)。D 为钢丝绳直径。 如:υ20mm 钢丝绳最小破断拉力≈20*20/20=20(吨) 理论值:6*37+FC-1670 υ20的钢丝绳为197kN ;6*19+FC-1670的为205kN 。 吊耳计算 [σ]—许用应力,MPa ,一般情况下, [] 1.5 s σσ= σs-屈服强度 [τ]—许用剪应力,MPa , [] τ= []c σ:许用挤压应力,MPa ,[][]1.4c σσ= 1、简化算法 (1)拉应力计算 如上图所示,拉应力的最不利位置在c -d 断面,其强度计算公式为: []2()P R r σσδ = ≤- 其中:σ—c-d 截面的名义应力, P —吊耳荷载,N [σ]—许用应力,MPa ,一般情况下, [] 1.5 s σσ= (2)剪应力计算 如图所示,最大剪应力在a-b 断面,其强度计算公式为: []()p P A R r ττδ = =≤-

式中:[τ]—许用剪应力,MPa , [] στ= (3)局部挤压应力计算 局部挤压应力最不利位置在吊耳与销轴结合处,其强度计算公式为: []c c P d σσδ = ≤? 式中:[]c σ:许用挤压应力,MPa ,[][]1.4c σσ=。d-销轴直径 (4)焊缝计算: A :当吊耳受拉伸作用,焊缝不开坡口或小坡口,按照角焊缝计算: h h e w k P h l ττ???= ≤??? P —焊缝受力, N k —动载系数,k=1.1, e h —角焊缝的计算厚度,0.7e f h h = ,f h 为焊角尺寸,mm ; w l —角焊缝的计算长度,取角焊缝实际长度减去2f h ,mm ; h τ???? —角焊缝的抗压、抗拉和抗剪许用应力,h τ??= ?? ,[] σ为母材的基本许 用应力。 B :当吊耳受拉伸作用,焊缝开双面坡口,按照对接焊缝计算: (2)h h k P L σσ δδ???= ≤?? - 式中: k —动载系数,k=1.1; L —焊缝长度,mm ; δ—吊耳板焊接处母材板厚,mm ; h σ????—对接焊缝的纵向抗拉、抗压许用应力, []0.8h σσ? ?=??,[]σ为母材的基本许用应力。

Abaqus悬臂梁分析实施报告

. Abaqus 课程报告 ——悬臂梁 一、问题描述 分析悬臂梁 悬臂梁简图如下,它由钢材制成,400mm 长,具有40mm×60mm 的横截 面。钢的弹性模量为200GPa,泊松比为0.3。 除了以上数据外,载荷位置,方向和大小也已标示在上图中;再无其它可利用的数据。 要求: 分析完成后要求写出完整的分析报告,分析报告包括模型,分析,分析结果的述,对模型、分析和分析结果的讨论以及结论这样几个部分。讨论中的问题论述要求有文献证据和直接证据,可能在报告的最后部分要附上参考文献。讨论中要包括理论解,模型的误差,分析的误差,不同分析方案的比较(如果有不同的.

. 分析方案的话)。使用不同的单元,(如梁单元B21、B31、B22 和B32;实体单元C3D8、C3D8R、C3D20、C3D20R、C3D8I、C3D8H、C3D8RH 和C3D20RH)和不同的单元划分等等对问题进行分析和比较。: 二、模型建立与求解 1.part 针对该悬臂梁模型,拟定使用3D实体梁单元。挤压成型方式 材料属性2. 0.3。200Gpa材料为钢材,弹性模量,泊松比截面属性3. homogeneoussolid截面类型定义为,。. .

4.组装 在本例中只有一个装配部件,组装时即可选择independent,也可选择dependent的方式。 5.建立分析步 在对模型施加荷载和边界条件之前或者定义模型的接触问题之前,必须定义分析步。然后可以指定在哪一步施加荷载,在哪一步施加边界条件,哪一步去定相互关联。 ABAQUS的各种载荷要分别加载在不同的分析步中,比如像竖向载荷、偏转角度、水平载荷要分别建立三个载荷步。常用的分析类型有通用分析(General)和线性摄动分析(Linear perturbation)两种。线性摄动分析是关于动态分析的分析步。本例只需用到通用分析(General)中的静态通用分析(Static,General)。 6.施加边界条件与载荷 对于悬臂梁,左端为固定约束,在Abaqus中约束类型为encastre,载荷类型为集中载荷,沿Y轴负向-2500N。图为施加边界条件与载荷后。 . . 7.网格划分

ABAQUS简支梁分析(梁单元和实体单元)

ABAQUS简支梁分析(梁单元和实体单元)

基于ABAQUS 简支梁受力和弯矩的相关分析 (梁单元和实体单元) 对于简支梁,基于 ABAQUS2016,首先用梁单元分析了梁受力作用下的应力,变形,剪力和力矩;对同一模型,并用实体单元进行了相应的分析。另外,还分析了梁结构受力和弯矩作用下的剪力及力矩分析。 对于CAE 仿真分析具体细节操作并没有给出详细的操作,不过在后面上传了对应的cae ,odb ,inp 文件。不过要注意的是本文采用的是ABAQUS2016进行计算,低版本可能打不开,可以自己提交inp 文件自己计算即可。可以到小木虫搜索:“基于ABAQUS 简支梁受力和弯矩的相关分析”进行相应文件下载。 对于一简支梁,其结构简图如下所示,梁的一段受固支,一段受简支,在梁的两端受集中载荷,梁的大直径D =180mm ,小直径d =150mm ,a =200mm ,b =300mm ,l =1600mm ,F =300000N 。现通过梁单元和实体单元分析简支梁的受力情况,变形情况,以及分析其剪力和弯矩等。材料采用45#钢,弹性模量E =2.1e6MPa ,泊松比v =0.28。 l a a b b F F C A B 图1 简支梁结构简图 1.梁单元分析 ABAQUS2016中对应的文件为beam-shaft.cae ,beam-shaft.odb ,beam-shaft.inp 。 在建立梁part 的时候,采用三维线性实体,按照图1所示尺寸建立,然后在台阶及支撑梁处进行分割,结果如图2所示。

图2 建立part并分割 接下来为梁结构分配材料,创建材料,定义弹性模量和泊松比,创建梁截面形状,如图3,非别定义两个圆,圆的直接分别为180和150mm。然后创建两个截面,截面选择梁截面,再选择图2中的所有梁,定义梁的方向矢量为(0,0,-1)(点击图3中的n2,n1,t那个图标即可创建梁的方向矢量),最后把创建好的梁赋给梁结构。 图3 创建梁截面形状 接下来装配实体,再创建分析步,在创建分析步的时候,点击主菜单栏的Output,编辑Edit Field Output Request,在SF前面打钩,这样就可以在结果后处理中输出截面剪力和力矩,如图4所示。在Load加载中,在固支处剪力边界条件,约束x,y,z,及绕x和y轴的转动,如图5所示,同理,在固支另一处约束y,z,及绕x和y轴的转动。在梁的两端添加集中力,集中力的大小为300000N。最后对实体部件进行分网,采用B32梁单元,网格尺寸为10。完成

相关文档
最新文档