高等数学期末复习归纳大全

高等数学期末复习归纳大全
高等数学期末复习归纳大全

高等数学期末复习归纳

大全

文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

《高等数学复习》教程

第一讲函数、连续与极限一、理论要求

1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)

几类常见函数(复合、分段、反、隐、初等函数)

2.极限极限存在性与左右极限之间的关系

夹逼定理和单调有界定理

会用等价无穷小和罗必达法则求极限

3.连续函数连续(左、右连续)与间断

理解并会应用闭区间上连续函数的性质(最值、有界、介

值)

二、题型与解法

A.极限的求法(1)用定义求

(2)代入法(对连续函数,可用因式分解或有理化消除零因子)

(3)变量替换法

(4)两个重要极限法

(5)用夹逼定理和单调有界定理求

(6)等价无穷小量替换法

(7)洛必达法则与Taylor级数法

(8)其他(微积分性质,数列与级数的性质)

1.61

2arctan lim )21ln(arctan lim

3030-=-=+->->-x x x x x x x x (等价小量与洛必达)

2.已知2030)

(6lim

0)(6sin lim

x x f x x xf x x x +=+>->-,求

解:

2

0303'

)(6cos 6lim

)(6sin lim

x xy x f x x x xf x x x ++=+>->-

36

272

2''lim 2'lim )(6lim

0020====+>->->-y x y x x f x x x (洛必达)

3.1

21)12(lim ->-+x x

x x x (重要极限)

4.已知a 、b 为正常数,x

x x x b a 3

0)2(lim +>-求

解:令]

2ln )[ln(3

ln ,)2(3

-+=+=x x x x x b a x t b a t 2

/300)()ln(23)ln ln (3lim ln lim ab t ab b b a a b a t x

x x x x x =∴=++=>->-(变量

替换)

5.)

1ln(1

2

)(cos lim x

x x +>-

解:令

)ln(cos )1ln(1

ln ,)(cos 2

)1ln(1

2

x x t x t x +=

=+

2

/10021

2tan lim

ln lim ->->-=∴-=-=e t x x t x x (变量替换) 6.设)('x f 连续,0)0(',0)0(≠=f f ,求

1

)()(lim

2

2

=?

?

>-x

x x dt

t f x

dt

t f

(洛必达与微积分性质)

7.已知??

?=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a

解:令2

/1/)ln(cos lim 20

-==>-x x a x (连续性的概

念)

三、补充习题(作业)

1.

3

cos 11lim

-=---->-x

x x e x x (洛必达)

2.)

1sin 1(

lim 0

x x ctgx x ->- (洛必达或Taylor )

3.

1

1lim

2

2

=--->-?x x

t x e

dt

e x (洛必达与微积分性质)

第二讲 导数、微分及其应用 一、理论要求 1.导数与微分

导数与微分的概念、几何意义、物理意义

会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)

会求平面曲线的切线与法线方程

2.微分中值定理

理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题

3.应用

会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图

会计算曲率(半径)

二、题型与解法 A.导数微分的计算

基本公式、四则、复合、高阶、隐函数、参数方程求导

1.???=+-==5

2arctan )(2t e ty y t

x x y y 由决定,求dx

dy

2.x y x y x x y y sin )ln()(3

2+=+=由决定,求1|0==x dx dy

解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得

y=1

3.

y x x y y xy

+==2)(由决定,则dx dy x )12(ln |0-== B.曲线切法线问题

4.求对数螺线

)2/,2

/πθρρπθe e (),在(==处切线的直角坐标方程。

解:1|'),,0(|),(,sin cos 2/2

/2/-==?

????====πθππθθ

θ

θθy e y x e y e x

(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。求f(x)在(6,f(6))处的切线方程。

解:需求)1('),1()6('),6(f f f f 或,等式取x->0的极限有:f(1)=0

C.导数应用问题

6.已知x

e x

f x x xf x x f y --=+=1)]('[2)('')(2满足对一切,

)

0(0)('00≠=x x f 若,求),(00y x 点的性质。

解:令??

?<>>>===-0

,00

,0)(''00010000x x x e e x f x x x x 代入,,故为极小值

点。

7.

23

)1(-=

x x y ,求单调区间与极值、凹凸区间与拐点、渐进线。

解:定义域),1()1,(+∞-∞∈ x

8.求函数x

e x y arctan 2/)1(+-=π的单调性与极值、渐进线。

解:101'arctan 2/2

2-==?++=+x x e x x x y x 与驻点π,

2)2(-=-=x y x e y 与渐:π

D.幂级数展开

问题

9.?=-x x dt t x dx d 02

2sin )sin(

或:2

0202sin sin )(sin x

du u dx d du u dx d u t x x x ==-?=-??

10.求

)0(0)1ln()()

(2n f n x x x x f 阶导数处的在=+=

解:)(2)1(32()1ln(22

13222---+--+???-+-=+n n n x o n x x x x x x x

=)(2)1(321543

n n

n x o n x x x x +--+???-+--

2!

)1()0(1

)(--=∴-n n f n n

E.不等式的证

11.设)1,0(∈x ,21

1)1ln(112ln 1)1(ln )122<

-+<-<++x x x x x ,求证( 证:1)令

0)0(,)1(ln )1()(2

2=-++=g x x x x g

2)令

单调下降,得证。

,0)('),1,0(,1

)1ln(1)(<∈-+=

x h x x x x h

F.中值定理问

12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f ,

0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使

证:

32)('''!31

)0(''!21)0(')0()(x f x f x f f x f η++

+=

其中]1,1[),,0(-∈∈x x η

将x=1,x=-1代入有)

('''61

)0(''21)0()1(1)('''61

)0(''21)0()1(021ηηf f f f f f f f ++==-+

=-=

两式相减:6)(''')('''21=+ηηf f 13.2

e b a e <<<,求证:)(4

ln ln 222a b e a b ->

-

证:

)

(')

()(:

ξf a b a f b f Lagrange =--

ξξ

ln 2ln ln ,ln )(222

=

--=a b a b x x f

2

2

22ln )()(0ln 1)(',ln )(e e t t t t t t >∴>∴<-==ξξ?ξ???

)(4

ln ln 222a b e a b ->

- (关键:构造函数)

三、补充习题(作业)

1.

23

)0('',11ln

)(2

-

=+-=y x x x f 求 2.曲线012)1,0(2cos 2sin =-+?

????==x y t e y t

e x t

t

处切线为在

3.

e x y x x e x y 1)0)(1ln(+

=>+=的渐进线方程为 4.证明x>0时22)1(ln )1(-≥-x x x

证:令322

2

)1(2)('''),(''),(',)1(ln )1()(x x x g x g x g x x x x g -=

---=

第三讲 不定积分与定积分 一、理论要求 1.不定积分

掌握不定积分的概念、性质(线性、与微分的关系)

会求不定积分(基本公式、线性、凑微分、换元技巧、分部)

2.定积分

理解定积分的概念与性质

理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分

会用定积分求几何问题(长、面、体)

会用定积分求物理问题(功、引力、压力)及函数平均值

二、题型与解法 A.积分计算

1.

?

?

+-=--=-C x x dx x x dx 2

2

arcsin

)2(4)

4(2

2.

???

+=+=+C x e xdx e xdx e dx x e x x x x tan tan 2sec )1(tan 222222

3.设

x x x f )

1ln()(ln +=

,求?dx x f )(

解:??+=dx e e dx x f x x )

1ln()(

4.

??∞

∞>-∞

+=+-+-=112122ln 214)11(lim |arctan 1arctan b b dx x x x x x dx x x π

B.积分性质

5.)(x f 连续,?=1

0)()(dt xt f x ?,且A x x f x =>-)(lim 0,求)(x ?并讨

论)('x ?在0=x 的连续性。 解:

x

dy y f x xt y f x

?=

?===0

)()(,0)0()0(??

??---=-x x x t d t x f dx d dt t x tf dx d 02

222022)()(2)(C.积分的应用

三、补充习题(作业)

1.?+---=C x x x x dx x x

cot 2sin ln cot sin sin ln 2 2.?+-+dx x x x 1365

2

3.

?

dx

x

x

arcsin

第四讲 向量代数、多元函数微分与空间解析几何 一、理论要求 1.向量代数

理解向量的概念(单位向量、方向余弦、模) 了解两个向量平行、垂直的条件 向量计算的几何意义与坐标表示

2.多元函数微分

理解二元函数的几何意义、连续、极限概念,闭域性质 理解偏导数、全微分概念 能熟练求偏导数、全微分

熟练掌握复合函数与隐函数求导法

3.多元微分应用

理解多元函数极值的求法,会用Lagrange 乘数法求极值 4.空间解析几何

掌握曲线的切线与法平面、曲面的切平面与法线的求法 会求平面、直线方程与点线距离、点面距离

二、题型与解法 A.求偏导、全微分

1.)(x f 有二阶连续偏导,

)sin (y e f z x

=满足z e z z x yy xx 2''''=+,求

)

(x f

解:u u e c e c u f f f -+=?=-21)(0''

2.

y x z y x y xy f x z ???++=2)()(1,求

? 3.决定由0),,(),()(),(=+===z y x F y x xf z x z z x y y ,求dx dz /

B.空间几何问题

4.求a z y x =++上任意点的切平面与三个坐标轴的截距之和。 解:

a

d a z z y y x x =?=++000///

5.曲面

2132222=++z y x 在点)2,2,1(-处的法线方程。

C.极值问题

6.设),(y x z z =是由

0182106222=+--+-z yz y xy x 确定的函数,求),(y x z z =的极值点与极值。

三、补充习题(作业)

1.

y x z

x y g y x xy f z ???+=2),(),(求

2.

x z x y g y x xy f z ??+=求)),(,

(

3.dz

x y

y x u u z 求,arctan ,ln ,22=+==??

第五讲 多元函数的积分 一、理论要求 1.重积分

熟悉二、三重积分的计算方法(直角、极、柱、球)

会用重积分解决简单几何物理问题(体积、曲面面积、重心、转动惯量)

2.曲线积分

理解两类曲线积分的概念、性质、关系,掌握两类曲线积分的计算方法

熟悉Green 公式,会用平面曲线积分与路径无关的条件 3.曲面积分 理解两类曲面积分的概念(质量、通量)、关系 熟悉Gauss 与Stokes 公式,会计算两类曲面积分

二、题型与解法 A.重积分计算

1.Ω

+=???Ω,)(22dV y x I 为平面曲线???==022x z y 绕z 轴旋转一

周与z=8的围域。

解:

3

1024)(20

220

80

2228

022

πθπ=

=+=?

?????≤+z

z

y x rdr r d dz dxdy y x dz I

2.

??

--+=D

D

dxdy y

x a y

x I ,42

2

2

2

2为)0(2

2>-+-=a x a a y 与

x y -=围域。(

)2116(

2

2

-=πa I

3.??

?≤≤≤≤=其他,00,21,),(2x

y x y x y x f ,

求??≥+D

x

y x D dxdy y x f 2:,),(22 (49/20)

B.曲线、曲面

积分

4.

?-++-=L

x x dy

ax y e dx y x b y e I )cos ())(sin (

解:令A y O L 至沿从01= 5.?

+-=L y x ydx xdy I 2

24,为半径的圆周正向

为中心,为以)1()0,1(>R L 。

解:取包含(0,0)的正向

??

?==θθsin cos 2:1r y r x L , 6.对空间x>0内任意光滑有向闭曲面S , 0

)()(2=--??S

x zdxdy e dzdx x xyf dydz x xf ,且)(x f 在x>0有连

续一阶导数,1

)(lim 0=+

>-x f x ,求)(x f 。

解:

????????Ω

Ω

--+=??=?=s

x dV

e x x

f x xf x f dV F S d F ))()(')((02

第六讲 常微分方程 一、理论要求 1.一阶方程 熟练掌握可分离变量、齐次、一阶线性、伯努利方程求法

2.高阶方程 会求

))(')(',('')),(')(',(''),()(y p y y y f y x p y y x f y x f y n =====

3.二阶线性常系数

???

??+=→±=+=→=+=→≠?=++?=++)sin cos ()(0

0'''2112112121121221x c x c e y i e x c c y e c e c y q p q py y x x

x x βββαλλλλλλλαλλλ(齐次)

???

??=→==→==→≠?=x n x

n x

n x

n e

x x Q y and xe x Q y or e x Q y e x P x f ααααλλαλλαλα22212212)()()()()((非齐次)

?????=+=→=±+=→≠±?+=),max((sin )(cos )((sin )(cos )(()

sin )(cos )(()(22j i n x x r x x q xe y i x x r x x q e y i x x p x x p e x f n n x

n n x

j i x ββλβαββλβαββααα(非

齐次)

二、题型与解法 A.微分方程求

1.求

0)2()23(222=-+-+dy xy x dx y xy x 通解。(

)322c x y x xy =-- 2.利用代换

x u

y cos =

化简x

e x y x y x y =+-cos 3sin '2cos ''并求

通解。(

x e x c x x c y e u u x

x

cos 5sin 2cos 2cos ,4''21+

+==+) 3.设)(x y y =是上凸连续曲线,),(y x 处曲率为2

'11

y +,且

过)1,0(处切线方程为y=x+1,求)(x y y =及其极值。

解:

2

ln 21

1,2ln 211|)4cos(|ln 01'''max 2+=++-=?=++y x y y y π

三、补充习题(作业)

1.已知函数)(x y y =在任意点处的增量

)1(,)0(),(12y y x o x x y y 求π=?++?=

?。(4

π

πe )

2.求x

e y y 24''=-的通解。(

x x x xe e c e c y 2222141+

+=-)

3.求0)1(),0(0)(2

2

=>=-++y x xdy dx y x y 的通解。()

1(21

2-=x y )

4.求1)0(')0(,0'2''2===--y y e

y y x

的特解。(

x e x y 2)23(41

41++=

第七讲 无穷级数 一、理论要求 1.收敛性判别

级数敛散性质与必要条件

常数项级数、几何级数、p 级数敛散条件 正项级数的比较、比值、根式判别法 交错级数判别法

2.幂级数

幂级数收敛半径、收敛区间与收敛域的求法

幂级数在收敛区间的基本性质(和函数连续、逐项微积分)

Taylor 与Maclaulin 展开

级数

了解Fourier 级数概念与Dirichlet 收敛定理 会求],[l l -的Fourier 级数与],0[l 正余弦级数

第八讲 线性代数 一、理论要求 1.行列式 会用按行(列)展开计算行列式

2.矩阵

几种矩阵(单位、数量、对角、三角、对称、反对称、逆、伴随)

矩阵加减、数乘、乘法、转置,方阵的幂、方阵乘积的行列式

矩阵可逆的充要条件,会用伴随矩阵求逆 矩阵初等变换、初等矩阵、矩阵等价 用初等变换求矩阵的秩与逆

理解并会计算矩阵的特征值与特征向量

理解相似矩阵的概念、性质及矩阵对角化的冲要条件 掌握将矩阵化为相似对角矩阵的方法

掌握实对称矩阵的特征值与特征向量的性质 3.向量

理解n 维向量、向量的线性组合与线性表示 掌握线性相关、线性无关的判别

理解并向量组的极大线性无关组和向量组的秩

了解基变换与坐标变换公式、过渡矩阵、施密特方法 了解规范正交基、正交矩阵的概念与性质

4.线性方程组理解齐次线性方程组有非零解与非齐次线性方程组有解

条件

理解齐次、非齐次线性方程组的基础解系及通解

掌握用初等行变换求解线性方程组的方法

5.二次型二次型及其矩阵表示,合同矩阵与合同变换

二次型的标准形、规范形及惯性定理

掌握用正交变换、配方法化二次型为标准形的方法

了解二次型的对应矩阵的正定性及其判别法

第九讲概率统计初步

一、理论要求

1.随机事件与概率了解样本空间(基本事件空间)的概念,理解随机事件的关系与运算

会计算古典型概率与几何型概率

掌握概率的加减、乘、全概率与贝叶斯公式

2.随机变量与分布理解随机变量与分布的概念

理解分布函数、离散型随机变量、连续型变量的概率密度

掌握0-1、二项、超几何、泊松、均匀、正态、指数分布,会求分布函数

3.二维随机变量理解二维离散、连续型随机变量的概率分布、边缘分布和条件分布

理解随机变量的独立性及不相关概念

掌握二维均匀分布、了解二维正态分布的概率密度

会求两个随机变量简单函数的分布

4.数字特征理解期望、方差、标准差、矩、协方差、相关系数的概

掌握常用分布函数的数字特征,会求随机变量的数学期

5.大数定理了解切比雪夫不等式,了解切比雪夫、伯努利、辛钦大

数定理

了解隶莫弗-Laplace定理与列维-林德伯格定理

6.数理统计概念理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩

了解2 分布、t分布、F分布的概念和性质,了解分位数的概念

了解正态分布的常用抽样分布

7.参数估计掌握矩估计与极大似然估计法

了解无偏性、有效性与一致性的概念,会验证估计量的

无偏性

会求单个正态总体的均值和方差的置信区间

8.假设检验掌握假设检验的基本步骤

了解单个及两个正态总体的均值和方差的假设检验

第十讲 总结 1.极限求解

变量替换(∞

1作对数替换),洛必达法则,其他(重要极限,微积分性质,级数,等价小量替换)

1.2))1((...)2()[(1lim

a x n a n x n a x n a x n n +

=-++++++∞>- (几何级数) 2.2

//10)arccos 2

(lim ππ->-=e x x x (对数替换)

3.2

tan

1

)

2(lim x

x x π->-

4.

2

1)63(lim -∞>-++x x x x

5.21)()()(lim a x a x na a x n n n a x ----->-

6.?????

????

>=<-=?)0(cos 0

,40,2cos 1)(02x x tdt

x x x x x f x

,求)(lim 0x f x >-

2.导数与微分 复合函数、隐函数、参数方程求导

1.]')()()[(b a x a x

x b b a

2.0)sin(arctan =--+y x x x y

,求dy/dx

3.?????==t e y t e x t t

sin cos 决定函数)(x y y =,求dy

4.已知1ln 22=-y y x ,验证

0')12(42

2=-+y y x xy

5.bx

x v v u e y u sin ,ln 31

,32===,求x y '

3.一元函数积

1.求函数?+-+=x dt

t t t x I 0211

3)(在区间]1,0[上的最小值。

(0)

2.?---2

22|1|1dx x x

3.?

-1

2

/32)1dx

x (

4.?+dx

x x )1(1

5.?-12t t

dt

6.

?

-+dx

x

x 2

4141

4.多元函数微分

1.)

,(2xy

e y x

f z =,求y x z z ',' 2.),(y x z z =由0

),(=++x z y y z x F 给出,求证:xy

z yz xz y x -=+''

3.求

xy y x y x u 2),(2

2

+-=在O(0,0),A(1,1),B(4,2)的梯度。

4.)ln(sin y x x u +=,求y x u ???2

6.证明

)(

2

x y f x z n =满足nz yz xz y x =+'2'

7.求

18:44),(2

222≤+---=y x D y x y x y x f 在内的最值。

5.多元函数积分

1.求证:b rot a a rot b b a div

-=?)(

2.??≤+--=D

y

y x D dxdy y x I 2:,)4(22

3.

??≤++=D

y

y x D dxdy y x I 2:,)(22

4.改变积分次序?

?

+-2

21

),(x dy

y x f dx

5.??====D xy x y x D dxdy y

x

I 1

,2,2:,)(2围域。

6.常微分方程

1.求

01ln 12

2=++++dx y dy xdx y 通解。

2.求x

e y y y 325'2''=++通解。 3.求x e y y y 265'2''=--通解。

4.求

0)()(22=++-dy x xy dx y y x 通解。

5.求

0)0()0('),2cos (21

4''==-=

+y y x x y y 特解。

6.求1)0(',,0)0(,4''===-y y xe y y x

特解。

《高等数学考研题型分析》

填空题:极限(指数变换,罗必达)、求导(隐函数,切法线)、不定积分、二重积分、 变上限定积分

选择题:等价小量概念,导数应用,函数性质,函数图形,多元极限

计算题:中值定理或不等式,定积分几何应用,偏导数及几何应用,常微分方程及应用

同济六版高等数学(下)知识点整理

第八章 1、向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1) 1(+- x x b a y y b a k =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+22 22; (旋转抛物面:z a y x =+2 22(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面:122 2 22=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转))

微积分复习附解题技巧

《微积分》复习及解题技巧 第一章 函数 一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2 二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示) 对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0 ④反正(余)弦函数式:自变量 ≤1 在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。 典型例题:《综合练习》第二大题之1 补充:求y=x x 212-+的定义域。(答案:2 12<≤ -x ) 三、判断函数的奇偶性: 典型例题:《综合练习》第一大题之3、4

第二章 极限与连续 求极限主要根据: 1、常见的极限: 2、利用连续函数: 初等函数在其定义域上都连续。 例: 3、求极限 的思路: 可考虑以下9种可能: ①0 0型不定式(用罗彼塔法则) ② 2 0C =0 ③∞ 0=0 ④01 C =∞ ⑤21C C ⑥∞ 1C =0 ⑦ 0∞=∞ ⑧2C ∞=∞ ⑨∞ ∞ 型不定 式(用罗彼塔法则) 1sin lim 0 =→x x x e x x x =??? ? ?+∞→11lim )0(01 lim >=∞→αα x x ) ()(0 lim 0 x f x f x x =→11 lim 1 =→x x 1) () (lim =→x g x f x α?? ???∞ ≠=→)0(0 )(11lim 常数C C x f x α?? ???∞ ≠=→)0(0)(22lim 常数C C x g x α

高等数学笔记

第1章函数 §1 函数的概念 一、区间、邻域 自然数集N整数集Z有理数集Q实数集R 建立数轴后: 建立某一实数集A与数轴上某一区间对应 区间:设有数a,b,a0),则称实数集{x|a?δ

a称为N(a,δ)的中心,δ>0称为邻域N(a,δ)的半径。 去心邻域:把N(a,δ)的中心点a去掉,称为点a的去心邻域,记为N(a^,δ)={x|0<|x?a|<δ}=N(a,δ)?{a} 注:其中,?{a}表示去掉由a这一个数组成的数集。 二、函数概念 例1. 设圆的半径为x(x>0),它的面积A=πx2,当x在(0,+∞)内任取一个数值(记为?x∈(0,+∞))时,由关系式A=πx2就可以确定A的对应数值。 文章来源:https://www.360docs.net/doc/077627163.html,/ 例2. 设有半径为r的圆,作圆的内接正n边形,每一边对应的圆心角α=2πn,周长S n=n?2r sinπn,当边数n在自然数 集N(n≥3)任取一个数,通过关系式S n=2nr sinπn就有一个S n对应确定数值。 函数定义:设有数集X,Y,f是一个确定的对应法则,对?x∈X,通过对应法则f都有唯一的y∈Y与x对应,记为x→f y,或f(x)=y,则称f为定义在X上的函数。 其中X称为f的定义域,常记为D f。 X——自变量,Y——因变量。 当X遍取X中的一切数时,那么与之对应的y值构成一个数集V f={y|y=f(x),x∈X},称V f为函数f的值域。 文章来源:https://www.360docs.net/doc/077627163.html,/ 注意: (1)一个函数是由x,y的对应法则f与x的取值范围X所确定的。把“对应法则f”、“定义域”称为函数定义的两个要素。 例如,y=arcsin(x2+2)这个式子,由于x2+2>2,而只有当|x2+2|≤1时,arcsin才有意义,因此这个式子不构成函数关系。又例如,y=ln x2与y=2ln x不是同一个函数,因为定义域不同。而y=ln x2与y=2ln|x|是同一个函数,因为定义域相同。(2)函数的值域是定义域和对应法则共同确定的。 (3)确定函数定义域时,注意:若函数有实际意义,需依据实际问题是否有意义来确定。 若函数不表示某实际问题,则定义域为自变量所能取得的使函数y=f(x)成立的一切实数所组成的数值。 函数的几何意义:设函数y=f(x)定义域为D f,?x∈D f,对应函数值y=f(x)在XOY平面上得到点(x,y),当x遍取D f中一切实数时,就得到点集P={(x,y)|y=f(x),x∈D f}。点集P称为函数y=f(x)的图形。 文章来源:https://www.360docs.net/doc/077627163.html,/ 三、函数的几个简单性质 1. 函数的有界性 若?M>0,s.t.|f(x)|≤M,x∈I,则称y=f(x)在区间I上有界。否则称f(x)在I上无界。 注:s.t.是“使得,满足于”的意思,I表示某个区间。

高等数学下知识点总结

高等数学(下)知识点 主要公式总结 第八章 空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2 222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222 双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , ?∏⊥∏21 0212121=++C C B B A A ;?∏∏21// 2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: (三) 空间直线及其方程

1、 一般式方程:?????=+++=+++0 22221111D z C y B x A D z C y B x A 2、 对称式(点向式)方程: p z z n y y m x x 0 00-=-=- 方向向量:),,(p n m s =ρ ,过点),,(000z y x 3、 两直线的夹角:),,(1111 p n m s =ρ ,),,(2222p n m s =ρ , ?⊥21L L 0212121=++p p n n m m ;?21//L L 2 1 2121p p n n m m == 4、 直线与平面的夹角:直线与它在平面上的投影的夹角, ?∏//L 0=++Cp Bn Am ;?∏⊥L p C n B m A == 第九章 多元函数微分法及其应用 1、 连续: ),(),(lim 00) ,(),(00y x f y x f y x y x =→ 2、 偏导数: x y x f y x x f y x f x x ?-?+=→?), (), (lim ),(00000 00 ;y y x f y y x f y x f y y ?-?+=→?) ,(),(lim ),(0000000 3、 方向导数: βαcos cos y f x f l f ??+??=??其中 β α,为 l 的方向角。 4、 梯度:),(y x f z =,则j y x f i y x f y x gradf y x ρ ρ),(),(),(000000+=。 5、 全微分:设),(y x f z =,则d d d z z z x y x y ??= +?? (一) 性质 1、 函数可微,偏导连续,偏导存在,函数连续等概念之间的关系:

高等数学学习笔记

第一章 代数运算与自然数 主要内容: 1、集合与映射的概念 2、映射及其运算 3、代数系统 4、自然数及其他相关定义 5、归纳法原理与反归纳法的运用 重点掌握 1、由A →B 的单映射σ的定义为:设2121,,,:a a A a A a B A ≠∈∈→若由σ,就推出)()21a a σσ≠(,则称σ为从A 到B 的单映射。 2、由A →B 的满映射σ的定义为:设B ran B A =→)(,:σσ若,则称σ为从A 到B 的满映射。 3、给出一个由整数集合Z 到自然数集合N 的双射:可考虑分段映射,即将定义域分为小于0、等于0、大于0的整数三部分分别给出其象 4、若集合|A|=n ,则集合A →A 的映射共有n n 种。 5、皮阿罗公理中没有前元的元素为1。 6、自然数a 与b 加法的定义中两个条件为①:'1a a =+②:)'('b a b a +=+. 7、自然数a 与b 相乘的定义中两个条件为: ①:a a =?1;②:a b a b a +?=?' 8、自然数a>b 的定义为:如果给定的两个自然数a 与b 存在一个数k,使得a=b+k ,则称a 大于b,b 小于a,记为a>b 或b

12、若A 是有限集合,则A →A 的不同映射个数为:||||A A 。 13、从整数集合Z 到自然数集合N 存在一个单映射。 14、若A 是有限集合,则不存在A 到其真子集合的单映射。 15、若A 为无限集合,则存在A 的真子集合B 使其与A 等价。 16、存在从自然数集合N 到整数集合Z 的一个满映射,但不是单映射。 可考虑将定义域分成奇数、偶数两部分,定义一个与n )1(-有关的映射 17、存在从自然数N 到整数集合Z 的双射。 可考虑分段映射 18、代数系统(+R ,?)与代数系统(R,+)是同构的,其中+R 表示正实数集合,R 表示实数集合,?与+就是通常的实数乘法与加法。 根据同构定义,只需找到一个从(+R ,?)到(R,+)的一一映射,例如lgx 就可以证明上述论述。 19、令+Q 为正有理数集合,若规定 2 b a b a +=⊕,ab b a =? 则: (1){+Q ,⊕}构成代数体系,但不满足结合律。 (2){+Q ,?}不构成代数体系,但满足结合律。 根据代数体系和结合律的定义可得上述论述成立。 20、若在实数集合中规定b a ⊕=a+b-a ×b ,其中+与×是通常的加法与乘法,则⊕满足结合律。 只需证明等式(b a ⊕)⊕c=)(c b a ⊕⊕成立 21、分别利用归纳法与反归纳法可以证明n 个数的算术平均值大于等于这n 个数的几何平均值。 归纳法根据定义易证,在运用反归纳法证明时可先证n=2,4,…,n 2都成立,假设命题对n=k 成立,令,...21k a a a S k k +++= 1 ...1211-+++=--k a a a S k k ,利用12111...---≥k k k a a a S 证之成立

同济六版高等数学(下)知识点整理

第八章 1、 向量在轴上的投影: 性质:?cos )(a a u =(即Prj u ?cos a a =),其中?为向量a 与u 轴的夹角; u u u b a b a )()()( +=+(即Prj u =+)(b a Prj u a + Prj u b ); u u a a )()( λλ=(即Prj u λλ=)(a Prj u a ). 2、 两个向量的向量积:设k a j a i a a z y x ++=,k b j b i b b z y x ++=,则 =?b a x x b a i y y b a j z z b a k =1 1) 1(+-y y b a z z b a i +21)1(+-x x b a z z b a j +3 1)1(+- x x b a y y b a k ) =k b a b a j b a b a i b a b a x y y x z x x z y z z y )()()(-+-+- 注:a b b a ?-=? 3、 二次曲面 (1) 椭圆锥面:222 22z b y a x =+; (2) 椭圆抛物面:z b y a x =+2222; (旋转抛物面: z a y x =+2 2 2(把把xOz 面上的抛物线z a x =22 绕z 轴旋转)) (3) 椭球面:1222222=++c z b y a x ; (旋转椭球面: 122 222=++c z a y x (把xOz 面上的椭圆122 22=+c z a x 绕z 轴旋转)) (4) 单叶双曲面:1222222=-+c z b y a x ; (旋转单叶双曲面:122 222=-+c z a y x (把 xOz 面上的双曲线122 22=-c z a x 绕z 轴旋转) )

关于高等数学方法与典型例题归纳

关于高等数学方法与典 型例题归纳 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

2014年山东省普通高等教育专升本考试 2014年山东专升本暑期精讲班核心讲义 高职高专类 高等数学 经典方法及典型例题归纳 —经管类专业:会计学、工商管理、国际经济与贸易、电子商务 —理工类专业:电气工程及其自动化、电子信息工程、机械设计制造及其 自动化、交通运输、计算机科学与技术、土木工程 2013年5月17日星期五 曲天尧 编写 一、求极限的各种方法 1.约去零因子求极限 例1:求极限1 1 lim 41--→x x x 【说明】1→x 表明1与x 无限接近,但1≠x ,所以1-x 这一零因子可以约去。 【解】6)1)(1(lim 1 ) 1)(1)(1(lim 2121=++=-++-→→x x x x x x x x =4 2.分子分母同除求极限 例2:求极限1 3lim 32 3+-∞→x x x x 【说明】 ∞ ∞ 型且分子分母都以多项式给出的极限,可通过分子分母同除来求。 【解】3131lim 13lim 3 11323= +-=+-∞→∞→x x x x x x x 【注】(1) 一般分子分母同除x 的最高次方;

(2) ???? ???=<∞>=++++++----∞→n m b a n m n m b x b x b a x a x a n n m m m m n n n n x 0lim 01101 1 3.分子(母)有理化求极限 例3:求极限)13(lim 22+-++∞ →x x x 【说明】分子或分母有理化求极限,是通过有理化化去无理式。 【解】1 3) 13)(13(lim )13(lim 2 2 22222 2 +++++++-+=+-++∞ →+∞ →x x x x x x x x x x 例4:求极限3 sin 1tan 1lim x x x x +-+→ 【解】x x x x x x x x x x sin 1tan 1sin tan lim sin 1tan 1lim 3030+-+-=+-+→→ 【注】本题除了使用分子有理化方法外,及时分离极限式中的非零因子........... 是解题的关 键 4.应用两个重要极限求极限 两个重要极限是1sin lim 0=→x x x 和e x n x x x n n x x =+=+=+→∞→∞→1 0)1(lim )11(lim )11(lim ,第一个重 要极限过于简单且可通过等价无穷小来实现。主要考第二个重要极限。 例5:求极限x x x x ?? ? ??-++∞→11lim 【说明】第二个重要极限主要搞清楚凑的步骤:先凑出1,再凑X 1 +,最后凑指数部分。 【解】22 212 12112111lim 121lim 11lim e x x x x x x x x x x x =???? ????????? ??-+???? ??+=??? ??-+=??? ??-+--+∞→+∞→+∞→

《高等数学》读书笔记

类型课程学习名称:高等数学 1 时间:2006.7.7 体裁:说明文 知识内容与结构备注一.课程目录 1函数 2极限和连续 3一元函数的导数和微分 4微分中值定理和导数的应用 5一元函数积分学 6多元函数微积分 二.知识层次分解2.3说明: 函数 1.预备知识 1)集合及其运算 1>概念 集合: 元素 2>绝对值及其基本性质

>区间和邻域 2.函数 3.基本特性 4.反函数 5.复合函数 6.初等数学 7.简单函数关系的建立 极限和连续 1数列极限 2数列级数的基本概念 3函数的极限 4极限的运算法则 5无穷小(量)和无穷大(量)6两个重要的极限 7函数的连续性和连续函数 8函数的间断点 一元函数的导数和微分 1导数的概念 2求导法则

基本求导公式 4高阶导数 5函数的微分 6导数和微分在经济学中的简单应用 微分中值定理和导数的应用 1微分中值定理 2洛必达法则 3 函数的单调性 4 曲线的凹凸性和拐点 5函数的极值与最值 一元函数积分学 1原函数和不定积分的概念 2基本积分公式 3换元积分法 4分部积分法 5微分方程初步 6定积分的概念及其基本性质 7 微积分基本公式 8 定积分的换元积分法和分部积分法 9 无穷限反常积分 10 定积分的应用

1空间解析几何 2多元函数的基本概念 3偏导数 4全微分 5多元复合函数的求导法则 6隐函数及其求导法则 7二元函数的极值 8二重积分 注: 1标识符:红色已领会理解橙色已弄懂粉色已记住绿色已会用蓝色已掌握 黑色增删修内容 2 说明:凡属课程都属说明文。要掌握其整体结构和层次内容和最后一层次 的说明内容的意思 3 步骤:1 填写结构 2 对照课程阅读,理解弄懂

高等数学(下)知识点总结

主要公式总结 第八章空间解析几何与向量代数 1、 二次曲面 1) 椭圆锥面:2 2222z b y a x =+ 2) 椭球面:122 222 2=++c z b y a x 旋转椭球面:1222222=++c z a y a x 3) 单叶双曲面:122 222 2=-+c z b y a x 双叶双曲面:1222222=--c z b y a x 4) 椭圆抛物面:z b y a x =+2222双曲抛物面(马鞍面):z b y a x =-22 22 5) 椭圆柱面:1222 2=+b y a x 双曲柱面:122 22=-b y a x 6) 抛物柱面: ay x =2 (二) 平面及其方程 1、 点法式方程: 0)()()(000=-+-+-z z C y y B x x A 法向量:),,(C B A n =ρ ,过点),,(000z y x 2、 一般式方程: 0=+++D Cz By Ax 截距式方程: 1=++c z b y a x 3、 两平面的夹角:),,(1111 C B A n =ρ ,),,(2222C B A n =ρ , 22 22 22 21 21 21 2 12121cos C B A C B A C C B B A A ++?++++= θ ?∏⊥∏210212121=++C C B B A A ;? ∏∏21//2 1 2121C C B B A A == 4、 点 ),,(0000z y x P 到平面0=+++D Cz By Ax 的距离: 2 2 2 000C B A D Cz By Ax d +++++= (三) 空间直线及其方程

考研高等数学145分高手整理完整经典笔记(考研必备免费下载)

最新下载(https://www.360docs.net/doc/077627163.html,) 中国最大、最专业的学习资料下载站转载请保留本信息 数学重点、难点归纳辅导 第一部分 第一章集合与映射 §1.集合 §2.映射与函数 本章教学要求:理解集合的概念与映射的概念,掌握实数集合的表示法,函数的表示法与函数的一些基本性质。 第二章数列极限 §1.实数系的连续性 §2.数列极限 §3.无穷大量 §4.收敛准则 本章教学要求:掌握数列极限的概念与定义,掌握并会应用数列的收敛准则,理解实数系具有连续性的分析意义,并掌握实数系的一系列基本定理。 第三章函数极限与连续函数 §1.函数极限 §2.连续函数 §3.无穷小量与无穷大量的阶 §4.闭区间上的连续函数 本章教学要求:掌握函数极限的概念,函数极限与数列极限的关系,无穷小量与无穷大量阶的估计,闭区间上连续函数的基本性质。 第四章微分 §1.微分和导数 §2.导数的意义和性质 §3.导数四则运算和反函数求导法则 §4.复合函数求导法则及其应用 §5.高阶导数和高阶微分 本章教学要求:理解微分,导数,高阶微分与高阶导数的概念,性质及相互关系,熟练掌握求导与求微分的方法。 第五章微分中值定理及其应用 §1.微分中值定理 §2.L'Hospital法则 §3.插值多项式和Taylor公式 §4.函数的Taylor公式及其应用 §5.应用举例

§6.函数方程的近似求解 本章教学要求:掌握微分中值定理与函数的Taylor公式,并应用于函数性质的研究,熟练运用L'Hospital法则计算极限,熟练应用微分于求解函数的极值问题与函数作图问题。 第六章不定积分 §1.不定积分的概念和运算法则 §2.换元积分法和分部积分法 §3.有理函数的不定积分及其应用 本章教学要求:掌握不定积分的概念与运算法则,熟练应用换元法和分部积分法求解不定积分,掌握求有理函数与部分无理函数不定积分的方法。 第七章定积分(§1 —§3) §1.定积分的概念和可积条件 §2.定积分的基本性质 §3.微积分基本定理 第七章定积分(§4 —§6) §4.定积分在几何中的应用 §5.微积分实际应用举例 §6.定积分的数值计算 本章教学要求:理解定积分的概念,牢固掌握微积分基本定理:牛顿—莱布尼兹公式,熟练定积分的计算,熟练运用微元法解决几何,物理与实际应用中的问题,初步掌握定积分的数值计算。 第八章反常积分 §1.反常积分的概念和计算 §2.反常积分的收敛判别法 本章教学要求:掌握反常积分的概念,熟练掌握反常积分的收敛判别法与反常积分的计算。 第九章数项级数 §1.数项级数的收敛性 §2.上级限与下极限 §3.正项级数 §4.任意项级数 §5.无穷乘积 本章教学要求:掌握数项级数敛散性的概念,理解数列上级限与下极限的概念,熟练运用各种判别法判别正项级数,任意项级数与无穷乘积的敛散性。 第十章函数项级数 §1.函数项级数的一致收敛性 §2.一致收敛级数的判别与性质 §3.幂级数

高等数学上册复习要点及解题技巧

高等数学上册复习要点及解题技巧 第一章:1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 高数解题技巧 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。 ●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 ●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。 ●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。 ●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理 ●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 ●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。 ●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 概率解题的九种思维定势 ●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 ●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式 ●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发 生概率是用全概率公式计算。关键:寻找完备事件组 ●第四句话:若题设中给出随机变量X ~ N 则马上联想到标准化 ~ N(0,1)来处理有关问题。 ●第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使 联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。 ●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联 想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的 区域的公共部分。 ●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作 (0-1)分解。即令

高数读书笔记

高等数学读书笔记

——定积分与不定积分 马燕妮 四川农业大学 经济学院 经济学 中国成都 611130 【摘要】本文首先介绍了不定积分与定积分的基本定义,而后主要探究几种比较重要的积分法。定积分是微积分学中的主要概念之一,它是从各种各样的积累中抽象出来的数学概念,它是函数的一种特定结构和式的极限。不定积分又与定积分进行对比记忆,对不定积分的计算进行系统整理。 【关键字】定积分;不定积分;面积;凑微分法;分部积分法;换元积分法;有理函数不定积分 【Abstract 】 This paper first introduces the basic definition of indefinite integral and defin ite integral, and then explores several of the more important integral method. D efinite integral is one of the major concepts of calculus, it comes from the a ccumulation of various of abstracting mathematical concept, it is the function of the limit of a particular structure with type. Comparing the indefinite integra l and definite integral memory, calculation of indefinite integral system. 【Key words 】Definite integral ;Indefinite integral ;Area ;differentiation division integral method ;Integral method in yuan ;The indefinite integral rational function 一、不定积分与定积分的定义 (一)、定积分的定义: 设f 是定义在[a,b]上的一个函数,对于[a,b]的一个分割T={ 1,? 2?……n ?},任

高等数学(张宇)_-_笔记_PDF

目录 第一讲极限 一极限定义 (3) 二极限性质 (4) 三函数极限基本计算 (8) 四综合计算 (11) 五数列极限计算 (14) 六函数连续与间断 (16) 第二讲一元函数微积分 一概念 (17) 1. 导数 (18) 2. 微分 (20) 3. 不定积分 (21) 4. 定积分 (23) 5. 变限积分 (28) 6. 反常积分 (29) 二计算 (29) 1. 求导 (29) 2. 求积 (33) 三应用 (40) 1. 微分应用 (40) 2. 积分应用 (43) 四逻辑推理 (43) 1. 中值定理 (49) 2. 等式证明 (50) 3. 不等式证明 (51) 第三讲多元函数的微分学(公共部分) 一概念 (51) 1. 极限的存在性 (51) 2. 极限的连续性 (52) 3. 偏导数的存在性 (52) 4. 可微性 (53) 5. 偏导数的连续性 (54) 二计算 (54) 三应用 (56) 第四讲二重积分(公共部分)

一概念与性质 (59) 二计算 (60) 1. 基础题 (60) 2. 技术题 (61) 三综合计算 (62) 第五讲微分方程 一概念及其应用 (63) 二一阶方程的求解 (64) 三高阶方程的求解 (66) 第六讲无穷级数 一数项级数的判敛 (67) 二幂级数求收敛域 (69) 三展开与求和 (69) 四傅里叶级数 (71) 第七讲多元函数微分学 一基础知识 (73) 二应用 (75) 第八讲多元函数积分学 一三重积分 (76) 二第一型曲线、曲面积分 (78) 1. 一线 (78) 2. 一面 (79) 三第二型曲线、曲面积分 (80) 1. 二线 (81) 2. 二面 (83)

《高等数学》-各章知识点总结——第1章

第1章 函数与极限总结 1、极限的概念 (1)数列极限的定义 给定数列{x n },若存在常数a ,对于任意给定的正数ε (不论它多么小), 总存在正整数N , 使得对于n >N 时的一切n , 恒有 |x n-a |<ε 则称a 是数列{x n }的极限, 或者称数列{x n }收敛于a , 记为 a x n n =∞ →lim 或xn →a (n→∞). (2)函数极限的定义 设函数f (x)在点x 0的某一去心邻域内(或当0x M >>)有定义,如果存在常数A , 对于任意给定的正数ε (不论它多么小), 总存在正数δ,(或存在X ) 使得当x满足不等式0<|x -x0|<δ 时,(或当x X >时) 恒有 |f (x)-A |<ε , 那么常数A就叫做函数f (x)当0x x →(或x →∞)时的极限, 记为 A x f x x =→)(lim 0 或f (x )→A (当x →x0).( 或lim ()x f x A →∞ =) 类似的有:如果存在常数A ,对0,0,εδ?>?>当00:x x x x δ-<<(00x x x δ<<-)时,恒有()f x A ε-<,则称A 为()f x 当0x x →时的左极限(或右极限)记作 00 lim ()(lim ())x x x x f x A f x A - +→→==或 显然有0 lim ()lim ()lim ())x x x x x x f x A f x f x A -+→→→=?== 如果存在常数A ,对0,0,X ε?>?>当()x X x X <->或时,恒有()f x A ε-<,则称A 为()f x 当x →-∞(或当x →+∞)时的极限 记作lim ()(lim ())x x f x A f x A →-∞ →+∞ ==或 显然有lim ()lim ()lim ())x x x f x A f x f x A →∞ →-∞ →+∞ =?== 2、极限的性质 (1)唯一性 若a x n n =∞ →lim ,lim n n x b →∞ =,则a b = 若0() lim ()x x x f x A →∞→=0() lim ()x x x f x B →∞→=,则A B = (2)有界性 (i)若a x n n =∞ →lim ,则0M ?>使得对,n N + ?∈恒有n x M ≤

高数笔记大全

第一章 函数、极限和连续 §1.1 函数 一、 主要内容 ㈠ 函数的概念 1. 函数的定义: y=f(x), x ∈D 定义域: D(f), 值域: Z(f). 2.分段函数: ?? ?∈∈=2 1) ()(D x x g D x x f y 3.隐函数: F(x,y)= 0 4.反函数: y=f(x) → x=φ(y)=f -1 (y) y=f -1 (x) 定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数: y=f -1 (x), D(f -1 )=Y, Z(f -1 )=X 且也是严格单调增加(或减少)的。 ㈡ 函数的几何特性 1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2), 则称f(x)在D 内单调增加( ); 若f(x 1)≥f(x 2), 则称f(x)在D 内单调减少( ); 若f(x 1)<f(x 2), 则称f(x)在D 内严格单调增加( ); 若f(x 1)>f(x 2), 则称f(x)在D 内严格单调减少( )。 2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x) 3.函数的周期性: 周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数 4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数 1.常数函数: y=c , (c 为常数) 2.幂函数: y=x n , (n 为实数) 3.指数函数: y=a x , (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con x y=tan x , y=cot x y=sec x , y=csc x

高等数学 各章知识点总结——第9章

一、多元函数的极限与连续 1、n 维空间 2R 为二元数组),(y x 的全体,称为二维空间。3R 为三元数组),,(z y x 的全体,称为三 维空间。 n R 为n 元数组),,,(21n x x x 的全体,称为n 维空间。 n 维空间中两点1212(,,,),(,,,)n n P x x x Q y y y L L 间的距离: ||PQ 邻域: 设0P 是n R 的一个点, 是某一正数, 与点0P 距离小于 的点P 的全体称为点0P 的 邻域,记为),(0 P U ,即00(,){R |||}n U P P PP 空心邻域: 0P 的 邻域去掉中心点0P 就成为0P 的 空心邻域,记为 0(,)U P o =0{0||}P PP 。 内点与边界点:设E 为n 维空间中的点集,n P R 是一个点。如果存在点P 的某个邻域 ),( P U ,使得E P U ),( ,则称点P 为集合E 的内点。 如果点P 的任何邻域内都既有 属于E 的点又有不属于E 的点,则称P 为集合E 的边界点, E 的边界点的全体称为E 的边界. 聚点:设E 为n 维空间中的点集,n P R 是一个点。如果点P 的任何空心邻域内都包含E 中的无穷多个点,则称P 为集合E 的聚点。 开集与闭集: 若点集E 的点都是内点,则称E 是开集。设点集n E R , 如果E 的补集 n E R 是开集,则称E 为闭集。 区域与闭区域:设D 为开集,如果对于D 内任意两点,都可以用D 内的折线(其上的点都属于D )连接起来, 则称开集D 是连通的.连通的开集称为区域或开区域.开区域与其边界的并集称为闭区域. 有界集与无界集: 对于点集E ,若存在0 M ,使得(,)E U O M ,即E 中所有点到原点的距离都不超过M ,则称点集E 为有界集,否则称为无界集. 如果D 是区域而且有界,则称D 为有界区域. 有界闭区域的直径:设D 是n R 中的有界闭区域,则称1212,()max{||}P P D d D PP 为D 的直径。

高等数学,线性代数,概率解题万能技巧。期末,考研复习必备!!

高数解题技巧。(高等数学、考研数学通用)【欢迎分享】tiantian 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。 ●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 ●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。 ●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。 ●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理 ●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 ●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。 ●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 概率解题的九种思维定势 ●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 ●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli 试验,及其概率计算公式 ●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组

大一高数笔记

导数与极限 (一)极限 1. 概念 (1)自变量趋向于有限值的函数极限定义(δε-定义) A x f a x =→)(lim ?0>?ε,0>?δ,当δ<-<||0a x 时,有ε<-|)(|A x f 。 (2)单侧极限 左极限: =-)0(a f A x f a x =-→)(lim ?0>?ε,0>?δ,当δ<-?ε,0>?δ,当δ<-?>?X ε,当 X x >,成立()ε<-A x f ,则称常数A 为函数()x f 在x 趋于无穷时的 极限,记为()A x f x =∞ →lim 。 A y =为曲线()x f y =的水平渐近线。 定义2:00>?>?X ,ε,当X x >时,成立()ε<-A x f ,则有()A x f x =+∞→lim 。 定义3:00>?>?X ,ε,当X x -<时,成立()ε<-A x f ,则有()A x f x =-∞→lim 。 运算法则: 1) 1)若()A x f =lim ,()∞=x g lim ,则()()[]∞=+x g x f lim 。 2) 2)若()()∞≠=但可为,0lim A x f ,()∞=x g lim ,则()()∞=?x g x f lim 。 3) 3)若()∞=x f lim ,则 ()01 lim =x f 。 注:上述记号lim 是指同一变化过程。 (4)无穷小的定义 ~ 0>?ε,0>?δ,当δ<-<||0a x 时,有ε<|)(|x f ,则称函数)(x f 在a x →时的无穷小(量),即 0 )(lim =→x f a x 。 (5)无穷大的定义 0>?M ,0>?δ,当δ<-<||0a x 时,有M x f >|)(|,则称函数)(x f 在a x →时的无穷大(量),记为 ∞ =→)(lim x f a x 。 直线a x =为曲线()x f y =的垂直渐近线。 2.无穷小的性质 定理1 有限多个无穷小的和仍是无穷小。 定理2 有界函数与无穷小的乘积仍是无穷小。 推论1 常数与无穷小的乘积是无穷小。 推论2 有限个无穷小的乘积是无穷小。 ! 无穷小与无穷大的关系 若∞=→)(lim x f a x ,且)(x f 不取零值,则)(1 x f 是a x →时的无穷小。 3.极限存在的判别法 (1)A x f a x =→)(lim ?A a f a f =+=-)0()0(。

相关文档
最新文档