矩阵的正定性及其应用论文

矩阵的正定性及其应用论文
矩阵的正定性及其应用论文

矩阵的正定性及其应用

摘 要:矩阵的正定性是矩阵论中的一个重要概念,本文主要讨论主要阐述的是实矩阵的正定性以及应用.本文在介绍实矩阵的正定性的定义及其判别方法后,简单的举了一些实例来阐述实矩阵正定性的应用.全文分两章,在第一章,矩阵的正定性的定义.在第二章,正定性矩阵的判别方法,在本文的最后给出了几个正定性矩阵的应用实例.

一、二次型有定性的概念

定义1 具有对称矩阵A 之二次型,AX X f T =

(1) 如果对任何非零向量X , 都有0>AX X T (或0

AX X f T =为正定(负定)二次型,矩阵A 称为正定矩阵(负定矩阵).

(2) 如果对任何非零向量X , 都有0≥AX X T (或0≤AX X T )

成立,且有非零向量0X ,使000=AX X T ,则称AX X f T =为半正定(半负定)二次型,矩阵A 称为半正定矩阵(半负定矩阵).

注: 二次型的正定(负定)、半正定(半负定)统称为二次型及其矩阵的有定性.不具备有定性的二次型及其矩阵称为不定的.

二次型的有定性与其矩阵的有定性之间具有一一对应关系.因此,二次型的正定性判别可转化为对称矩阵的正定性判别.

二.矩阵正定性的一些判别方法

定理 1 设A 为正定矩阵,若B A ≌)(合同与B A ,则B 也是正定矩阵. 定理2 对角矩阵),,,(21n d d d diag D =正定的充分必要条件是

),,2,1(0n i d i =>.

定理3 对称矩阵A 为正定的充分必要条件是它的特征值全大于零. 定理4 A 为正定矩阵的充分必要条件A 的正惯性指数.n p =

定理5 矩阵A 为正定矩阵的充分必要条件矩阵是:存在非奇异矩阵C , 使

C C A T =.即E A 与合同。

推论1 若A 为正定矩阵, 则0||>A .

定理6 秩为r 的n 元实二次型AX X f T =, 设其规范形为

2

2122221r p p z z z z z ---++++

则:

(1) f 负定的充分必要条件是,0=p 且.n r = (即负定二次型,其规范形为

2

2221n

z z z f ----= ) (2) f 半正定的充分必要条件是.n r p <= (即半正定二次型的规范形为

n r z z z f r <+++=,22

221 )

(3) f 半负定的充分必要条件是,0=p .n r < (即n r z z z f r <----=,22

221 )

(4)

f

不定的充分必要条件是

.

0n r p ≤<< (即

2

2122221r p p z z z z z f ---+++=+ )

定义2 n 阶矩阵)(ij a A =的k 个行标和列标相同的子式

)1(2121

2221212111n i i i a a a a a a a a a k i i i i i i i i i i i i i i i i i i k

k k k k k ≤<<<≤

称为A 的一个k 阶主子式.而子式

),,2,1(||2

1

22221

11211n k a a a a a a a a a A kk

k k k k k ==

称为A 的k 阶顺序主子式.

定理7 n 阶矩阵)(ij a A =为正定矩阵的充分必要条件是A 的所有顺序主子式

),,2,1(0||n k A k =>.

注:(1) 若A 是负定矩阵,则A -为正定矩阵,。

(2) A 是负定矩阵的充要条件是:).,,2,1(,0||)1(n k A k k =>-

其中k A 是A 的k 阶顺序主子式.

(3) 对半正定(半负定)矩阵可证明以下三个结论等价:

a. 对称矩阵A 是半正定(半负定)的;

b. A 的所有主子式大于(小于)或等于零;

c. A 的全部特征值大于(小于)或等于零.

三、几个简单的例题:

例1 设M 是n 阶实对称矩阵, 则必存在正实数t, 使得tI+M 为正定阵,其中I 是单位矩阵。

证明:矩阵正定的充要条件:

对任意x 不等于0向量,有X'MX>0,X'(TI+M)X = TX'X+X'MX ,

在所有的X 中选一个X,使X'MX 的值最小,X'MX = -MAX,其中 MAX>0,而这时对应的X'X 的值为K,且K 肯定大于0,

又K,MAX 都是常数,则必存在常数T,使TK-MAX>0,即X'(TI+M)X=TX'X+X'MX>0 故TI + M 正定. 例 2 设二次型

3231212

3222142244x x x x x x x x x f +-+++=λ

问λ取何值时, f 为正定二次型? 解 f 的矩阵为

???

???????--=4212411λλA

f 正定的充要条件是A 的顺序主子式全大于零. 事实上, A 的顺序主子式为:

011>=A

2

2441λλλ

-==

A

)

2)(1(48444

2

124

1

1

23+--=+--=--=λλλλλλA

于是, f 正定的充要条件是02>A 且03>A . 联解不等式组:

??

?>+-->-0)2)(1(4042λλλ

可得12<<-λ.

当12<<-λ时, f 正定.

四. 实矩阵正定性的一个简单应用

在实际问题中经常要遇到求三元以上函数的极值问题,对此可由二次型的正定性加以解决.

定义1 设n 元函数12()(,,

)n f X f x x x =在12(,,,)T n n X x x x R =∈的某个邻域内

有一阶、二阶连续偏导数。 记12()()

()(),,

,

n f X f X f X f X x x x ??

????= ??????

, ()f X ?称为函数()f X 在点12(,,

,)T n X x x x =处的梯度.

定义3 满足0()0f X ?=的点0X 称为函数()f X 的驻点.

定义4 2222112122

22

21

2

()()()()()()()()n i j n n

n n n

f X f X f X x x x x x f X H X x x f X f X f X x x x x x ???

??? ?????? ?

??

? ?==

? ??? ?????? ?

????????

称为函数12()(,,

)n f X f x x x =在点n X R ∈处的黑塞矩阵。显然()H X 是由()

f X 的2n 个二阶偏导数构成的n 阶实对称矩阵.

定理8(极值存在的必要条件) 设函数()f X 在点00

0012(,,

,)T

n X x x x =处存在一阶

偏导数,且0X 为该函数的极值点,则0()0f X ?=.

定理9(极值的充分条件) 设函数()f X 在点0n X R ∈的某个邻域内具有一阶、二

阶连续偏导数,且00001

2()()

()(),,,

0n f X f X f X f X x x x ??

????==

??????

则 : (1)当0()H X 为正定矩阵时,0()f X 为()f X 的极小值; (2)当0()H X 为负定矩阵时,0()f X 为()f X 的极大值; (3)当0()H X 为不定矩阵时,0()f X 不是()f X 的极值。 应注意的问题:

利用二次型的正定性来判断多元函数的极值虽然是一个很好的方法,但也有一定的局限性,因为充分条件对正定和负定的要求是很严格的,若条件不满足,那结论就不一定成立.

例3 求三元函数222(,,)23246f x y z x y z x y z =++++-的极值. 解 先求驻点,由

220440660

x y z f x f y f z ?=+=?

=+=??

=-=? 得1,1,1x y z =-=-=

所以驻点为0(1,1,1)P --. 再求(Hessian)黑塞矩阵

因为2,0,0,4,0,6xx xy xz yy yz zz f f f f f f ======,

所以200040006H ??

??=??

????

,可知H 是正定的,所以(,,)f x y z 在0(1,1,1)P --点取得极小值:(1,1,1)6f --=-.

当然,此题也可用初等方法222(,,)(1)2(1)3(1)6f x y z x y z =++++--求得极小值

6-,结果一样.

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的?就如矩阵的元素(数)一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,- 般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法?比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A、C都是n阶矩阵, A B 其中A 0,并且AC CA,则可求得AD BC ;分块矩阵也可以在求解线性 C D 方程组应用? 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利

1 分块矩阵的定义及相关运算性质 1.1 分块矩阵的定义 矩阵分块 , 就是把一个大矩阵看成是由一些小矩阵组成的 . 就如矩阵的元素 ( 数) 一 样,特别是在运算中 , 把这些小矩阵当作数一样来处理 . 定义1设A 是一个m n 矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 A 11 ... 分成s 块,于是有rs 块的分块矩阵,即A .... A r1 . 1.2 分块矩阵的相关运算性质 1. 2.1 加法 A A ij r s , B B ij r s , 其中 A ij , B ij 的级数相同, A B A ij B ij r s 1.2.2 数乘 kA 1.2.3 乘法 1.2.4 转置 A A ji s r 1.2.5 分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换: A 1s ... ,其中 A ij 表示的是一个矩阵 . A rs 设 A a ij B mn b ij m n ,用同样的方法对 A,B 进行分块 设是任 A a ij mn A ij r s ,k 为任意数, 定义分块矩阵 A A ij r s 与 k 的数乘为 设 A a ij ,B sn n m 分块为 A A ij nm r l ,B B ij l r ,其中 A ij 是 s i n j 矩阵, B ij 是 n i m j 矩阵, 定义分块矩阵A A j rl 和B B ij l r 的乘积为 r C ij A i1 B 1j A i2 B 2j ... A il B lj , i 1,2,...t; j 1,2,3,..., l a ij s n 分块为 A sn A ij r s ,定义分块矩阵 A A ij r s 的转置为 rs

分块矩阵的性质及其应用【开题报告】

阵的相关计算简单化, 而且还可以用于证明一些与矩阵有关的问题. 分块矩阵应用于矩阵的秩和一些相关矩阵方面的证明问题, 以及求逆矩阵和方阵行列式的计算问题上, 对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解, 所以分块矩阵作为高等代数中的一个重要概念, 我们需要透彻的了解分块矩阵, 在此基础上较好地学会在何时应用矩阵分块, 从而研究它的性质及应用是非常必要的. 根据目前国内外对矩阵应用研究的发展, 可以知道矩阵已经广泛应用到线性规划、线性代数、统计分析, 以及组合数学等.在这样的形式下, 必须要求对矩阵有一种科学的处理方式以提高应用效果.本文是通过查阅相关文献和学习相关知识后总结并探讨了分块矩阵在各方面的应用.当前对分块矩阵的应用主要发展到计算和证明两大方面.证明方面: 通过对矩阵的分块证明了有关矩阵秩的定理以及其他线性代数证明问题; 计算方面,本文通过对分块矩阵的性质的研究很好的解决了求矩阵的逆矩阵问题, 求行列式, 求矩阵的秩等问题的新的快捷方式. 二、研究的基本内容, 拟解决的主要问题: 研究的基本内容: 通过学习分块矩阵的相关的几种定义, 掌握分块矩阵的性质, 从而熟练分块矩阵的应用. 解决的主要问题: 1.了解分块矩阵的基本概念. 2.探讨分块对角化的性质. 3.研究分块矩阵的应用. 三、研究步骤、方法及措施: 研究步骤: 1.查阅相关资料, 做好笔记; 2.仔细阅读研究文献资料; 3.在老师指导下, 确定整个论文的思路, 列出论文提纲, 撰写开题报告; 4.翻译英文资料; 5.撰写毕业论文; 6.上交论文初稿; 7.反复修改论文, 修改英文翻译, 撰写文献综述; 8.论文定稿.

矩阵的分块及应用

矩阵的分块及应用 武夷学院毕业设计(论文) 矩阵的分块及应用院系:专业:姓名:学号: 指导教师:职称:完成日期:数学与计算机系计算机科学与技术陈航20073011014 魏耀华教授年月日武夷学院教务处制摘要矩阵分块,就是把一个大矩阵按照一定规则分成小矩阵,它是矩阵运算的一种常用技巧与方法。分块矩阵的理论不但在工程技术和实际生产中有着广泛的应用,而且在线性代数中求矩阵乘积、行列式的值、逆矩阵、矩阵的秩和矩阵的特征根的过程中也起到重要作用。分块矩阵的初等变换则是处理分块矩阵有关问题的重要工具,它在线性代数中有非常广泛的应用。讨论了分块矩阵的概念、分块矩阵的运算、分块矩阵的性质以及分块矩阵的广义初等矩

阵,归纳并提出了分块矩阵的一些应用,这些应用主要涉及到矩阵的秩,逆矩阵,行列式以及矩阵正定和半正定等方面。通过引用了大量的实例说明了对矩阵进行适当分块可以使高等代数中的许多计算与证明问题迎刃而解。关键词: 分块矩阵;初等变换;计算;逆矩阵;证明。I Abstract Partitioned matrices mean dividing a big matrix into the small matrices according to the certain rule. It is a common technique and method in matrix operation. The theories of partitioned matrices have not only a wide range of applications in engineering and production, but also play an important role to the process for seeking matrix product and the value of determinant and inverse matrix and rank of matrix and the characteristic in linear algebra. Elementary transformation of partitioned matrices is an important tool to deal with the partition matrix. Also, it is

浅析分块矩阵的性质和应用[1]讲解

浅析分块矩阵的性质和应用 作者姓名:周甜 河南理工大学数学与信息科学学院数学与应用数学专业2007级2班 性质1:分块矩阵都是可逆的,且逆矩阵为分块初等矩阵。 性质2:分块单位矩阵经过一次分块矩阵的初等变换后所得到的矩阵仍为分块初等矩阵。 摘要:分块矩阵在高等代数中有着广泛的应用,矩阵的分块运算是矩阵运算的一种重要方法。本文主要讨论了分块矩阵的运算性质,初等变换,并举例说明和分析了分块矩阵在解决矩阵特征值计算和有关矩阵证明等问题中的应用。利用分块矩阵可以使阶数比较高,比较复杂的矩阵和抽象矩阵的特征值问题的解决变得简明而清晰。 关键词:分块矩阵行列式特征值初等变换矩阵的逆 Tentative Analysis of Properties and Applications of Block Matrices Author Name:Zhou Tian Class 2 Grade 2007 of Mathematics and Applied Mathematics of College Mathematics and Information Science of Henan Polytechnic University School Summary:Block matrices has a wide use in Advanced Algebra. Operations of block matrices play an important role in the operation of matrices. This paper mainly illustrates the operation properties and the elementary transformations of block matrices. Several examples are given in the paper to show the applications of block matrices in calculating the eigenvalues of a matrix and proving a subject in connection with matrices. It is convenient to apply block matrices to deal with questions containing matrices with high order and complex appearances and calculating the eigenvalues of abstract matrices. Keywords: block matrices determinant eigenvalues elementary transformation the inverse of a matrix

分块矩阵的应用研究文献综述

毕业论文文献综述 数学与应用数学 分块矩阵的应用研究 一、前言部分(说明写作的目的,介绍有关概念、综述范围,扼要说明有关 主题争论焦点) 本论文的重要目的是通过查阅各种相关文献,寻找各种相关信息,来研究分块矩阵的计算方法和分块矩阵在化简行列式、行列式运算、求矩阵的特征值等方面的应用,首先我们先来介绍一些概念: 分块矩阵的概念[] 1: 当矩阵的行数与列数较大时, 为便于运算, 有时把它分成若干个小块, 每个小块是行数与列数较小的矩阵.把一个矩阵看作是由一些小块矩阵所构成, 这就是矩阵的分块.构成分块矩阵的每个小矩阵, 称为子块. 如对矩阵A 分块如下 ? ? ??? ???? ???-=1011 012100100001A 其中记? ? ? ???-=??????=???? ??=1121,0000,10011A O E ,则A 可表示为分块矩阵??????=E A O E A 1 矩阵的分块可以有各种不同的分法.如矩阵A 也可分块如下: ? ? ??? ???? ???-=1011012100100001 A 通过分块矩阵的定义和概念,我们将探讨分块矩阵的计算,并利用分块矩阵的思想把分块矩阵的应用联系到其它问题中.

二、主题部分(阐明有关主题的历史背景、现状和发展方向,以及对这些问 题的评述) 作为解决线性方程的工具,矩阵已有不短的历史.拉丁方阵和幻方在史前年代已有人研究.矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的. 但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状.随后移动处筹,就可以求出这个方程的解.在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年. 1693年,微积分的发现者之一戈特弗里德?威廉?莱布尼茨建立了行列式论(theory of determinants).1750年,加布里尔?克拉默其后又定下了克拉默法则.1800年,高斯和威廉?若尔当建立了高斯—若尔当消去法. 1848年詹姆斯?约瑟夫?西尔维斯特首先创出matrix 一词.研究过矩阵论的著名数学家有凯莱、威廉?卢云?哈密顿、格拉斯曼、弗罗贝尼乌斯和冯?诺伊曼. 分块矩阵的引进使得矩阵这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛.在矩阵的某些运算中,对于级数比较高的矩阵,常采用分块的方法将一个矩阵分割成若干个小矩阵,在运算过程中将小矩阵看成元素来处理,对问题的解决往往起到简化的作用.本文通过一些例子来说明分块矩阵的一些应用. 预备知识[][]32- 分块矩阵的运算: 矩阵的分块技巧性较强,要根据不通的问题进行不同的分块,常见的方法有四种: (1)列向量分法 ),,2,1(),,,,(21n i a a a a A i n ΛΛ==为A 的列向量. (2)行向量分发 ),,2,1(21n i A i n ΛM =???? ? ? ??????=ββββ为A 的行向量. (3)分成两块 ),,(21A A A =其中21,A A 分别为B 的若干行.

分块矩阵的应用论文

分块矩阵的应用 引言 矩阵作为数学工具之一有其重要的实用价值,它常见于很多学科中,如:线性代数、线性规划、统计分析,以及组合数学等,在实际生活中,很多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛格表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算和证明中会是很烦琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解释,矩阵分块的思想由此产生. 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理.把矩阵分块运算有许多方便之处.因为在分块之后,矩阵间的相互关系可以看得更清楚,在实际操作中与其他方法相比,一般来说,不仅非常简洁,而且方法也很统一,具有较大的优越性,是在处理级数较高的矩阵时常用的方法.比如,从行列式的性质出发,可以推导出分块矩阵的若干性质,并可以利用这些性质在行列式计算和证明中的应用分块矩阵;也可以借助分块矩阵的初等变换求逆矩阵及矩阵的秩等;再如利用分块矩阵求高阶行列式,如设A 、C 都是n 阶矩阵,其中0A ≠,并且AC CA =,则可求得A B AD BC C D =-;分块矩阵也可以在求解线性 方程组应用. 本文将通过对分块矩阵性质的研究,比较系统的总结讨论分块矩阵在计算和证明方面的应用,从而确认分块矩阵为处理很多代数问题带来很大的便利.

1 分块矩阵的定义及相关运算性质 1.1分块矩阵的定义 矩阵分块,就是把一个大矩阵看成是由一些小矩阵组成的.就如矩阵的元素(数) 一样,特别是在运算中,把这些小矩阵当作数一样来处理. 定义1设A 是一个m n ?矩阵,若用若干横线条将它分成r 块,再用若干纵线条将它 分成s 块,于是有rs 块的分块矩阵,即1111...............s r rs A A A A A ???? =?????? ,其中ij A 表示的是一个矩阵. 1.2分块矩阵的相关运算性质 1. 2.1加法 设() ij m n A a ?=() ij m n B b ?=,用同样的方法对,A B 进行分块 () ij r s A A ?=,() ij r s B B ?=, 其中ij A ,ij B 的级数相同, 则 ()ij ij r s A B A B ?+=+. 1.2.2数乘 设是任() () ,ij ij m n r s A a A k ??==为任意数,定义分块矩阵() ij r s A A ?=与k 的数乘为 () ij r s kA kA ?= 1.2.3乘法 设() () ,ij ij s n n m A a B b ??==分块为()(),ij ij r l l r A A B B ??==,其中ij A 是i j s n ?矩阵,ij B 是 i j n m ?矩阵,定义分块矩阵() ij r l A A ?=和()ij l r B B ?=的乘积为 () 1122...,1,2,...;1,2,3,...,ij i j i j il lj C A B A B A B i t j l =+++==.、 1.2.4转置 设() ij s n A a ?=分块为() ij r s A A ?=,定义分块矩阵() ij r s A A ?=的转置为 () ji s r A A ?''= 1.2.5分块矩阵的初等变换 分块矩阵A 的下列三种变换称为初等行变换:

分块矩阵的应用研究

1引言 在数学名词中,矩阵(英文名Matrix )是用来表示统计数据等方面的各种有关联的数据.这个定义很好的解释了Matrix 代码是制造世界的数学逻辑基础.数学上,矩阵就是方程组的系数及常数所构成的方阵.把它用在解线性方程组上既方便,又直观.例如对于方程组 我们可以构成一个矩阵 因为这些数字是有规则的排列在一起,形状像矩形,所以数学家们称之为矩阵,通过矩阵的变化,就可以得出方程组的解来.数学上,一个*m n 矩阵乃一个m 行n 列的矩形阵列.矩阵由数组成,或更一般的,由某环中元素组成. 矩阵作为数学工具之一有其重要的实用价值,它常用于很多学科中.如:线性代数、线性规划、统计分析,以及组合数学等.在实际生活中有许多问题都可以借用矩阵抽象出来进行表述并进行运算,如在各循环赛中常用的赛况表格等,矩阵的概念和性质相对矩阵的运算较容易理解和掌握,对于矩阵的运算和应用,则有很多的问题值得我们去研究,其中当矩阵的行数和列数都相当大时,矩阵的计算的证明中则会是一个很繁琐的过程,因此这时我们得有一个新的矩阵处理工具,来使这些问题得到更好的解决,矩阵分块的思想由此产生,对级数较高矩阵的处理是矩阵的相关内容中重要的一部分,分块矩阵形象的揭示了一个复杂或是特殊矩阵的内部本质结构.本文即是通过查阅相关文献和学习相关知识后总结并探讨分块矩阵在各方面的应用,以计算和证明两大方面为主. 在已有的相关文件中,分块矩阵的一些应用如下: (1)从行列式的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明中的应用. (2)分块矩阵在线性代数中是一个基本工具,研究许多问题都需要它.借助分块矩阵的初等变换可以发现分块矩阵在计算行列式、求逆矩阵及矩阵秩方面的应用. 如:设A B M C D ??=???? 是一个四分块n 阶矩阵,其中A 、B 、C 、D 分别是,r r ?(),r n r ?-(),n r r -?()n r -?()n r -阶矩阵,若A 可逆,可证M =AD - 1CA B -,另若D 可逆,则可证得1M D BD C -=-.

分块矩阵在高等代数中的应用

本科生毕业设计(论文) 题目:分块矩阵在高等代数中的应用 Title: Block Matrix Of Application in Advanced Algebra 学号 0508060357 姓名邹维喜 学院数信学院 专业数学与应用数学 指导教师甘爱萍 完成时间 2008.4.15

分块矩阵在高等代数中的应用 【摘要】高等代数以其独特的理论体系而引人入胜,其基础知识抽象,解题方法技巧性强,稍有不慎就会陷入困境。作为高等代数中的一个工具——分块矩阵,分块矩阵是高等代数中的一个重要内容,在高等代数中有着很重要的应用,本文详细且全面论述了分块矩阵阵的概念和其的初等变换以及证明了矩阵的分块在高等代数中的应用,包括用分块矩阵来算矩阵的乘积,利用分块矩阵求逆矩阵的问题,用分块矩阵求矩阵的行列式问题. 【关键词】:分块矩阵;矩阵乘积得秩;逆矩阵;行列式

Block Matrix in Advanced Algebra Application 【Abstract】 Higher Algebra for its unique and fascinating theoretical system based on abstract knowledge, skills and strong problem-solving approach, a little carelessness will be in trouble. Advanced Algebra as a tool - sub-block matrix, block matrix is of higher algebra an important share in higher algebra very important applications, this paper discusses the detailed and comprehensive array block matrix of the concept and its elementary transformation matrix, as well as the sub-block in the application of higher algebra, including matrices to count the product matrix, the use of sub-block matrix inverse matrix problem, with sub-block matrix of the determinant of the matrix problem. 【Key words】: sub-block matrix; matrix product of a rank; inverse matrix; determinant

浅谈分块矩阵的性质及应用

浅谈分块矩阵的性质及应用 摘要:本文主要谈及分快矩阵的思想在线性代数的证明。解线性方程组,矩阵得知 逆及矩阵的逆,和初等变换中的应用。 关键词:分块矩阵;线性方程组;矩阵的秩及矩阵的逆;初等变换 On the nature of block matrix and its application Abstract: this thesis uses the blocking matrix method into proving and applying the linear algebra, tries to solve the linear equations, and the proof of other relative matrix rank and elementary matrix. Key word s: Block matrix; Linear algebra; rank of matrix; elementary matrix.前言: 矩阵得分快是处理问题的一重要方法,把一个告诫矩阵分成若干个地界矩阵,在运算中把低阶矩阵当作数一样处理,这样高阶矩阵就化作低阶矩阵,长能使我们迅速接近问题的本质,从而达到解决问题的目的,使解题更简洁,思路更开阔,因此本文主要谈及分块矩阵再求行列式的值,解线性方程组,求矩阵的秩及逆等方面的应用。 1.预备知识: 分块矩阵的定义:将分块矩阵A用若干条纵线和横线分成许多个小矩阵,每一个小矩阵称为 A的子块,一子块为元素的形式上的矩阵成为分块矩阵。 分块矩阵的运算:

1.2.1分块矩阵的加法: 设分块矩阵 A 与 B 的行数相同,列数相同,采用相同的得分块法,有 A=1111n m mn A A A A ?? ? ? ???K M O M L ,1111n m mn B B B B B ?? ?= ? ??? K M O M L 其中ij A 与ij B 的行数相同,列数相同,那么A+B=111111111n n m m n mn A B A B A B A B ++?? ? ? ?++?? K M O M L 1.2.2分块矩阵与数的乘法: A=1111n m mn A A A A ?? ? ? ???K M O M L ,1111n m mn A A A A A λλλλλ?? ? = ? ??? K M O M L 1.2.3设A 为m l ?矩阵,B 为l n ?矩阵,分块成 1111111 1 t r s st t tr A A B B A B A A B B ???? ? ?== ? ? ? ????? K K M O M M O M L L 其中1i A ,2i A ……,it A 的列数分别等于1j B ,2j B ……,tj B 的行数,那么 1111 r s sr C C AB C C ?? ? = ? ??? K M O M L ,其中1 t ij ik ik k C A B ==∑(i=1……s ;j=1,……,r) 1.2.4设1111 t s st A A A A A ?? ? = ? ???K M O M L ,则1111T T t T T T s st A A A A A ?? ?= ? ?? ? K M O M L 2. 分块矩阵的性质及应用: 分块矩阵的性质: 设A 为n 阶矩阵,若A 的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即

分块矩阵及其应用

分块矩阵及其应用 徐健,数学计算机科学学院 摘要:在高等代数中,分块矩阵是矩阵内容的推广. 一般矩阵元素是数量, 而分块矩阵则是将大矩阵分割成小矩形矩阵,它的元素是每个矩阵块.分块矩阵的引进使得矩阵工具的利用更加便利,解决相关问题更加强有力,所以其应用也更广泛. 本文主要研究分块矩阵及其应用,主要应用于计算行列式、解决线性方程组、求矩阵的逆、证明与矩阵秩有关的定理. 关键词:分块矩阵;行列式;方程组;矩阵的秩 On Block Matrixes and its Applications Xu Jian, School of Mathematics and Computer Science Abstract In the higher algebra, block matrix is a generalization of matrix content. In general, matrix elements are numbers. However, the block matrix is a large matrix which is divided into some small rectangular matricies, whose elements are matrix blocks. The introduction of the block matrix makes it more convenient to use matrix, and more powerful to solve relevant problems. So the application of the block matrix is much wider. This paper mainly studies the block matrix and its application in the calculation of determinant, such as solving linear equations, calculating inverse matrix, proving theorem related to the rank of matrix , etc. Keywords Block matrix; Determinant; System of equations; Rank of a matrix

分块矩阵的初等变换及其应用开题报告 [开题报告]

毕业论文开题报告 信息与计算科学 分块矩阵的初等变换及其应用 一、选题的背景、意义 1.选题的背景 在数学的矩阵理论中,一个分块矩阵或是分段矩阵就是将矩阵分割出较小的矩形矩阵,这些较小的矩阵就称为区块。换个方式来说,就是以较小的矩阵组合成一个矩阵。分块矩阵的分割原则是以水平线和垂直线进行划分。分块矩阵中,位在同一行(列)的每一个子矩阵,都拥有相同的列数(行数)。 通过将大的矩阵通过分块的方式划分,并将每个分块看做另一个矩阵的元素,这样之后再参与运算,通常可以让计算变得清晰甚至得以大幅简化。例如,有的大矩阵可以通过分块变为对角矩阵或者是三角矩阵等特殊形式的矩阵。 2.选题的意义 矩阵的分块是处理较高阶矩阵时常用的方法,用一些贯穿于矩阵的纵线和横线将矩阵分成若干子块,使得阶数较高的矩阵化为阶数较低的分块矩阵。在运算中,我们有时把这些子块当作元素一样来处理,从而简化了表示,便于计算。分块矩阵初等变换是线性代数中重要而基本的运算,它在研究矩阵行列式、特征值、秩等各种性质及求矩阵的逆、解线性代数方程中有着广泛的应用。因此,如何直接对分块矩阵实行初等变换显得非常重要,本文的目的就是讨论分块矩阵的初等变换及其应用[1]。 二、研究的基本内容与拟解决的主要问题 2.1 分块矩阵及其初等变换 2.1.1 分块矩阵的定义: 将一个分块矩阵A用若干条纵线和横线分成许多块的低阶矩阵,每一块低阶矩阵称为A 的子块。以子块为元素的矩阵A称为分块矩阵。 我们将单位矩阵E分块:

??? ? ? ??=s r r E E E 0 00 001O ,其中E r 是r i 阶单位矩阵(1

分块矩阵在行列式计算中的应用(1)

南阳理工学院本科生毕业设计(论文) 学院(部):数理学院 专业:数学与应用数学 学生:童家祎 指导教师:宋苏罗 完成日期 2013 年 5 月

南阳理工学院本科生毕业设计(论文) 分块矩阵在行列式计算中的应用 The Application of Block Matrix in Computing Determinant 总计:毕业设计(论文)25页 表格:0 个 插图:0幅

南阳理工学院本科毕业设计(论文) 分块矩阵在行列式计算中的应用 The Application of Block Matrix in Computing Determinant 学院(系):数理学院 专业:数学与应用数学 学生姓名:童家祎 学号:101109071 指导教师(职称):宋苏罗(教授) 评阅教师: 完成日期:2013.5 南阳理工学院 Nanyang Institute of Technology

分块矩阵在行列式计算中的应用 数学与应用数学童家祎 [摘要]分块矩阵是矩阵理论中的一个重要内容,在高等代数中有着很重要的应用.矩阵分块的思想来源于对矩阵运算复杂度和储存思想的考虑,矩阵分块能降低矩阵的阶数,使矩阵条理更清晰并简化运算.本文从研究行列式以及分块矩阵的基本性质入手,在查阅了大量文献的基础上,给出了与行列式计算有关的分块矩阵相关定理.将分块矩阵降阶的思想应用在行列式计算过程中,推导出了借助分块矩阵进行行列式计算的多种方法,最后通过具体的例子对比说明,很多时候借助分块矩阵计算行列式比用行列式的常规方法计算更简单、直观、清晰. [关键词]分块矩阵;行列式;初等变换 The Application of Block Matrix in Computing Determinant Mathematics and Applied Mathematics Major TONG Jia-yi Abstract: Block Matrix is an important content of Matrix theory, which has a significant usage in Advanced Algebra. The idea of Block Matrix comes from the consideration of the memory storage and the complexity of Matrix Manipulation. Block Matrix can reduce the exponent number of Matrix to make the consecution of Matrix clearer and the operation of Matrix easier. This article starts with basic properties of Matrix, and gives some main conclusions of Block Matrix on the basis of accessing a lot of literature. And then, we use the reduction thoughts of Block Matrix in process of determinant calculation to derive multiple methods of determinant calculation with the block matrix. At last, we use object lessons to compare, shows that computing the determinant by means of block matrix is often more simple, intuitive and clear than conventional methods of determinant calculation. Key words: determinant; block matrix; elementary transformation

分块矩阵的应用研究-[开题报告]

毕业论文开题报告 数学与应用数学 分块矩阵的应用研究 一、选题的背景、意义 作为解决线性方程的工具,矩阵已有不短的历史.拉丁方阵和幻方在史前年代已有人研究.矩阵这一具体概念是由19世纪英国数学家凯利首先提出并形成矩阵代数这一系统理论的. 但是追根溯源,矩阵最早出现在我国的<九章算术>中,在<九章算术>方程一章中,就提出了解线性方程各项的系数、常数按顺序排列成一个长方形的形状.随后移动处筹,就可以求出这个方程的解.在欧洲,运用这种方法来解线性方程组,比我国要晚2000多年. 1693年,微积分的发现者之一戈特弗里德?威廉?莱布尼茨建立了行列式论(theory of determinants).1750年,加布里尔?克拉默其后又定下了克拉默法则.1800年,高斯和威廉?若尔当建立了高斯—若尔当消去法. 1848年詹姆斯?约瑟夫?西尔维斯特首先创出matrix一词.研究过矩阵论的著名数学家有凯莱、威廉?卢云?哈密顿、格拉斯曼、弗罗贝尼乌斯和冯?诺伊曼. 分块矩阵的引进使得矩阵这一工具的使用更加便利,解决问题的作用更强有力,其应用也就更广泛.在矩阵的某些运算中,对于级数比较高的矩阵,常采用分块的方法将一个矩阵分割成若干个小矩阵,在运算过程中将小矩阵看成元素来处理,对问题的解决往往起到简化的作用.本文通过一些例子来说明分块矩阵的一些应用. 二、研究的基本内容与拟解决的主要问题 研究的基本内容是分块矩阵在计算中的应用。本文主要研究分块矩阵的计算方法和分块矩阵在化简行列式、行列式运算、求矩阵的特征值等方面的应用,通过这个我们可以更深入的了解分块矩阵的应用。 拟解决的主要问题: 1、了解分块矩阵的基本的概念。 2、举例说明分块矩阵在解题中的一些基本的应用。 3、真正的了解分块矩阵的内容,掌握分块矩阵的应用方法。

分块矩阵及其应用

分块矩阵及其应用 【摘要】矩阵论是代数学中是一个重要的组成部分和主要的研究对象。而分块矩阵可以降低较高级数的矩阵级数,使矩阵的结构更加清晰,从而使矩阵的相关计算简化,并且可以证明一些与矩阵有关的问题。本文详细且全面论述了分块矩阵阵的概念、分块矩阵的运算和其初等变换,而且证明了矩阵的分块在高等代数中的应用,包括用分块矩阵证明矩阵秩的问题,用分块矩阵求行列式问题,用分块矩阵求逆矩阵的问题,分块矩阵相似的问题。 【关键词】:分块矩阵;矩阵的秩;逆矩阵;行列式 目录 1引言 (2) 2矩阵分块的定义和性质 (2) 2.1 矩阵分块的定义 (2) 2.2 分块矩阵的运算 (2) 2.3 分块矩阵的初等变换 (3) 2.4 n阶准对角矩阵的性质 (3) 3分块矩阵在高等代数中的应用 (4) 3.1 分块矩阵在矩阵的秩的相关证明中的应用 (4) 3.2 利用分块矩阵计算行列式 (7) 3.3 分块矩阵在求逆矩阵方面的应用 (11) 3.4 分块矩阵在解线性方程组方面的应用 (16) 4总结 (19) 参考文献 (20)

1 引言 矩阵是高等代数中的一个重要内容,也是高等数学的很多分支研究问题的工具。在学习高等代数的时候常常碰到一些很难的问题,我们要经常用到矩阵的分块去解决,它可以使矩阵的结构更简单,从而使问题的解决更简明。比如当我们处理阶数较高或具有特殊结构的矩阵时,用处理一般低阶矩阵的方法,往往比较困难,为了研究问题的方便,也为了显示出矩阵中某些部分的特性,我们常把一个大型矩阵分成若干子块,把每个子块看作一个元素,从而构成一个分块矩阵,这是处理矩阵问题的重要技巧。利用矩阵的分块,可以把高阶矩阵划分成阶数较低的“块”,然后对这些以“块”为元素的矩阵施行矩阵的运算。本文就分块矩阵的加法、乘法、转置、初等变换等运算性质,及分块矩阵在证明矩阵相关秩的问题、矩阵求逆、行列式展开计算等方面的应用作了较为深入的研究。矩阵的分块能使矩阵的一些证明和计算变的非常简洁和快速,易于理解和掌握,而且能开拓思维,提高灵活应用知识解决问题的能力。

浅谈分块矩阵的应用毕业论文

长沙学院 CHANGSHA UNIVERSITY 毕业设计(论文)资料 设计(论文)题目:浅谈分块矩阵的应用 系部:信息与计算科学系 专业:数学与应用数学 学生姓名: 班级: 指导教师: 最终评定成绩

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部容。 作者签名:日期:

目录 第一部分毕业论文一、毕业论文 第二部分外文资料翻译 一、外文资料原文 二、外文资料翻译 第三部分过程管理资料 一、毕业设计(论文)课题任务书 二、本科毕业设计(论文)开题报告 三、本科毕业设计(论文)中期报告 四、毕业设计(论文)指导教师评阅表 五、毕业设计(论文)评阅教师评阅表 六、毕业设计(论文)答辩评审表

2009届 本科生毕业论文资料第一部分毕业论文

(2009届) 本科生毕业论文 浅谈分块矩阵的应用 系部:信息与计算科学系 专业:数学与应用数学 学生姓名:涛 班级:一班学号 2005031110 指导教师:兰艳职称副教授 最终评定成绩 2009年5月

分块矩阵的若干性质及其应用

分类号密级 U D C 编号 本科毕业论文(设计) 题目分块矩阵的若干性质及其应用 学院数学与经济学院 专业名称应用统计学 年级 学生姓名 2017 年 4 月

文献综述 一、概述 矩阵是数学中的一个重要的基本概念,是代数学的一个主要研究对象,也是数学研究和应用的一个重要工具。分块矩阵是矩阵的一种特殊形式,对于一些高阶矩阵,形式表达上就比较抽象,运算上就更为繁杂,然而通过矩阵分块的方法达到降阶的目的。分块矩阵的若干性质及其应用是一个应用型的课题,是通过对分块矩阵的若干性质的掌握并应用于现实生活上的实际问题,它的应用范围非常广,远远不止于本文所列出的这几个方面,还有更广阔的应用有待于我们更加深入地去研究与探索。 二、正文 通过阅读居余马著作的《线性代数》一书中了解到,“矩阵”这个词是由西尔维斯特首先使用的,他是为了将数字的矩形阵列区别于行列式而发明了这个术语。而实际上,矩阵这个课题在诞生之前就已经发展的很好了。但是追根溯源,矩阵最早是出现在我国的《九章算术》中,在《九章算术》方程一章中,就提出了解线性方程各项系数、常数按顺序排列成一个长方形的形状,随后移动,就可以求出这个方程。从行列式的大量工作中明显的表现出来,为了很多目的,不管行列式的值是否与问题有关,方阵本身都可以研究和使用,矩阵的许多基本性质也是在行列式的发展中建立起来的。 现阶段,分块矩阵的性质及其应用在各个方面都起着至关重要的作用,分块矩阵的应用非常广泛和深刻,特别是在高等代数和线性代数中的应用更加广阔,例如在计算行列式以及矩阵的秩等方面,都有着很重要的应用。但国内一些专家对其研究主要还是在证明和计算方面。 林瑾瑜在《分块矩阵的若干性质及其在行列式计算中的应用》中,从行列式计算中的经常用到的性质出发,推导出分块矩阵的若干性质,并举例说明这些性质在行列式计算和证明问题中的应用。 蔡铭晶在《例说分块矩阵的应用》中论述了分块矩阵的概念,举例说明和分析了分块矩阵在线性代数中的应用,包括利用分块矩阵求逆矩阵、求高阶行

相关文档
最新文档