原子吸收法测定重金属的预处理方法讨论

原子吸收法测定重金属的预处理方法讨论
原子吸收法测定重金属的预处理方法讨论

收稿日期:2004-02-13

原子吸收法测定重金属的预处理方法讨论

张韵华

(云南省环境监测中心站,云南 昆明650034)

摘 要:介绍了原子吸收法测定煤灰、煤渣、塑料薄膜、植物、粮食作物、蔬菜、水果、鱼类、矿石和矿渣等各种类型样品中重金属不同的分解方法。

关键词:原子吸收;重金属;分解方法

中图分类号:O657 31 文献标识码:B 文章编号:1006 947X (2004)增-0213-02 原子吸收分光光度法测定重金属,灵敏度较高,干扰少,测定手续简单快速,与其它仪器分析方法相比,其费用低,应用范围广泛,已发展成十分成熟的分析技术,广泛应用于冶金、地质、石油、化工、农业、环境、卫生等各个领域。但由于样品类型不同,分解方法也不同,因此,需要对各种类型样品的分解方法进行一些研究工作,以下是笔者在实际工作中的一点体会,以供参考。1 样品分解所使用的分析器皿

原子吸收法分解样品的分析器皿可采用聚四氟乙烯烧杯或聚四氟乙烯钳埚,不能采用玻璃器皿,如用玻璃器皿分解出来的样品,测定结果均比真实结果偏高,特别是钾、钠、锌、镉等元素。如:在测定清洁地面水时,由于采用了玻璃器皿分解样品,造成测定结果偏高,导致监测数据不真实。2 不同类型的样品分解方法

水质样品、土壤、沉积物样品分解方法比较成熟,就不再叙述了,现介绍几种不常碰到的样品分解方法。

2 1 煤灰、煤渣样品分解方法

称取样品1 000g,放入瓷蒸发皿中,在马福炉中慢慢升温至800 ,灼烧4h,待样品灰白即可,冷却,取出,转入聚四氟乙烯烧杯中,加浓硝酸10ml,在电热板上加热10min,取下冷却加高氯酸5ml,继续加热消解,蒸发近干,赶尽白烟,如样品不清白可再补加浓硝酸。用1%硝酸(或1%HCl)溶解残渣,过滤、定容至25ml,测定。2 2 塑料薄膜样品分解方法

称取样品1 000~5 000g,放入瓷蒸发皿中,

在马福炉中慢慢升温至400 ,灼烧3h 左右,待样品全部变黑后,冷却,取出后加浓硝酸5ml,在电热板上加热溶解,蒸发近干,用1%硝酸溶解残渣,过滤、定容至25ml,测定。

2 3 植物、粮食作物、蔬菜、水果样品分解法2 3 1 湿法分解法

称取样品1 000~5 000g 于聚四氟乙烯烧杯中,加入浓硝酸20ml,浸泡过夜,然后置于电热板上微火加热,待颗粒溶化后,加高氯酸2~5ml,继续消解,有黄烟可补加浓硝酸至黄烟散尽,继续加热至冒浓厚白烟,溶液变为粉红色或淡黄色为止,然后用1%硝酸(或1%盐酸)溶解残渣、过滤、定容,定容体积可根据样品的含量而定。2 3 2 干灰化法

称取样品5 000~10 000g 于瓷蒸发皿中,放入马福炉中,逐渐升温,先在200 灰化1h,然后每小时升温50~80 ,最后在500 温度干灰化2h,冷却,移入聚四氟乙烯烧杯中,加入浓硝酸10ml,高氯酸2~5ml 于电热板上加热分解,蒸至近干,冷却,用1%硝酸(或1%盐酸)溶解残渣,过滤,定容,定容体积可根据所测元素含量而定。2 4 鱼类分解法

称取鲜样5 000g,放入聚四氟乙烯烧杯中,加入浓硝酸10ml,浸泡过夜,然后放在电热板上加热,待大量有机物被破坏后,加高氯酸5ml,继续消解,如溶液呈黄色可补加浓硝酸至溶液变为无色,赶尽白烟,蒸近干,用1%硝酸溶解残渣,过滤,定容至25ml,测定。2 5 矿石、矿渣分解法

称取经筛选、研细、过目的样品0 1000~0 5000g 于聚四氟乙烯烧杯中,加浓硝酸10ml,待

213

原子吸收法测定重金属的预处理方法讨论 张韵华

剧烈反应后,置于电热板上加热,如产生棕黄色烟,可反复补加浓硝酸,取下冷却加氢氟酸5ml加热10min,取下冷却加高氯酸5ml,蒸近干,再加2ml高氯酸,再次蒸近干,残渣为灰白色为好,加1%硝酸溶解残渣,过滤、定容,定容体积可根据待测元素的含量而定,测量。

2 6 纤维滤筒、滤膜分解法

取采好烟道气的纤维滤筒、滤膜,放入聚四氟乙烯烧杯中,加入浓硝酸20ml,浸泡过夜,置于电热板上加热,用玻棒把纤维滤筒、滤膜捣碎,如产生棕色黄烟,可补加浓硝酸,冷却,加氢氟酸5ml,加热10min,冷却加高氯酸5ml,蒸近干,待纤维滤筒、滤膜全部溶解完,残渣变为灰白色,白烟赶尽后,加1%硝酸溶解残渣,过滤,定容至25 ~50ml,定容体积可视待测元素而定,测量。

以上几种物质的分解方法均是笔者多年的工作经验,要想取得具有代表性、真实性、准确性的监测结果,样品的预处理是很重要的。只有保证样品的预处理准确、可靠,才能保证原子吸收仪测定的数据准确、可靠。

Discussion on Pretreatment Method of Determining Heavy Metals

in Atomic Absorption Method

Z HANG Yung-hua

(Yunnan Environmental Monitoring Center,Kunming Yunnan650034,China)

Abstract:This article introduces different decomposing methods in determining heavy metals in various samples such as, coal ash,coal cinder,plastic film,plant,crop,vegetable,fruit,fish,ore and mine refuse.

Key words:atomic absorption;heavy metal;decomposing method

(上接第212页)

由表3可知,用本法与国标回流法同步对地表水和不同行业的废水进行测定,其测定结果基本一致,测定结果的相对标准偏差 10%,符合监测技术规范的要求[2]。

2 6 特点

本方法采用进口专用仪器,国产试剂,大大降低了实验成本。具有操作简便、安全;批量分析样品数量多,分析周期短,分析结果的精密度和准确度高;仪器体积小,便于携带等特点。除了用于日常监测工作外,还可用于环保管理部门的监督监测、抽查抽测,突发性污染事故,应急监测等的现场分析测试工作。真正做到了监测数据的及时可靠性。目前本方法已经在河南省的移动监测车上应用。

参 考 文 献:

[1] 国家环保局 水和废水监测分析方法[M] 北京:中国环

境科学出版社,1997

[2] 中国环境监测总站 环境水质监测质量保证手册(第二版)

[M] 北京:化学工业出版社,1994

[3] 魏复盛等 水和废水监测分析方法指南(中册)[M] 北

京:中国环境科学出版社,1994

[4] 饶少敏等 微回流管封闭回流应用于废水中COD检测的方

法研究[J] 中国环境监测 2001,17(3):43-54

[5] 戴竹青等 高氯离子废水化学需氧量分析方法的研究[J]

中国环境监测 2002,18(3):21-24

Study on Imported Reagent of U.S.A Haxi Detector and Its Determination Method WU Li-ping,SI Da-yin,KONG Hai-yan,SI Ping,XU Len

(Henan Provincal Environmental Monitoring Center,Zhenzhou Henan450004,China)

Abstract:This paper shows that,improvement to reagent used in analyzing COD by US Haxi detector not only substi tutes the expensive imported reagent but reduces the digestion time from2h to30min,meanwhile,the result is accurate and reliable.As this method is simple,safe and rapid,it can be popularly used for supervisory monitoring,emergency monitoring and on-the-spot analysis.

Key words:C OD;micro reflux;supervisory monitoring;e mergency monitoring;on-the-spot analysis

214

云南环境科学 第23卷 增刊 2004年4月

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

仪器分析[第十章原子吸收光谱分析法]山东大学期末测验知识点复习

————————————————————————————————作者:————————————————————————————————日期:

第十章原子吸收光谱分析法 1.共振线与元素的特征谱线 基态→第一激发态,吸收一定频率的辐射能量,产生共振吸收线(简称共振线);吸收光谱。 激发态→基态,发射出一定频率的辐射,产生共振吸收线(也简称共振线);发射光谱。 元素的特征谱线: (1)各种元素的原子结构和外层电子排布不同,基态→第一激发态:跃迁吸收能量不同——具有特征性。 (2)各种元素的基态→第一激发态,最易发生,吸收最强,最灵敏线。特征谱线。 (3)利用特征谱线可以进行定量分析。 2.吸收峰形状 原子结构较分子结构简单,理论上应产生线状光谱吸收线。实际上用特征吸收频率左右范围的辐射光照射时,获得一峰形吸收(具有一定宽度)。 由 I t =I e-Kvb 透射光强度I t 和吸收系数及辐射频率有关。以K v 与v作图得图10一1所示 的具有一定宽度的吸收峰。

3.表征吸收线轮廓(峰)的参数 (峰值频率):最大吸收系数对应的频率或波长; 中心频率v 中心波长:最大吸收系数对应的频率或波长λ(单位为nm); 半宽度:△v 0B 4.吸收峰变宽原因 (1)自然宽度在没有外界影响下,谱线仍具有一定的宽度称为自然宽度。它与激发态原子的平均寿命有关,平均寿命越长,谱线宽度越窄。不同谱线有不同的自然宽度,多数情况下约为10-5nm数量级。 多普勒效应:一个运动着的原子发出的光, (2)多普勒变宽(温度变宽)△v 如果运动方向离开观察者(接受器),则在观察者看来,其频率较静止原子所发的频率低,反之,高。 (3)劳伦兹变宽,赫鲁兹马克变宽(碰撞变宽)△v 由于原子相互碰撞使能 L 量发生稍微变化。 劳伦兹变宽:待测原子和其他原子碰撞。 赫鲁兹马克变宽:同种原子碰撞。 (4)自吸变宽空心阴极灯光源发射的共振线被灯内同种基态原子所吸收产生自吸现象,灯电流越大,自吸现象越严重,造成谱线变宽。 (5)场致变宽场致变宽是指外界电场、带电粒子、离子形成的电场及磁场的作用使谱线变宽的现象,但一般影响较小。 为主。 在一般分析条件下△V 5.积分吸收与峰值吸收 光谱通带0.2 nm,而原子吸收线的半宽度10-3nm,如图10—2所示。 若用一般光源照射时,吸收光的强度变化仅为0.5%。灵敏度极差。

原子吸收光谱法习题及答案

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同)无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少)原子线(少) 离子线(谱线多) (7)分析对象多元素同时测定单元素单元素、多元素 (8)应用可用作定性分析定量分析定量分析 (9)激发方式光源有原子化装置有原子化装置 (10)色散系统棱镜或光栅光栅可不需要色散装置 (但有滤光装置) (11)干扰受温度影响严重温度影响较小受散射影响严重 (12)灵敏度高中高 (13)精密度稍差适中适中 3.已知钠蒸气的总压力(原子+离子)为1.013 l0-3Pa,火焰温度为2 500K时,电离平

火焰原子吸收法测定痕量银、镉锂

火焰原子吸收法测定痕量银、镉锂 1、方法提要 样品经氢氟酸、盐酸、硝酸、高氯酸分解。在10%的盐酸介质中,利用碘化钾作为富集剂,甲基异丁基酮萃取,在偏光塞曼原子线吸收光谱仪上测定银、镉(锂经分取溶液后用发射法测定)。 2、仪器及工作条件 仪器:日立180—80偏光塞曼原子吸收光谱仪。银、镉、空心阴极灯(上海产)。 工作条件: 灯电流(mA )波长 (nm) 狭缝 (nm ) 燃烧器高 (格) 乙炔压 力 (Pa) 空气压 力 (Pa) 拟合 型式 Ag 8.0 328.1 1.3 7.5 0.9M 1.60M 直线Cd 7.5 228.8 1.3 7.5 0.9M 1.60M 直线 3、药品及试剂 (1)药品:盐酸GR(北京)、硝酸GR(北京)、高氯酸GR(北京)、氢氟酸AR(北京)、甲基异丁基酮AR、抗坏血酸AR(上海)。

(2)试剂: 15%KI-10%VC-3%硫脲混合溶液:分别称取3g硫脲,15gKI,10gVc溶于100ml纯水中。 混合标准溶液:准确吸取每毫升含2微克银1微克镉的标准溶液10毫升,放入100毫升容量瓶中用10%的盐酸溶液稀释至刻度,摇匀。该混合标准溶液浓度:ρ(Ag)=0.200μg/ml,ρ(Cd)=0.100μg/ml(置于暗处保存)。 4、操作步骤 称取1.0000克试样于100毫升聚四氟乙烯烧杯中,用去离子水润湿,加入20毫升浓盐酸,5毫升氢氟酸,在电热板上加热蒸发至体积约为10毫升,取下,加10毫升硝酸,5毫升氢氟酸,3毫升高氯酸;在电热板上继续加热至高氯酸烟冒尽,取下加入2毫升浓盐酸,用15毫升左右去离子水冲洗杯壁,低温溶解,移入25毫升比色管中,用去离子水稀释至20毫升,摇匀,加入3毫升15%KI-10%VC-3%硫脲混合液,摇匀,放置1分钟,加入4毫升萃取液,剧烈震荡160次,放置10分钟后,上仪器进行测量。 标准系列: 分别吸取标准混合溶液0.00、1.00、2.00、3.00毫升;于25毫升比色管中,用10%盐酸稀释至20毫升,摇匀,其它手续同操作步骤。该系列银为0.000、0.200、0.400、0.600μg/ml,镉为0.000、0.100、0.200、0.300μg/ml。

原子吸收法测定重金属废水中的铅含量

原子吸收法测定重金属废水中的铅含量【摘要】含铅重金属废水会给人们的生存环境和人体健康造成了严重威胁。因此,如何测定重金属废水中铅的含量就引起了社会的广泛关注。文章介绍了利用原子吸收法测定重金属废水中的铅含量,分析了不同条件对铅测定的影响,并得出了一些有益的结论,为重金属废水的铅含量测定提供参考。 【关键词】原子吸收光谱;测定;铅含量;回收试验 随着经济的快速发展,工业生产也得到了较快发展,大量含有重金属的废水未经处理就排放到环境中,对环境和人类的影响极大,这些重金属废水中含有氰化物、酸、碱以及铬、铜、铅、锌、镉、镍等重金属污染物。其中铅是一种较为有害的重金属元素,据测定,当人体内血铅浓度过30微克/100毫升时,就会出现头晕、肌肉关节前、失眠、贫血、腹痛等症状,严重时还会诱发癌症。因此,如何测定重金属废水中铅的含量就引起了社会的广泛关注。下面,就介绍利用原子吸收法测定重金属废水中的铅含量。 1.试验部分 1.1 主要试剂与仪器 1000μg/mL的铅标准储备溶液;10μg/mL的铅标准工作溶液;1%(v/v)TritonX-114溶液;0.5×10-3mol/L5-Br-PADAP的乙醇溶液;pH=8.0的H2PO4--HPO42-缓冲溶液。 SYC-15超级恒温水浴,TGL-16高速离心机,PHS-3pH计,AA370原子吸收分光光度计;工作条件:测定波长:283.3nm;灯电流:2.5mA;狭缝宽度:5nm;乙炔流量:2.0L/min,空气流量:6.0L/min。 1.2 测定方法 取一定量铅的标准溶液于10mL离心管中,依次加入1%(v/v)TritonX-114溶液0.5mL,0.5×10-3mol/L5-Br-PADAP溶液0.5mL,pH=8.0的缓冲溶液1mL,用超纯水

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

原子吸收法测定重金属的预处理方法讨论

收稿日期:2004-02-13 原子吸收法测定重金属的预处理方法讨论 张韵华 (云南省环境监测中心站,云南 昆明650034) 摘 要:介绍了原子吸收法测定煤灰、煤渣、塑料薄膜、植物、粮食作物、蔬菜、水果、鱼类、矿石和矿渣等各种类型样品中重金属不同的分解方法。 关键词:原子吸收;重金属;分解方法 中图分类号:O657 31 文献标识码:B 文章编号:1006 947X (2004)增-0213-02 原子吸收分光光度法测定重金属,灵敏度较高,干扰少,测定手续简单快速,与其它仪器分析方法相比,其费用低,应用范围广泛,已发展成十分成熟的分析技术,广泛应用于冶金、地质、石油、化工、农业、环境、卫生等各个领域。但由于样品类型不同,分解方法也不同,因此,需要对各种类型样品的分解方法进行一些研究工作,以下是笔者在实际工作中的一点体会,以供参考。1 样品分解所使用的分析器皿 原子吸收法分解样品的分析器皿可采用聚四氟乙烯烧杯或聚四氟乙烯钳埚,不能采用玻璃器皿,如用玻璃器皿分解出来的样品,测定结果均比真实结果偏高,特别是钾、钠、锌、镉等元素。如:在测定清洁地面水时,由于采用了玻璃器皿分解样品,造成测定结果偏高,导致监测数据不真实。2 不同类型的样品分解方法 水质样品、土壤、沉积物样品分解方法比较成熟,就不再叙述了,现介绍几种不常碰到的样品分解方法。 2 1 煤灰、煤渣样品分解方法 称取样品1 000g,放入瓷蒸发皿中,在马福炉中慢慢升温至800 ,灼烧4h,待样品灰白即可,冷却,取出,转入聚四氟乙烯烧杯中,加浓硝酸10ml,在电热板上加热10min,取下冷却加高氯酸5ml,继续加热消解,蒸发近干,赶尽白烟,如样品不清白可再补加浓硝酸。用1%硝酸(或1%HCl)溶解残渣,过滤、定容至25ml,测定。2 2 塑料薄膜样品分解方法 称取样品1 000~5 000g,放入瓷蒸发皿中, 在马福炉中慢慢升温至400 ,灼烧3h 左右,待样品全部变黑后,冷却,取出后加浓硝酸5ml,在电热板上加热溶解,蒸发近干,用1%硝酸溶解残渣,过滤、定容至25ml,测定。 2 3 植物、粮食作物、蔬菜、水果样品分解法2 3 1 湿法分解法 称取样品1 000~5 000g 于聚四氟乙烯烧杯中,加入浓硝酸20ml,浸泡过夜,然后置于电热板上微火加热,待颗粒溶化后,加高氯酸2~5ml,继续消解,有黄烟可补加浓硝酸至黄烟散尽,继续加热至冒浓厚白烟,溶液变为粉红色或淡黄色为止,然后用1%硝酸(或1%盐酸)溶解残渣、过滤、定容,定容体积可根据样品的含量而定。2 3 2 干灰化法 称取样品5 000~10 000g 于瓷蒸发皿中,放入马福炉中,逐渐升温,先在200 灰化1h,然后每小时升温50~80 ,最后在500 温度干灰化2h,冷却,移入聚四氟乙烯烧杯中,加入浓硝酸10ml,高氯酸2~5ml 于电热板上加热分解,蒸至近干,冷却,用1%硝酸(或1%盐酸)溶解残渣,过滤,定容,定容体积可根据所测元素含量而定。2 4 鱼类分解法 称取鲜样5 000g,放入聚四氟乙烯烧杯中,加入浓硝酸10ml,浸泡过夜,然后放在电热板上加热,待大量有机物被破坏后,加高氯酸5ml,继续消解,如溶液呈黄色可补加浓硝酸至溶液变为无色,赶尽白烟,蒸近干,用1%硝酸溶解残渣,过滤,定容至25ml,测定。2 5 矿石、矿渣分解法 称取经筛选、研细、过目的样品0 1000~0 5000g 于聚四氟乙烯烧杯中,加浓硝酸10ml,待 213 原子吸收法测定重金属的预处理方法讨论 张韵华

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100l。固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10l即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

石墨炉原子吸收法测定大米中铅镉

不同消化方法-石墨炉原子吸收法测定大米中镉的比较 秦品芝1 摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。 关键词镉;微波消解;湿法消解;干法灰化 镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。所以,本次实验采用石墨炉原子吸收法测定大米中的镉。 前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。 实验原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。 2.实验材料 2.1仪器 原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。 2.2试剂 硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。 3.实验方法 3.1样品前处理 3.1.1干灰化法 首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.2湿消解法 准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.3微波消解法

泡沫塑料富集原子吸收法测定金的技术问题.

泡沫塑料富集原子吸收法测定金的技术问题 1引言湖北三鑫金铜股份有限公司是以采选金铜矿产为主的矿山生产企业。在生产中,金的快速、准确地分析测定对控制工艺指标及调度生产起着极其关键的作用。泡沫塑料富集原子吸收法测定金, 虽然在周边矿山中基本上没有应用于实际生产中,但在我公司经10余年的实际应用,其经验已相当成熟,在多次外检中(含长春黄金研究院、湖北省地矿厅中心化验室、大冶有色金属公司中心化验室、鄂东南地质大队化验室等多家具有省级以上质量认证的单位) ,金外检合格率均优于国家标准,完全可以满足生产要求。笔者在实际应用中,针对三鑫公司各种化验分析样品的要求,对泡沫塑料富集原吸收测定金的若干技术问题进行了有益探讨,并得到了具有指导意义的技术要领,排除了影响化验分析质量的许多因素,提高了分析结果的准确性。 2泡沫塑料富集原子吸收法 2. 1化学原理试样用王水分解,在约10% (V /V)王水介质中, 3价金在王水介质中被直接用多孔聚氨 脂泡沫吸附富集,然后用5g/L硫脲2%(V /V)盐酸溶液加热解脱被原子吸附的金,直接用火焰原 子吸收光谱法测定。 2. 2试剂及仪器和器皿 (1)试剂。稀王水: HCl + HNO3 + H2O的配比为3 + 1 + 4。泡沫塑料: 将30个密、1cm厚聚氨酯软质 泡沫塑料剪成7. 5cm长, 1cm宽的条状,用洗衣粉洗干净,晾干备用。动物胶溶液: 20g/L称取2g动物胶于250ml烧杯中,加100ml沸水,煮至透明,用时现配硫脲- 盐酸混合溶液: 含5g/L 硫脲的2% (V /V)盐酸溶液。金标准溶液: 称取0. 1000g 纯金(99. 99%以上)于100ml烧杯中,加入10ml稀王水,盖上表面皿,在60 ~70℃水浴上加热溶解后立即加入8~10滴250g/LnaCl溶液, 再在沸水浴上加热蒸干, 取下加入1mlHCl,继续在沸水浴上蒸干,取下加入少量水,微热使盐类全部溶解,取下冷却至室温,移入盛有10mlHCl的1000ml容量瓶中,用水稀释至刻度, 混匀; 此溶液ρ(Au) =100μg/ml。 (2)仪器和器皿。奥豪斯电子天平(分度值为0. 01g,最大称重200克) 1台; 电热板,功率3kw, 5台; 箱式电阻炉,功率4kw,温度0~1200℃, 3台; 瑞利WFX - 310型原子吸收光谱仪, 1套。 低腰三角烧杯: 250ml; 表面皿: 70mm;塑料洗瓶: 500ml; 瓷圆皿: 60ml; 短颈漏斗:7. 5cm长; 长颈漏斗;定性滤纸: ф12. 5cm,快速; 比色管: 10ml;比色管: 50ml。 2. 3分析步骤称取10g试样于圆皿中,在马弗炉(慢慢升温至600℃)焙烧1 ~2h,取出冷至室温。倒入 烧杯中, 以少量水润湿, 加稀王水100ml,盖上表面皿,置于电热板上低温分解至体积15~20ml, 加2~5ml动物胶溶液,取下稍冷,吹洗表面皿及杯壁加水至50ml煮沸溶解盐类。取下冷至室温, 注入100ml容量瓶中稀释至刻度。摇匀,用快速定性滤纸干过滤,用50ml容量瓶取滤液至刻度。 将滤液倒入颈内塞有5~6cm泡沫的漏斗吧适当速度过滤。用蒸馏水洗2~3次,取下泡沫并用 水吹洗之,放入盛有10~50ml l0. 5%的硫脲溶液的比色管中,水浴加热10min,冷却后用原子吸收 仪进行金的测定。计算公式: w (Au) /106 =A ×V /m 式中: A—样品的吸光度值; V—待测样品溶 液的体积(ml) ; m—称取试样的质量( g) 。 3 技术要领 (1)焙烧。对含砷量的试样,焙烧时应从低温开始,至480℃时保持1~2 h,使砷挥发,然后再升高温度继 续焙烧除硫,否则由于形成低沸点的砷—金合金而挥发,造成金的损失,导致测定结果偏低。 (2)溶样。加王水前试样应用蒸馏水润湿,对于含碳酸盐的试样,溶样时反应剧烈,加酸时应缓缓 加入,低温加热溶解。个样溶解温度应控制在200 ~300℃,不得太高,以免王水提前蒸干,而导致 样品溶解不完全,个样溶解时间应控制在1h左右为好,太长或太短都不利于生产。 (3) 吸附。吸附用泡沫塑料要求较高,除严格按前面所定规格外,还应用金标液或金标样做吸附率 试验,最少在采用一个新批次泡沫塑料前要做一次试验。吸附速度应为1. 5S/滴(待吸附的试样 溶液通过短颈漏斗中的海绵而滴落下来的速度) , 吸附时间应控制在30~45min。本法吸附金 的酸度范围较宽, 即0. 5 ~6mol/L 盐酸或5% ~30%(V /V)王水介质都能定量吸附金,但硝

第3章_原子吸收光谱法(练习题)-2008级

第三章原子吸收光谱法 单选题: 1.原子吸收光谱是由下列哪种粒子产生的? (1)固体物质中原子的外层电子;(2)气态物质中基态原子的外层电子;(3)气态物质中激发态原子的外层电子;(4)气态物质中基态原子的内层电子。 2. 原子吸收光谱线的多普勒变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 3. 原子吸收光谱线的洛仑兹变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 4. 用原子吸收光度法测定钙时,加入EDTA是为了消除下述哪种物质的干扰?(1)磷酸;(2)硫酸;(3)钠;(4)镁。 5. 为了提高石墨炉原子吸收光谱法的灵敏度,原子化阶段测量信号时,保护气体的流速应: (1)减小;(2)增大;(3)不变;(4)为零。 6. 原子吸收光谱测定食品中微量砷,最好采用下列哪种原子化方法? (1)冷原子吸收;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 7. 原子吸收光谱测定污水中微量汞,最好采用下列哪种原子化方法? (1)化学还原冷原子化法;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 8. 与原子吸收光谱法相比,原子荧光光谱法: (1)要求光源发射强度高;(2)要求光源发射线窄;(3)要求单色仪分辨能力更强;(4)更适宜测高浓度样品。 9. 消除原子吸收光谱分析中的物理干扰一般用: (1)背景校正;(2)光源调制;(3)标准加入法;(4)加入缓冲剂。 10. 石墨炉法原子吸收分析,应该在下列哪一步记录吸光度信号: (1)干燥;(2)灰化;(3)原子化;(4)除残。 11. 作为原子吸收光谱分析的消电离剂,最有效的是: (1)Na;(2)K;(3)Rb;(4)Cs。 12. 空心阴极灯中对发射谱线宽度影响最大的因素是: (1)阴极材料;(2)填充气体;(3)灯电流;(4)阳极材料。 13. 原子吸收分析中,吸光度最佳的测量范围是:

(完整word版)原子吸收光谱定量分析方法

原子吸收定量分析方法 一、定量分析方法(P145) (1)标准曲线法: 配制一系列浓度不同的标准溶液,在相同测定条件下,测定标准系列溶液和待测试样溶液的吸光度,绘制A-c标准曲线,由待测溶液的吸光度值在标准曲线上得到其含量。 (2) 标准加入法 当试样组成复杂,待测元素含量很低时,应采用标准加入法进行定量分析。 取若干份体积相同的试液(cX),依次按比例加入 不同量的待测物的标准溶液(cO): 浓度依次为:cX ,cX+cO ,cX+2cO ,cX+3cO ,cX+4cO … 分别测得吸光度为:AX ,A1 ,A2 ,A3 ,A4 … 直线外推法:以A对浓度c做图得一直线,图中c X点即待测溶液浓度。 (3)稀释法: (4)内标法: 在标准试样和被测试样中,分别加入内标元素,测定分析线和内标线的吸光度比,并以吸光度比与被测元素含量或浓度绘制工作曲线。 内标元素的选择:内标元素与被测元素在试样基体内及在原子化过程中具有相似的物理化学性质,样品中不存在,用色谱纯或者已知含量 二、灵敏度和检出限 (1)灵敏度 1、定义: 在一定浓度时,测定值(吸光度)的增量(ΔA)与相应的待测元素浓度(或质量)的增量(Δc 或Δm)的比值(即分析校正曲线的斜率) PS:习惯上用特征浓度和特征质量表征灵敏度 2、特征浓度 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量浓度定义为元素的特征浓度 3、特征质量 定义:能产生1%吸收或产生0.0044吸光度时所对应的被测元素的质量定义为元素的特征质量。 (2)检出限 定义: 适当置信度下,能检测出的待测元素的最低浓度或最低质量。用接近于空白的溶液,经若干次重复测定所得吸光度的标准偏差的3倍求得。

原子吸收法测定水中的铜含量

华南师范大学实验报告 原子吸收法测定水中的铜含量 一、实验目的 1. 掌握火焰原子吸收光谱仪的操作技术; 2. 优化火焰原子吸收光谱法测定水中铜的分析火焰条件; 3. 熟悉原子吸收光谱法的应用。 二、方法原理 原于吸收光谱法是根据物质产生的原子蒸气对特定波长光的吸收作用来进行定量分析的。每一种元素的原子不仅可以发射一系列特征诺线,也可以吸收与发射线波长相同的特征谱线。当光源发射的某一特征波长的光通过原子蒸气时,原子中的外层电子将选择性地吸收其同种元素所发射的特征谱线,使入射光减弱。特征谱线因吸收而减弱的程度称吸光度A,与被测元素的含量成正比: A=KLc 式中,A为吸光度;K为吸收系数;L为原子吸收层的厚度;c为样品溶液中被测元素的浓度。 三、仪器和试剂 (1)仪器 TAS-986型原子吸收分光光度计; Cu空心阴极灯;容量瓶,吸量管;烧杯。 (2)试剂 20.00mg/ml铜标准溶液、水样 四、实验步骤 1.系列标准溶液配制 在100ml的容量瓶中,分别加入100μg/mL Cu标准溶液O.00mL、 0.25mL、 0.5mL、 0.75mL、l.OOmL,再用1mol/L稀硝酸稀释至刻度,摇匀。 2.实验条件: 参数铜元素参数铜元素 工作灯电流 I/mA 3.0 燃烧器高度 /mm 6.0 光谱通带 d/nm 0.4 燃烧器位置 /mm -0.5 负高压 /V 300.0 吸收线波长/nm 324.7 空气压 /MPa 0.24 主压表/Mpa 0.075 3. 标准曲线和样品分析: 根据所设定的实验条件,分别测定浓度为0μg/mL,0.500μg/mL,1.000μg/mL,1.500μg/mL,2.000μg/mL的铜系列标准溶液的吸光度。 相同条件下,测定样品的吸光度,测定两次,求平均值。 五、结果和讨论 测得实验数据如下: 0.00 0.500 1.000 1.500 2.000 样品1 样品2 试样浓 度μ

泡沫塑料富集—原子吸收光谱法测金

泡沫塑料富集—原子吸收光谱法测金 一、方法提要: 矿样经高温焙烧,溶于王水后的金,不过滤分离矿渣直接以泡沫塑料吸附,再以水将泡沫塑料洗净用硫脲解脱,直接用原子吸收测定。 王水对金的溶解作用,硝酸将盐酸氧化放出游离氯,生成氯化亚硝酸,反应式如下: HNO3+3HCL=CL2+2H2O+NOCL 2NOCL=2NO+ CL2氯将Au0—Au3+ Au+3HCL+ HNO3= AuCL+ NO+2H2O 二、仪器工作条件及试剂: 1、仪器: GGX-600AAS型北京科创海光原子吸收金空心阴极灯。 2、仪器工作条件: 灯电流5mA、乙炔1.2L/min、空气6.8 L/min、光谱带宽0.2nm波长242.79、燃烧器高度7mm。 3、试剂: ①泡沫塑料(厚度为0.5cm) ②硫脲2%水溶液(现用现配) ③1:1王水 ④金标准溶液:ρ(Au)=1000μg/ml,称取国家标准物质纯金1.0000g于50ml 烧杯中,加入新配制的王水10~20ml在沸水浴上蒸至小体积,移入1000 ml容量瓶中,加氯化钾2g、王水200m l,用水稀释至刻度,摇匀。此溶液1 ml含金1mg,介质为20%王水。 金标准工作液:ρ(Au)=50μg/ml,吸取金标准母液25 ml于500ml容量瓶中,用10%的王水稀释至刻度,摇匀。此溶液1 ml含金50μg,介质为10%王水。 三、分析步骤: 称取样品10.0-20.0g于瓷方舟中,放入马弗炉中(由低温升至650℃灼烧二小时左右,中途时间取出搅拌一次)以除尽硫及有机物碳等。取出冷却后移入250ml锥形瓶中,加入50ml 1:1的王水,加热煮沸20分钟左右,取下冷却,用水稀释至100ml左右以降低酸度(若Sb含量高需加入热水),加0.4g泡沫塞上塞子,放于振荡机上振荡吸附20min,取出泡沫塑料用水冲洗干净挤干后放入泡沫塑料平放于准确盛有25ml2%硫脲溶液的比色管中,然后将比色管放入水浴锅中加热煮沸20min,取出放入冷水水池中冷却至室温,然后直接用原子吸收测定。 标准曲线绘制:分别吸取1 ml=50μg金标准工作液0 ml、0.25ml、0.50ml、1.00ml、2.00ml,于250ml锥形瓶中,加10%王水100ml放入0.4g泡沫塑料,塞好瓶口震荡吸附20min,以下同分析手续。

原子吸收法测定样品中的锌和铜实验报告

原子吸收法测定样品中的锌和铜 () 摘要:本实验采用了原子吸收光谱法测定发样中的锌和铜的含量,方法简单、快速、准确、灵敏度高。此实验用了火焰原子吸收法以及石墨炉原子吸收法对锌喝铜的含量作了检测。实验表明,锌所测得的含量为232.4442 ug/g;铜所测得的含量为10.0127 ug/g。铜所测得的线型数据比锌的较好。 关键词:锌;铜;发样;原子吸收光谱法 前言 随着原子吸收技术的发展,推动了原子吸收仪器[1]的不断更新和发展,而其它科学技术进步,为原子吸收仪器的不断更新和发展提供了技术和物质基础。近年来,使用连续光源和中阶梯光栅,结合使用光导摄象管、二极管阵列多元素分析检测器,设计出了微机控制的原子吸收分光光度计,为解决多元素同时测定开辟了新的前景。微机控制的原子吸收光谱系统简化了仪器结构,提高了仪器的自动化程度,改善了测定准确度,使原子吸收光谱法的面貌发生了重大的变化。联用技术[2](色谱-原子吸收联用、流动注射-原子吸收联用)日益受到人们的重视。色谱-原子吸收联用,不仅在解决元素的化学形态分析方面,而且在测定有机化合物的复杂混合物方面,都有着重要的用途,是一个很有前途的发展方向。原子吸收光度法是一种灵敏度极高的测定方法,广泛地用来进行超微量的元素分析。在这种情况下,试剂、溶剂、实验容器甚至实验室环境中的污染物都会严重地影响测得的结果。实际上,由于人们注意了这个问题,文献中所报道的多种元素在各种试样中的含量曾做过数量级的修正,这正是因为早期的实验中人们把测定中污染物造成的影响也算到试样中的含量中去所造成的。因此在原子吸收光度测定中取样要特别注意代表性,特别要防止主要来自水、容器、试剂和大气的污染;同时要避免被测元素的损失。 在火焰原子吸收法中,分析方法的灵敏度、准确度、干扰情况和分析过程是否简便快速等,除与所用的仪器有关外,在很大程度上取决于实验条件。因此最佳实验条件的选择是个重要问题,仪器工作条件,实验内容与操作步骤等方面进行了选择,先将其它因素固定在一水平上逐一改变所研究因素的条件,然后测定某一标准溶液的吸光度,选取吸光度大且稳定性好的条件作该因素的最佳工作条件。 在石墨炉原子吸收法中,使用石墨炉原子化器,则可以直接分析固体样品,采用程序升温,可以分别控制试样干燥、灰化和原子化过程,使易挥发的或易热解的基质在原子化阶段之前除去。石墨炉的维护在石墨炉膛部分,因为里面是加热高温-低温冷却,一个循环过程,同时里面还有还原性强的石墨产生积碳同时还有不同的待测物质灰化时产生的烟雾,都会在炉膛或者是在炉膛光路上的透镜上附近凝结。如果长时间不清理,炉膛底部的光控温镜可能会因为积碳的干扰,失去控温能力,直接导致石墨管烧断。灰化物在透镜上面凝结,挡住了部分光路,额外增加了负高压,积碳在加热和塞曼的震动时,有可能会随着震动,这样也变相增加了仪器的噪声。一般建议在每次更换石墨管时清洗一次石墨炉膛。

金的测定----原子吸收分光光度法测定金(精)

金的测定 ----原子吸收分光光度法测定金 一、方法提要 样品经灼烧、王水分解,加动物胶凝聚硅酸,活性炭吸附富集,灰化后以氯化钠为保护剂, 用王水溶解, 于原子吸收分光光计波长 242.8nm 处, 以空气 -乙炔火焰测定矿石中的金。 二、仪器及工作条件 仪器:GGX-2型原子吸收分光光计 波长:242.8nm 狭缝:0.1nm 灯电流:2mA 空气流量:7L/min 乙炔流量:1L/min 燃烧器高:6mm 三、主要试剂 1、氯化钠溶液:25%水溶液。 2、氟化氢铵溶液:2%水溶液。 3、活性炭:(二级或三级将市售活性炭过 200目筛,放入塑料容器中,加入热的4%氟化氢铵溶液浸没活性炭,放置 48小时或更长的时间, 然后过滤,用 4%盐酸洗 8次,再用清水洗 8次,放置凉干备用。

4、金标准溶液:称取 99.99%的金丝 0.1000g ,放于 100mL 烧杯中, 加王水 10mL 于水浴上溶解。溶后,加 25%氯化钠 15滴,蒸至湿盐状, 以盐酸赶硝酸三次,最后蒸至无酸味,加盐酸 9mL ,水洗转入 1000mL 容量瓶中,定容,摇匀。此溶液 1mL 含金 0.1000g 。用时配制成 1mL 含金 100ug 。 四、分析步骤 称取试样 10g ,平铺于方瓷皿中, 400℃灼烧 30分钟后升温至 700℃, 灼烧 1-2小时,取出冷却。转入 400mL 烧杯中,并用水冲洗方瓷皿,加王水(1+1 100mL ,用玻璃棒将样品搅开,盖上表皿,在电炉上加热至沸, 再保持微沸 1小时, 取下烧杯, 用水吹洗表皿及杯壁, 用温水稀释至 200mL , 加 1%动物胶 10mL , 搅匀, 放置澄清, 趁热将试液倾入布氏漏斗 (含铅高的样品则要放冷过滤。用预先装有约 0.5g 活性炭和 1g 纸桨(厚约 8mm 的动态吸附装置进行抽滤。当残渣全部转移到布氏漏斗上之后,用温热的 2%盐酸擦洗烧杯三次(含铅高的样品用冷盐酸洗液 ,再用温热的 2%盐酸洗沉淀 8次,用热的 2%氟化氢铵洗吸附柱 7-10次(每次洗液本浸没吸附柱中的洗活性炭 ,用热的 2%盐酸洗附柱 7-10次,再用热的蒸馏水洗吸附柱 7-10次,热的稀草酸溶液洗 2次。停止抽滤,取出活性炭于 40mL 坩埚中并置于电炉上炭化,使活性炭松散后,放入700℃的高温炉中继续灰化至坩埚底部无黑色炭粒,再保温 10分钟,从炉中取出坩埚,冷却。加入新配制的王水 2mL 、 25%氯化钠 3滴,在水浴上蒸干,取下坩埚趁热加入盐酸 2mL ,使盐类溶解,转入 50mL 比色管中,用水洗净坩埚并稀至刻度,摇匀,在原子吸收分光光计上、波长 242.8nm 处进行测定。 四、注意事项 1、活性炭质量的好坏,对金的吸收有很大的影响,一般的活性炭都含有杂质,用前应予以处理。处理方法:一是用 25%盐酸煮沸除去杂质;二 是用 2%氟化氢铵溶液浸泡 7天以上, 然后用盐酸和水洗净氟离子后使用。 2、活性炭吸附金分静态吸附和动态吸附两种方式。如采用静态吸附, 手续如下:待可溶性硅凝聚后,过滤,往滤液中加入 0.3g 活性炭,剧烈搅拌 1分钟,放置 15分钟后再加入

土壤中镉的测定原子吸收分光光度法

土壤中镉的测定(原子吸收分光光度法) 原理:土壤样品用HNO3-HF-HClO4或HCl-HNO3-HF-HClO4混酸体系消化后,将消化液直接喷入空气-乙炔火焰。在火焰中形成的Cd基态原子蒸汽对光源发射的特征电磁辐射产生吸收。测得试液吸光度扣除全程序空白吸光度,从标准曲线查得Cd含量。计算土壤中Cd含量。 该方法适用于高背景土壤(必要时应消除基体元素干扰)和受污染土壤中Cd的测定。方法检出限范围为0.05—2mgCd/kg。 仪器 1.原子吸收分光光度计,空气-乙炔火焰原子化器,镉空心阴极灯。 2.仪器工作条件 测定波长228.8nm 通带宽度1.3nm 灯电流7.5mA 火焰类型空气-乙炔,氧化型,蓝色火焰 试剂 1.盐酸:特级纯。 2.硝酸:特级纯。 3.氢氟酸:优级纯。 4.高氯酸:优级纯。 5.镉标准贮备液:称取0.5000g金属镉粉(光谱纯),溶于25mL(1+5)HNO3(微热溶解)。冷却,移入500mL容量瓶中,用蒸馏去离子水稀释并定容。此溶液每毫升含1.0mg镉。 6.镉标准使用液:吸取10.0mL镉标准贮备液于100mL容量瓶中,用水稀至标线,摇匀备用。吸取5.0mL稀释后的标液于另一100mL容量瓶中,用水稀至标线即得每毫升含5?g镉的标准使用液。 测定步骤

1.土样试液的制备:称取0.5—1.000g土样于25mL聚四氟乙烯坩埚中,用少许水润湿,加入10mLHCl,在电热板上加热(<450℃)消解2小时,然后加入15mLHNO3,继续加热至溶解物剩余约5mL时,再加入5mLHF并加热分解除去硅化合物,最后加入5mLHClO4加热至消解物呈淡黄色时,打开盖,蒸至近干。取下冷却,加入(1+5)HNO31mL微热溶解残渣,移入50mL容量瓶中,定容。同时进行全程序试剂空白实验。 2.标准曲线的绘制:吸取镉标准使用液0、0.50、1.00、 2.00、 3.00、 4.00mL分别于6个50mL容量瓶中,用0.2%HNO3溶液定容、摇匀。此标准系列分别含镉0、0.05、0.10、0.20、0.30、0.40?g/mL。测其吸光度,绘制标准曲线。 3.样品测定 (1)标准曲线法:按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得镉含量。 式中:m——从标准曲线上查得镉含量(?g); W——称量土样干重量(g)。 (2)标准加入法:取试样溶液5.0mL分别于4个10mL容量瓶中,依次分别加入镉标准使用液(5.0?g/mL)0、0.50、1.00、1.50mL,用0.2%HNO3溶液定容,设试样溶液镉浓度为c x,加标后试样浓度分别为c x+0、c x+c s、c x+2c s、c x+3c s,测得之吸光度分别为A x、A1、A2、A3。绘制A-C图(见图1)。由图知,所得曲线不通过原点,其截距所反映的吸光度正是试液中待测镉离子浓度的响应。外延曲线与横坐标相交,原点与交点的距离,即为待测镉离子的浓度。结果计算方法同上。 注意事项 1.土样消化过程中,最后除HClO4时必须防止将溶液蒸干涸,不慎蒸干时Fe、Al盐可能形成难溶的氧化物而包藏镉,使结果偏低。注意无水HClO4会爆炸! 2.镉的测定波长为228.8nm,该分析线处于紫外光区,易受光散射和分子吸收的干扰,特别是在220.0—270.0nm之间,NaCl有强烈的分子吸收,覆盖了228.8nm线。另外,Ca、Mg的分子吸收和光散射也十分强。这些因素皆可造成镉的表观吸光度增大。为消除基体干扰,可在测量体系中加入适量基体改进剂,如在标准系列溶液和试样中分别加入0.5gLa(NO3)3、6H2O。此法适用于测定土壤中含镉量较高和受镉污染土壤中的镉含量。 3.高氯酸的纯度对空白值的影响很大,直接关系到测定结果的准确度,因此必须注意全过程空白值的扣除,并尽量减少加入量以降低空白值。

原子吸收光谱法的研究现状及展望

原子吸收光谱法的研究现状及展望 *** 天津科技大学化工与材料学院天津 300457 摘要:本文简要概述了原子吸收光谱法的发展历程,阐述了原子吸收光谱法的优缺点和基本原理,综述了原子吸收光谱法在现代分析检测技术中的最新进展并做了展望。 关键词:原子吸收;分析;现状 自美国Perkin-E1mer公司1961年推出了世界上第一台火焰原子吸收分光光度计到第一台商品石墨炉的推出,从横向交变磁场到纵向交变磁场塞曼背景校正,从纵向加热石墨炉到横向加热无温度梯度石墨炉,从光电倍增管到半导体固态检测器……原子吸收光谱仪的发展跨越了一个又一个的里程碑[1]。 近年来,随着科研水平的不断提升,对仪器分析的高效性、精密性和便捷性提出了更高的要求,仪器分析的水平也在不断提升。原子吸收光谱分析法凭借其诸多优势,已成为普及程度最高的仪器分析方法之一。 1.原子吸收光谱法的特点 原子吸收光谱法以其高效精密的分析方法,成为普及度最高的仪器分析方法之一,它具有以下诸多优点[2-3]: 1)高精密度。火焰原子吸收法的精密度可达1%-2%,石墨炉原子化法的灵敏度高达 10-12g。 2)高灵敏度。火焰原子吸收可测质量浓度mg/L~μg/L级的金属,是目前最灵敏的 分析方法之一。 3)测定元素广泛。采用空气-乙炔火焰可测定近70种元素。 4)谱线简单。干扰少,选择性好,多数情况下可不经分离除去共存成分而直接测定。 5)操作简便快捷。自动进样每小时可测数百个样品,即使手工操作每小时也可测数十 个样品。 原子吸收光谱也存在一定的缺陷。比如,它不能对多种元素同时分析,对难溶元素的测定灵敏度也不十分令人满意,对共振谱线处于真空紫外区的元素,如P、S等还无法测定。

相关文档
最新文档