石墨消解连续光源原子吸收法测定废气中重金属

石墨消解连续光源原子吸收法测定废气中重金属
石墨消解连续光源原子吸收法测定废气中重金属

原子吸收法(石墨炉)测定铅的含量

原子吸收法(石墨炉)测定水样中铅的含量 一、实验目的 1了解石墨炉原子吸收分光光度计的基本结构; 2.初步掌握石墨炉原子吸收分光光度计的操作步骤。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000。C以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14g。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 三、主要仪器和试剂: 石墨炉原子吸收分光光度计;石墨管;铅标准溶液(1000ppm);0.2%稀HNO3;去离子水 四、实验步骤 1. 设置仪器工作参数; 2.配制浓度为50ug/L的标样储备液(母液),利用仪器的自动配制功能配制浓度为10.00、20.00、30.00、40.00、50.00ug/L的铅标准溶液,分别测定其吸光度,扣除试剂空白后做标准曲线; 3.水样经消解后测定其吸光度。 五、结果与数据处理: 1.数据记录 2.绘制工作曲线 3.求待测水样中铅的含量。 附:原子吸收分光光度计操作流程: 1.打开冷却水系统,水温22度左右; 2.打开氩气气瓶,出口压力调节至140-200kPa; 3.打开通风系统、主机及石墨炉电源; 4.开计算机,进入操作系统; 5.SpectrAA软件,进入仪器页面,单击“工作表格”,新建工作方法; 6.按“添加方法”,选择要分析的元素; 7.按“编辑方法”,进行进样模式、测量模式、光学参数、石墨炉升温方式、进 样器等相关参数的设置; 8.按“选择”,选定要分析的样品标签; 9.按“优化”,进行元素灯的优化及进样器位置的优化; 10.按“开始”,进行标样及样品的分析。 11.实验结束后,关机顺序依次为:氩气、冷却水、退软件、主机及石墨炉电源、 计算机、通风系统。

原子吸收法测定重金属废水中的铅含量

原子吸收法测定重金属废水中的铅含量【摘要】含铅重金属废水会给人们的生存环境和人体健康造成了严重威胁。因此,如何测定重金属废水中铅的含量就引起了社会的广泛关注。文章介绍了利用原子吸收法测定重金属废水中的铅含量,分析了不同条件对铅测定的影响,并得出了一些有益的结论,为重金属废水的铅含量测定提供参考。 【关键词】原子吸收光谱;测定;铅含量;回收试验 随着经济的快速发展,工业生产也得到了较快发展,大量含有重金属的废水未经处理就排放到环境中,对环境和人类的影响极大,这些重金属废水中含有氰化物、酸、碱以及铬、铜、铅、锌、镉、镍等重金属污染物。其中铅是一种较为有害的重金属元素,据测定,当人体内血铅浓度过30微克/100毫升时,就会出现头晕、肌肉关节前、失眠、贫血、腹痛等症状,严重时还会诱发癌症。因此,如何测定重金属废水中铅的含量就引起了社会的广泛关注。下面,就介绍利用原子吸收法测定重金属废水中的铅含量。 1.试验部分 1.1 主要试剂与仪器 1000μg/mL的铅标准储备溶液;10μg/mL的铅标准工作溶液;1%(v/v)TritonX-114溶液;0.5×10-3mol/L5-Br-PADAP的乙醇溶液;pH=8.0的H2PO4--HPO42-缓冲溶液。 SYC-15超级恒温水浴,TGL-16高速离心机,PHS-3pH计,AA370原子吸收分光光度计;工作条件:测定波长:283.3nm;灯电流:2.5mA;狭缝宽度:5nm;乙炔流量:2.0L/min,空气流量:6.0L/min。 1.2 测定方法 取一定量铅的标准溶液于10mL离心管中,依次加入1%(v/v)TritonX-114溶液0.5mL,0.5×10-3mol/L5-Br-PADAP溶液0.5mL,pH=8.0的缓冲溶液1mL,用超纯水

实验四 石墨炉原子吸收法测定铜的含量

实验四石墨炉原子吸收法测定铜的含量 一、实验目的 1. 学习原子吸收光谱法的基本原理; 2. 了解石墨炉原子吸收光谱仪的基本结构及使用方法; 3. 掌握标准曲线法测定铜的定量分析方法。 二、实验原理 石墨炉原子吸收光谱法是采用石墨炉使石墨管升至2000 ℃以上,让管内试样中待测元素分解成气态的基态原子,由于气态的基态原子吸收其共振线,且吸收强度与含量成正比关系,故可进行定量分析。它属于非火焰原子吸收光谱法。 石墨炉原子吸收光谱法具有试样用量小的特点,方法的绝对灵敏度较火焰法高几个数量级,可达10-14 g,并可直接测定固体试样。但仪器较复杂、背景吸收干扰较大。工作步骤可分为干燥、灰化、原子化和除残四个阶段。 通常使用偏振塞曼石墨炉原子吸收分光光度计。它具有利用塞曼效应扣除背景的功能。 三、实验仪器和试剂 A3石墨炉原子吸收分光光度计;铜空心阴极灯;石墨管;AS3自动进样器;容量瓶铜标准溶液100.0 μg/mL;铜未知液。 四、实验步骤 1. 按下列参数设置测量条件 1) 分析线波长(324.75 nm) 2) 灯电流(75%) 3) 狭缝宽度(0.5 nm) 4) 气化温度(120 ℃)和时间(25 s) 5) 灰化温度(600 ℃)和时间(20 s) 6) 原子化温度(2000 ℃)和时间(3 s) 7) 净化温度(2100 ℃)和时间(2 s) 8)冷却时间(45 s) 9) 氩气流量(2 L/min) 2.取铜标准溶液稀释到刻度,摇匀,配制0.00,5.00,10.00,15.00,20.00,2,5.00 ng/ml

的铜标准溶液,备用。 3.另配制铜未知液1个样。 4.采取自动进样方式进样,进样量20 μg。 五、结果与数据处理 1. 数据记录; 2. 绘制工作曲线; 3. 根据函数关系,计算待测液浓度。 六、注意事项 1. 实验正式开始之前要做好微调,使得进样管的尖端能顺利进样管尖端不能触及石墨管内壁。 2. 在配制溶液时,要注意操作规范使得样品不受杂质干扰。 3. 实验开始前,要仔细检查气瓶总阀与减压阀的连接处,并仔细检查冷却水装置和排气扇是否已打开。 4. 石墨炉温度很高,实验过程中要注意安全,防止灼伤。 七、思考题 1. 石墨炉法为何灵敏度高? 2. 为什么必须使用背景扣除技术? 3. 如何选择石墨炉原子化的实验条件?

连续光源原子吸收光谱仪

连续光源原子吸收光谱仪 ———划时代的技术革命 ( ) [3 ] 原子吸收光谱仪经过半个世纪的发展已成为微量和痕L SAA S 锐线光源原子吸收光谱 进行了比较,发现单个 ( ) 量分析的重要常规设备,其在理化分析实验室的普及程度元素分析在紫外波段A s 193. 7 nm~ Cr 357. 9 nm 21 个元 居于原子光谱分析仪器的首位。素的检出限CSAA S 获得的结果优于L SAA S , 在准确度、 原子吸收光谱分析要求光源必须提供具有频率窄、稳工作曲线分析浓度范围、背景校正性能 以及获得更多光谱 定性好并有一定强度的共振线。1955 年,世界原子吸收光信息等方面都优于L SAA S 。Harnly 先 生在其文献[3 ] 中提 谱分析法的奠基人澳大利亚物理学家Walsh 先生在提出原出,如果今天才发展原子吸收光谱分析仪 器的话,肯定首选 子吸收光谱法在化学分析中应用和建立原子吸收光谱分析连续光源作为光源。 实验室装置时,提出使用锐线光源,并一直沿用至今[ 1] 。在表1 中列出了德国耶拿公司contrAA 连续光源原子吸 收仪常用代表元素检出限与锐线光源原子吸收光 谱仪检出限的对比情况。 过去的几十年中,原子吸收使用的光源主要是空心阴极灯。 空心阴极灯有着众所周知的诸多优点,但因每分析一个元 素就要更换一个元素灯,再加上灯工作电流、波长等参数的 表1 CSAA S 与L SAA S 的检出限对比选择和调节,使原子吸收光谱分析的速度、信息量和使用的 (μ - 1) 方便性等方面受到了限制。分析速度慢和依赖空心阴极灯Element wavelength L D/ g ·L SDCSAAS imp rovement 的固有特性成了原子吸收光谱的致命弱点。(nm) L SAA S CSAA S blank factor 多元素同时测定是提高分析速度的最有效的方法,连Cd 228. 802 1. 2 0 . 4 0 . 000 089 3 Cu 324 . 754 3. 0 0 . 4 0 . 000 042 8 续光源则是多元素同时测定的最佳选择。自1968 年 Cr 357. 869 5. 0 0 . 9 0 . 000 052 6 Walsh 先生在第十三届国际光谱学术会上作了“多元素同Fe 248. 327 4 . 0 0 . 9 0 . 000 052 4 时分析原子吸收光谱法”的演讲[2 ] 后,原子吸收仪器工作者Ni 232 . 003 4 . 0 1. 2 0 . 000 162 3 一直在致力于用一个光源代替73 种元素灯,连续光源原子Pb 216. 999 13 5. 0 0 . 000 123 3 Tl 276. 791 55 18 0 . 000 065 3 吸收的研究坚持不懈地进行了几十年。由于它将从根本上Zn 213. 856 1. 4 0 . 7 0 . 000 270 2

实验4火焰原子吸收光谱法测定铁(标准曲线法)

实验四火焰原子吸收光谱法测定铁(标准曲线法) 一、目的与要求 1.加深理解火焰原子吸收光谱法的原理和仪器的构造。 2.掌握火焰原子吸收光谱仪的基本操作技术。 3.掌握标准曲线法测定元素含量的分析技术。 二、方法原理 金属铬和其他杂质元素对铁的原子吸收光谱法测定,基本上没有干扰情况,样品经盐酸分解后,即可采用标准曲线法进行测定。 标准曲线法是原子吸收光谱分析中最常用的方法之一,该法是在数个容量瓶中分别加入成一定比例的标准溶液,用适当溶剂稀释至一定体积后,在一定的仪器条件下,依次测出它们的吸光度,以加入标推溶液的质量(μg)为横坐标,相应的吸光度为纵坐标,绘出标准曲线。 试样经适当处理后,在与测定标准曲线吸光度的相同条件下测定其吸光度(一般采用插入法测定,即将试样穿插进测定标准溶液中间进行测量),根据试样溶液的吸光度,通过标准曲线即可查出试样溶液的含量,再换算成试样的含量(%)。 三、仪器与试剂 1.原子吸收分光光度计。 2.铁元素空心阴极灯。 3.空气压缩机。 4.瓶装乙炔气体。 5.(1+1)盐酸溶液。 6.浓硝酸 7.铁标推溶液(储备液),·mL-1:准确称取高纯金属铁粉1.000g,用30mL盐酸(1+1)溶解后,加2~3mL浓硝酸进行氧化,用蒸馏水稀释至1L,摇匀。 8.铁标准溶液(工作液),100μg·mL-1:取上述铁标准溶液(储备被),用盐酸溶液(ω=稀释10倍,摇匀。 四、内容与步骤 1.试样的处理(平行三份) 准确称取o.2g试样于100mL烧杯中,加入1+1盐酸5mL,微热溶解,移入50 mL容量瓶并稀释至刻度,摇匀备测。 2.标准系列溶液的配制 取6个洁净的50mL容量瓶,各加入1+1盐酸5mL,再分别加入,,,,,铁标准溶液〔工作液),用蒸馏水稀释至刻度,摇匀备测。 3.仪器准备 在教师指导下,按仪器的操作程序将仪器各个工作参数调到下列测定条件,预热20min:分析线: 271.9nm 灯电流: 8mA 狭缝宽度: 0.1mm 燃器高度: 5mm 空气压力:1.4kg/cm2乙炔流量: 1.1L/min 空气流量:5L/min 乙炔压力: 0.5kg/cm2 4.测定标准系列溶液及试样镕液的吸光度。

原子吸收法测定重金属的预处理方法讨论

收稿日期:2004-02-13 原子吸收法测定重金属的预处理方法讨论 张韵华 (云南省环境监测中心站,云南 昆明650034) 摘 要:介绍了原子吸收法测定煤灰、煤渣、塑料薄膜、植物、粮食作物、蔬菜、水果、鱼类、矿石和矿渣等各种类型样品中重金属不同的分解方法。 关键词:原子吸收;重金属;分解方法 中图分类号:O657 31 文献标识码:B 文章编号:1006 947X (2004)增-0213-02 原子吸收分光光度法测定重金属,灵敏度较高,干扰少,测定手续简单快速,与其它仪器分析方法相比,其费用低,应用范围广泛,已发展成十分成熟的分析技术,广泛应用于冶金、地质、石油、化工、农业、环境、卫生等各个领域。但由于样品类型不同,分解方法也不同,因此,需要对各种类型样品的分解方法进行一些研究工作,以下是笔者在实际工作中的一点体会,以供参考。1 样品分解所使用的分析器皿 原子吸收法分解样品的分析器皿可采用聚四氟乙烯烧杯或聚四氟乙烯钳埚,不能采用玻璃器皿,如用玻璃器皿分解出来的样品,测定结果均比真实结果偏高,特别是钾、钠、锌、镉等元素。如:在测定清洁地面水时,由于采用了玻璃器皿分解样品,造成测定结果偏高,导致监测数据不真实。2 不同类型的样品分解方法 水质样品、土壤、沉积物样品分解方法比较成熟,就不再叙述了,现介绍几种不常碰到的样品分解方法。 2 1 煤灰、煤渣样品分解方法 称取样品1 000g,放入瓷蒸发皿中,在马福炉中慢慢升温至800 ,灼烧4h,待样品灰白即可,冷却,取出,转入聚四氟乙烯烧杯中,加浓硝酸10ml,在电热板上加热10min,取下冷却加高氯酸5ml,继续加热消解,蒸发近干,赶尽白烟,如样品不清白可再补加浓硝酸。用1%硝酸(或1%HCl)溶解残渣,过滤、定容至25ml,测定。2 2 塑料薄膜样品分解方法 称取样品1 000~5 000g,放入瓷蒸发皿中, 在马福炉中慢慢升温至400 ,灼烧3h 左右,待样品全部变黑后,冷却,取出后加浓硝酸5ml,在电热板上加热溶解,蒸发近干,用1%硝酸溶解残渣,过滤、定容至25ml,测定。 2 3 植物、粮食作物、蔬菜、水果样品分解法2 3 1 湿法分解法 称取样品1 000~5 000g 于聚四氟乙烯烧杯中,加入浓硝酸20ml,浸泡过夜,然后置于电热板上微火加热,待颗粒溶化后,加高氯酸2~5ml,继续消解,有黄烟可补加浓硝酸至黄烟散尽,继续加热至冒浓厚白烟,溶液变为粉红色或淡黄色为止,然后用1%硝酸(或1%盐酸)溶解残渣、过滤、定容,定容体积可根据样品的含量而定。2 3 2 干灰化法 称取样品5 000~10 000g 于瓷蒸发皿中,放入马福炉中,逐渐升温,先在200 灰化1h,然后每小时升温50~80 ,最后在500 温度干灰化2h,冷却,移入聚四氟乙烯烧杯中,加入浓硝酸10ml,高氯酸2~5ml 于电热板上加热分解,蒸至近干,冷却,用1%硝酸(或1%盐酸)溶解残渣,过滤,定容,定容体积可根据所测元素含量而定。2 4 鱼类分解法 称取鲜样5 000g,放入聚四氟乙烯烧杯中,加入浓硝酸10ml,浸泡过夜,然后放在电热板上加热,待大量有机物被破坏后,加高氯酸5ml,继续消解,如溶液呈黄色可补加浓硝酸至溶液变为无色,赶尽白烟,蒸近干,用1%硝酸溶解残渣,过滤,定容至25ml,测定。2 5 矿石、矿渣分解法 称取经筛选、研细、过目的样品0 1000~0 5000g 于聚四氟乙烯烧杯中,加浓硝酸10ml,待 213 原子吸收法测定重金属的预处理方法讨论 张韵华

HJ 597-2011 水质 总汞的测定 冷原子吸收分光光度法

中华人民共和国国家环境保护标准 HJ 597—2011 代替GB 7468—87 水质 总汞的测定 冷原子吸收分光光度法 Water quality—Determination of Total mercury —Cold atomic absorption spectrophotometry 本电子版为发布稿。请以中国环境科学出版社出版的正式标准文本为准。 2011-02-10发布 2011-06-01实施 环 境 保 护 部 发布

目 次 前言..............................................................................................................................................II 1 适用范围 (1) 2 术语和定义 (1) 3 方法原理 (1) 4 干扰和消除 (1) 5 试剂和材料 (1) 6 仪器和设备 (3) 7 样品 (3) 8 分析步骤 (5) 9 结果计算与表示 (6) 10 精密度和准确度 (6) 11 质量保证和质量控制 (7) 12 废物处理 (7) 13 注意事项 (7) 附录A(资料性附录)密闭式反应装置 (9)

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国水污染防治法》,保护环境,保障人体健康,规范水中总汞的测定方法,制定本标准。 本标准规定了测定地表水、地下水、工业废水和生活污水中总汞的冷原子吸收分光光度法。 本标准是对《水质总汞的测定冷原子吸收分光光度法》(GB7468—87)的修订。 本标准首次发布于1987年,原标准起草单位为湖南省环境保护监测站。本次为第一次修订。修订的主要内容如下: ——增加了方法检出限; ——增加了干扰和消除条款; ——增加了微波消解的前处理方法; ——增加了质量保证和质量控制条款; ——增加了废物处理和注意事项条款。 自本标准实施之日起,原国家环境保护局1987年3月14日批准、发布的国家环境保护标准《水质总汞的测定冷原子吸收分光光度法》(GB7468—87)废止。 本标准的附录A为资料性附录。 本标准由环境保护部科技标准司组织制订。 本标准主要起草单位:大连市环境监测中心。 本标准验证单位:沈阳市环境监测中心站、鞍山市环境监测中心站、抚顺市环境监测中心站、丹东市环境监测中心站、长春市环境监测中心站和哈尔滨市环境监测中心站。 本标准环境保护部2011年2月10日批准。 本标准自2011年6月1日起实施。 本标准由环境保护部解释。

铍 石墨炉原子吸收法

HZHJSZ00114 水质铍的测定石墨炉原子吸收法 HZ-HJ-SZ-0114 水质石墨炉原子吸收法 1 范围 本方法可用于含铍的水及其工业废水的分析测定上限为4ìg/L ?ú?áμ??¨?è?a1硫酸含量为2%(V/V)时钾700镁700锰100铁5 ò?????D?ò???μ??ú234.9nm波长进行定量分析 3.2 铍标准贮备溶液 溶解后移入1000mL容量瓶中摇匀取该贮备溶液稀释成含铍0.10ìg/mL的标准溶液 溶解13.9g硝酸铝[A1(N03)3′?èüòoo??á?¨?è?a 1.0 4 仪器 4.1 原子吸收分光光度计 4.2 热解石墨管 灯电流12.5mA狭缝宽度1.3nm è?±í1所示 s è?êêá?o????ù?·( ?óè?1.0硫酸0.2mL 6 操作步骤 6.1 试样的测量 选择最佳仪器参数将上述试液注入石墨炉内进行测量 并作空白校正 分别加入0.1ìg/mL铍标准溶液00.100.30 以下按试样步骤操作 7 结果计算 c铍(Be, mg/L)= m/V 式中  V—取水样体积(mL)

8 精密度和准确度 三个实验室分析用蒸馏水配制的1.00mg/L铍的统一样品 室间相对标准偏差为6.0%加标回收率为101 本方法用于实际水样的分析如表2所示 ìg/L%% ??????ìúoí?üμ??¨?èíùíù ?????é°′??ê?2??è??±?ê??ù将717#强碱型阴离子树脂洗净后用蒸馏水洗净 在25mL滴定管的下端放一层玻璃棉高度为11cm ????èüòoò?2.0mL/min的流速流过阴离子树脂柱 再收集流出液 ????±ê×??μáD????D£×??ú?? 2ù×÷ê±ó|D?D?ò??÷é?μ?3é·?×°??ó|?a×? 103mg/L时必须进行背景校正 水和废水监测分析方法水和废水监测分析方法 中国环境科学出版社1997

连续光源原吸发展前景

关于连续光源原子吸收的发展前景 91年美国光谱物理学家Heiftje对原子吸收分析技术的发展进行了总结,把以下一些大事归纳为原子吸收的里程碑 原子吸收光谱技术的发展 年代研究者研究内容 1953 Walsh 原子吸收第一个专利 1954 Brodye 用原子吸收进行Li同位素分析 1959 L’vov 第一篇石墨炉AA的报告(俄文) 1962 Amos & Willims N2O-C2H2 火焰的使用 1962 D2灯背景校正用于原子吸收 1968 Massmann 石墨炉用于原子吸收 1969 Holak 氢化物发生用于原子吸收 1971 Hadeishi 塞曼效应用于AA背景校正 1977 恒温石墨炉商品化 1983 Smith & Haifitye S-H法背景校正用于AA 1986 L’vov 发表“石墨炉原子吸收绝对分析”。 从表中所列的事件可以看出其主线只有两条,一是原子化器的进展,一是背景校正技术的发展和应用,所有这些实际是基于A.walsh关于原子吸收的第一篇论文,即:使用锐线光源,用峰值吸收代替积分吸收,基态原子的浓度和它对特征辐射的吸收,符合吸收定律。在Heiftje发表这篇文章以后,许多研究工作者进行了不断的努力。在仪器技术上值得关注的有:横向加热石墨炉,纵向塞曼效应背景校正,以及如Analyt700、800型和日立Z2000的一些改进,实现了“实时双光束”,“同时”背景校正等,但这些都没有离开上述发展的内容。因此,在那时,我们曾经提出原子吸收光谱技术成熟了,其基本标志就是: 原子吸收分光光度法成熟的标志 1.基本理论的成熟:L`vov“绝对分析”的发表 2.各种商品原子化器的完善

原子吸收光谱法的优缺点

主要有以下优点: 1 选择性强。这是因为原子吸收带宽很窄的缘故。因此,测定比较快速简便,并有条件实现自动化操作。在发射光谱分析中,当共存元素的辐射线或分子辐射线不能和待测元素的辐射线相分离时,会引起表观强度的变化。 而对原子吸收光谱分析来说:谱线干扰的几率小,由于谱线仅发生在主线系,而且谱线很窄,线重叠几率较发射光谱要小得多,所以光谱干扰较小。即便是和邻近线分离得不完全,由于空心阴极灯不发射那种波长的辐射线,所以辐射线干扰少,容易克服。在大多数情况下,共存元素不对原子吸收光谱分析产生干扰。在石墨炉原子吸收法中,有时甚至可以用纯标准溶液制作的校正曲线来分析不同试样。 2、灵敏度高。原子吸收光谱分析法是目前最灵敏的方法之一。火焰原子吸收法的灵敏度是ppm到ppb级,石墨炉原子吸收法绝对灵敏度可达到10-10~10-14克。常规分析中大多数元素均能达到ppm数量级。如果采用特殊手段,例如预富集,还可进行ppb数量级浓度范围测定。由于该方法的灵敏度高,使分析手续简化可直接测定,缩短分析周期加快测量进程;由于灵敏度高,需要进样量少。无火焰原子吸收分析的试样用量仅需试液5~100l。固体直接进样石墨炉原子吸收法仅需~30mg,这对于试样来源困难的分析是极为有利的。譬如,测定小儿血清中的铅,取样只需10l即可。 3 分析范围广。发射光谱分析和元素的激发能有关,故对发射谱线处在短波区域的元素难以进行测定。另外,火焰发射光度分析仅能对元素的一部分加以测定。例如,钠只有1%左右的原子被激发,其余的原子则以非激发态存在。 在原子吸收光谱分析中,只要使化合物离解成原子就行了,不必激发,所以测定的是大部分原子。目前应用原子吸收光谱法可测定的元素达73种。就含量而言,既可测定低含量和主量元素,又可测定微量、痕量甚至超痕量元素;就元素的性质而言,既可测定金属元素、类金属元素,又可间接测定某些非金属元素,也可间接测定有机物;就样品的状态而言,既可测定液态样品,也可测定气态样品,甚至可以直接测定某些固态样品,这是其他分析技术所不能及的。 4、抗干扰能力强。第三组分的存在,等离子体温度的变动,对原子发射谱线强度影响比较严重。而原子吸收谱线的强度受温度影响相对说来要小得多。和发射光谱法不同,不是测定相对于背景的信号强度,所以背景影响小。在原子吸收光谱分析中,待测元素只需从它的化合物中离解出来,而不必激发,故化学干扰也比发射光谱法少得多。 5、精密度高。火焰原子吸收法的精密度较好。在日常的一般低含量测定中,精密度为1~3%。如果仪器性能好,采用高精度测量方法,精密度为<1%。无火焰原子吸收法较火焰法的精密度低,目前一般可控制在15%之内。

原子吸收常见故障排除法石墨炉篇修订版

原子吸收常见故障排除法石墨炉篇修订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-ZZT18】

一. 重现性差 (1)产生原因:样品的前处理不彻底; 判断方法:换成20ppb的铜标准溶液测定; 解决办法: 重新配置样品溶液(注意:使用优级纯硝酸做介质); (2)产生原因:进样针高度调整得不合适或管路中有气泡; 判断方法:用牙医镜观察进样状况;检查清洗泵中有无气泡; 解决办法:重新调整进样针高度,清洗进样针头,清洗泵排气; (3)产生原因:升温程序设置不合理(主要是灰化和原子化温度); 判断方法:通过模拟监视屏幕观察信号线有无灰化损失(在灰化阶段出峰),原子化信号上升沿是否陡直及下降沿有无拖尾和断尾; 解决办法:重新设置升温程序; (4)产生原因:石墨管、石墨环被污染产生了记忆效应; 判断方法:按照正常升温程序不进样,观察石墨管的空白吸光值是否小于 0.008Abs以下(任何元素均如此),并且重复性是否相差不大 解决办法:更换相应部件; (5)产生原因:石墨环与石墨管接触电阻变大;

判断方法: 石墨管在原子化升温开始瞬间,石墨管正常是由中央向两端延伸发 光,如果石墨管是从两端向中央集中发光则是接触不良; 解决办法:首先更换一只新的石墨管试试,如未果则是石墨环不良所致; 根据以往经验,石墨环不良的几率较大; (6)产生原因:石墨炉电极与底座接触电阻变大; 判断方法:石墨炉升温几次过后,用手指触摸电极感觉温度很高; 解决办法:取下有问题一侧的电极,用600目的水砂纸研磨电极底座,最后用乙醇清洗电极底座和载气通道,防止因污染影响测定值; (7)产生原因:石英窗结露;此故障较隐蔽其原因多由冷却水低于室温所致; 判断方法:取下石英窗朝光亮处观看很容易发现; 解决办法:用乙醇/乙醚混合液清理石英窗;控制冷却水温度,建议最好使用可调温度的水冷循环器; (8)产生原因:载气针状出口被堵塞(取下石墨炉电极后见平台的凸起部); 判断方法:一般是一侧载气被堵,于是被堵一侧的石英窗上会有附着物; 解决办法:用仪器附带的通丝清通载气出口针孔;清洗石英窗; (9)产生原因:阴极灯不良 判断方法:通过【Line Profile】谱线轮廓功能和基线平坦度来观察;

原子吸收光谱法知识题及答案解析

原子吸收分光光度法 1.试比较原子吸收分光光度法与紫外-可见分光光度法有哪些异同点? 答:相同点:二者都为吸收光谱,吸收有选择性,主要测量溶液,定量公式:A=kc,仪器结构具有相似性. 不同点:原子吸收光谱法紫外――可见分光光度法 (1) 原子吸收分子吸收 (2) 线性光源连续光源 (3) 吸收线窄,光栅作色散元件吸收带宽,光栅或棱镜作色散元件 (4) 需要原子化装置(吸收池不同) 无 (5) 背景常有影响,光源应调制 (6) 定量分析定性分析、定量分析 (7) 干扰较多,检出限较低干扰较少,检出限较低 2.试比较原子发射光谱法、原子吸收光谱法、原子荧光光谱法有哪些异同点? 答:相同点:属于原子光谱,对应于原子的外层电子的跃迁;是线光谱,用共振线灵敏度高,均可用于定量分析. 不同点:原子发射光谱法原子吸收光谱法原子荧光光谱法 (1)原理发射原子线和离子线基态原子的吸收自由原子(光致发光) 发射光谱吸收光谱发射光谱 (2)测量信号发射谱线强度吸光度荧光强度 (3)定量公式lgR=lgA + blgc A=kc I f=kc (4)光源作用不同使样品蒸发和激发线光源产生锐线连续光源或线光源 (5)入射光路和检测光路直线直线直角 (6)谱线数目可用原子线和原子线(少) 原子线(少) 离子线(谱线多)

(7)分析对象 多元素同时测定 单元素 单元素、多元素 (8)应用 可用作定性分析 定量分析 定量分析 (9)激发方式 光源 有原子化装置 有原子化装置 (10)色散系统 棱镜或光栅 光栅 可不需要色散装置 (但有滤光装置) (11)干扰 受温度影响严重 温度影响较小 受散射影响严重 (12)灵敏度 高 中 高 (13)精密度 稍差 适中 适中 3.已知钠蒸气的总压力(原子+离子)为1.013?l0-3Pa ,火焰温度为2 500K 时,电离平衡常数(用压力表示)为4.86?l0-4Pa 。试计算: (1)未电离钠原子的分压和电离度; (2) 加入钾为缓冲剂,电子分压为为1.013?l0-2Pa 时未电离的钠原子的分压。 (3) 设其它条件(如温度等)不变,加入钾后的钠原子线发射强度和吸光度的相对变化。 [提示:火焰气态原子行为可近似看成“理想”气体,即p =nkT 。火焰气体的电离忽略不计] 解:(1)Na ==Na + + e a b b ??????=+?==--Pa b a Pa a b K 34210013.11086.4/ ??????=?=--Pa b Pa a 4410995.410135.5 则未电离的钠原子的分压为5.135×10-4Pa 电离度494.0=+=b a b x (2)加入钾缓冲剂 Pa p p p K Na Na e 41086.4-?=?= + 即Pa p p Na Na 4321086.4)10013.1(10013.1---?=-???

石墨炉原子吸收法测定大米中铅镉

不同消化方法-石墨炉原子吸收法测定大米中镉的比较 秦品芝1 摘要采用干法灰化法、湿法消解法及微波消解法作为前处理方式,石墨炉原子吸收光谱法测定大米中的镉。试验结果表明,干法消解法准确度和回收率均偏低;湿法消解法空白值较高,试剂消耗量大,前处理时间长;微波消解法具有准确度高,回收率好,操作简单快速,试剂消耗小等特点。 关键词镉;微波消解;湿法消解;干法灰化 镉是食品卫生标准中的重要限量指标,国标分析方法中镉的测定有石墨炉原子吸收光谱法、火焰原子吸收光谱法、比色法和原子荧光法[1]。石墨炉原子吸收光谱法具有较高的灵敏度,已成为日常工作中测定食品中镉的首选方法。所以,本次实验采用石墨炉原子吸收法测定大米中的镉。 前处理时元素及有机物分析测试过程中不可或缺的关键步骤,也是样品分析整个过程中最费力、费时的部分,同时也会对分析结果的准确性有着较大的直接影响,预处理方法与手段的好坏将直接在测试结果中体现[2],样品前处理方法通常是干灰化法或湿消解法[3],这些方法操作繁琐,试剂用量较大,危险性高,易受沾污和损失,测定周期较长,影响因素多,测定的准确度不易控制。微波消解技术是近年来发展成熟的新的试样消解技术[4],样品在密闭消解罐中,用硝酸和过氧化氢在高温高压下对待测样品进行消化处理[5]。其优点是消解速度快,试剂用量少,操作简单安全,大大减少易挥发元素的损失和实验环境对样品的污染,降低了空白值,提高了方法的灵敏度和准确度[6]。 实验原理 试样经灰化或酸消解后,注入原子吸收分光光度计石墨炉中,电热原子化后吸收228.8nm 共振线,在一定浓度范围,其吸收值与镉含量成正比,与标准系列比较定量。 2.实验材料 2.1仪器 原子吸收分光光度计;电子天平(精确度:0.01g);微波消解仪;马弗炉;超纯水器;可调式电热板;电子控温加热板。 2.2试剂 硝酸(分析纯);高氯酸(分析纯);盐酸(优级纯);过氧化氢;镉标准溶液;大米标准物质。 3.实验方法 3.1样品前处理 3.1.1干灰化法 首先将大米样品粉碎,然后准确称取2.00g~5.00g样品于瓷坩埚中,先在可控温电热板上小心加热至样品完全炭化,然后移入马弗炉中,在500~550℃灰化约8小时,冷却后取出。然后用硝酸将灰分小心溶解,若有少量样品灰化不完全,再补加一定量硝酸,在可控温电热板上小心加热,直至消化完全,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.2湿消解法 准确称取已粉碎的大米样品1.00g~2.00g于锥形瓶中,加盖小漏斗,加入体积比为5∶1硝酸高氯酸混合消化液15mL,于电热板上缓慢加热,反应趋于缓和后,慢慢加入1mL过氧化氢,继续加热消化直至溶液澄清,冷却后转移至25mL容量瓶中,用水定容至刻度,摇匀静置。 3.1.3微波消解法

第3章_原子吸收光谱法(练习题)-2008级

第三章原子吸收光谱法 单选题: 1.原子吸收光谱是由下列哪种粒子产生的? (1)固体物质中原子的外层电子;(2)气态物质中基态原子的外层电子;(3)气态物质中激发态原子的外层电子;(4)气态物质中基态原子的内层电子。 2. 原子吸收光谱线的多普勒变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 3. 原子吸收光谱线的洛仑兹变宽是由下列哪种原因产生的? (1)原子在激发态的停留时间;(2)原子的热运动;(3)原子与其他粒子的碰撞;(4)原子与同类原子的碰撞。 4. 用原子吸收光度法测定钙时,加入EDTA是为了消除下述哪种物质的干扰?(1)磷酸;(2)硫酸;(3)钠;(4)镁。 5. 为了提高石墨炉原子吸收光谱法的灵敏度,原子化阶段测量信号时,保护气体的流速应: (1)减小;(2)增大;(3)不变;(4)为零。 6. 原子吸收光谱测定食品中微量砷,最好采用下列哪种原子化方法? (1)冷原子吸收;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 7. 原子吸收光谱测定污水中微量汞,最好采用下列哪种原子化方法? (1)化学还原冷原子化法;(2)空气-乙炔火烟;(3)石墨炉法;(4)气态氢化物发生法。 8. 与原子吸收光谱法相比,原子荧光光谱法: (1)要求光源发射强度高;(2)要求光源发射线窄;(3)要求单色仪分辨能力更强;(4)更适宜测高浓度样品。 9. 消除原子吸收光谱分析中的物理干扰一般用: (1)背景校正;(2)光源调制;(3)标准加入法;(4)加入缓冲剂。 10. 石墨炉法原子吸收分析,应该在下列哪一步记录吸光度信号: (1)干燥;(2)灰化;(3)原子化;(4)除残。 11. 作为原子吸收光谱分析的消电离剂,最有效的是: (1)Na;(2)K;(3)Rb;(4)Cs。 12. 空心阴极灯中对发射谱线宽度影响最大的因素是: (1)阴极材料;(2)填充气体;(3)灯电流;(4)阳极材料。 13. 原子吸收分析中,吸光度最佳的测量范围是:

固体废物 总汞的测定 冷原子吸收分光光度法

固体废物总汞的测定冷原子吸收分光光度法 作业指导书 1 主题内容与适用范围 1.1 本标准规定了测定固体废物浸出液中总汞的高锰酸钾-过硫酸钾消解冷原子吸收分光光度法。 1.2 本标准方法适用于固体废物浸出液中总汞的测定。 1.2.1 在最佳条件下(测汞仪灵敏度高,基线漂移及试剂空白值极小),当试样体积为200m L时,最低检出浓度可达0.05μg/L。在一般情况下,测定范围为0.2~50μg/L。 1.2.2 干扰 碘离子浓度等于或大于3.8μg/L时明显影响精密度和回收率。若有机物含量较高,规定的消解试剂最大量不足以氧化样品中的有机物,则方法不适用。 2 原理 汞原子蒸气对波长253.7nm的紫外光具有强烈的吸收作用,汞蒸气浓度与吸收 值成正比。在硫酸-硝酸介质及加热条件下,用高锰酸钾和过硫酸钾将试样消解:或 用溴酸钾和溴化钾混合试剂,在20℃以上室温和0.6~2mol/L的酸性介质中产生溴,将试样消解,使所含汞全部转化为二价汞。用盐酸羟胺将过剩的氧化剂还原,再用氯化亚锡鼗二价汞还原成金属汞。在室温通入空气或氮气流,将金属汞汽化,载入冷原子吸收测汞仪,测量吸收值,可求得试样中汞的含量。 3 试剂 除另有说明,分析中仅使用符合国家标准或专业标准的分析纯试剂,其中汞含量要尽可能少。如采用的试剂导致空白值偏高,应改用级别更高或选择某些工厂生产的汞含量更低的试剂,或自行提纯精制。配制试剂或试样稀释定容,均使用无汞蒸馏水(3.1)。试样一律盛于磨口玻璃试剂瓶。 3.1 无汞蒸馏水。二次重蒸馏水或电渗析去离子水通常可达到此纯度。也可将蒸馏水加盐酸酸化至PH3,然后通过巯基棉纤维管(3.2)除汞。

石墨炉原子吸收光谱法测定食品中的铅(修改版)

石墨炉原子吸收光谱法测定食品中的铅 姓名:徐晨希班级:13资源1班学号:2013334116 食品中铅的测定有石墨炉原子吸收法、氢化物原子荧光法、火焰原子吸收法、二硫腙比色法。目前,应用较多的是石墨炉原子吸收法,但其重现性稍差,为提高其重现性,本文对铅的石墨炉原子吸收法的测定条件及影响因素进行探讨,加入基体改进剂,减少了干法灰化和湿法消化处理样品对铅测定的影响,使仪器的测定达到准确、快速的目的。 一,材料与方法 1.试剂铅标准溶液(1.0mg/mL),铅标准使用液(10.0ng/mL),硝酸(优 级纯)、高氯酸(优级纯)、磷酸铵溶液(20g/L)、混合酸:硝酸+高氯酸(4+1)、过氧化氢(30%)。 2.仪器原子吸收分光光度计 (WYX一9003原子吸收仪),热电谱通石墨管, 铅空心阴极灯,马弗炉,可调式电热板,可调式电炉,瓷坩埚。 二,测定步骤 (1)仪器工作条件:波长283.3nm,狭缝 0.5nm,灯电流 7mA,干燥温度 120℃、30s,灰化温度 450℃、20s,原子化温度 2200℃、5s,原子化阶段停气,除残2400℃、3s,进样体积 10μl,基体改进剂磷酸二氯铵(20g/L)lOμl。 (2)样品的预处理①干法灰化:取 1.0o~5.OOg 样品于瓷坩埚中,加 5ml硝酸,放置 2h,至电热板上炭化后,移人马弗炉 500℃灰化 4~6h,冷却,加入lml 混合酸和少量过氧化氢,在电炉上加热直至消化完全。冷却后,用 0.5mol/L 硝酸将灰分溶解,并移入25ml容量瓶中,用水少量多次洗涤瓷坩埚,洗液合并于容量瓶中,定容,混匀备用,同时作试剂空白。②湿法消化:取 1.0o一5.00g 样品于三角瓶中,加 10ml混合酸,加盖浸泡过夜。加一小漏斗于电炉上消化,补加适量混合酸,直至冒白烟,溶液呈无色透明,冷却后加少量蒸馏水,加热至冒白烟,赶酸。冷却移人 25ml容量瓶中,用少量水洗涤三角瓶,洗液合并于容量瓶,定容,混匀备用。同时作试剂空白。 (3)标准曲线绘制取铅标准使用液,用 0.5mol/ L硝酸配制成铅浓度为 0.00、5.00、10.00、20.00、 40.00、60.00、80.00μg/L的标准系列。(4)测定按仪器工作条件依次测定,标准系列和样品的吸光值,并绘制标准曲线。由标准曲线求得样品中铅的含量。 三、结果 1.灰化温度的选择其他条件不变,只改变灰化温度,当加入 10μL基体改 进剂后,灰化温度在 45℃,校准后的信号接近最大值,背景信号最低,故 450℃ 为最佳灰化温度。 2.原子化温度的选择当原子化温度达到 2200℃时,校准后的信号接近最大值,背景信号较低,故 2200℃为原子化温度的最佳温度。 3.基体改进剂加入量的选择在相同条件下测定吸光值,5μL、10μL、15μ L磷酸二氨胺的加入,与试样进样量相同的 10μL时,吸光度最大,故选 10μL为基体改进剂的加入量。

原子吸收火焰法石墨炉法测定元素的方法

火焰法测定元素的参数

备注: 1.以上所测元素系空气—乙炔火焰,最高温度为2300℃。 火焰类型分为:a贫焰,乙炔流量<1.2升/分; b化学计量性火焰(氧化性火焰),乙炔流量1.2—1.7升/分; c富燃性火焰(还原性火焰),乙炔流量>1.7升/分。 2.Al, B, Ba, Be, Dy(镝), Er(铒), Eu(铕),Gd(钆), Ge(锗), Hf(铪), Ho (钬), La(镧), Mo(钼), Nb(铌), Nd(钕),Os(锇),P(磷),Pr(镨),Re(铼),Sc(钪),Si(硅),Sm(钐), Ta(钽),Ti(钛), Tm(铥),U(铀),V(钒),W(钨), Y(钇), Yb(镱),Zr(锆)等元素需要氧化亚氮—乙炔火焰测定。以上部分元素也可用石墨炉原子吸收法测定[使用热解涂层石墨管或金属(Ta,Zr等)涂层石墨管]。 3.火焰法(空气—乙炔火焰)测定的元素,当含量很低(ng/ml)时也可用石墨炉法来 测定。 石墨炉法测定元素的参数

备注: 1.基体改进剂进样量与改进剂配法 表格中所提到的基体改进剂的量(毫克)为进入石墨炉中的量 a1,a2:为纵向加热石墨炉仪器的进样量20μl; b:为横向加热石墨炉仪器的进样量5μl。 改进剂配法: 例1.0.015mgMg(NO3)2公式如下: 改进剂的百分浓度=改进剂(mg)×100/注入体积(μl)

则0.015mgMg(NO3)2应为0.015×100/5=0.3g/100ml 例2.0.005mgpd+0.003mg Mg(NO3)2 按公式计算出pd应为0.1g,Mg(NO3)2应为0.06g,将两种物质溶解后, 定容100ml即可。 Pd试剂必须使用硝酸钯(钯含量不少于40%)。称取时应将硝酸钯换算成 Pd称取,Mg(NO3)2应是优级纯以上试剂。 2.石墨炉原子吸收分析技术中的基体改进技术(现称化学改进剂技术)及石墨炉改进 技术。请参考李述信主编的“原子吸收光谱分析中的干扰及消除方法”(P279—299) 北京大学出版社.1987 3.原子吸收分析中的背景校正技术还请参考杨啸涛等编注的“原子吸收分析中的背景 吸收及其校正”北京大学出版社,1988 4.灵敏度: a1为产生0.3Abs时的浓度 a2为产生0.1—0.2Abs时的浓度

原子吸收光谱法测定铝合金中的铜

广州大学学生实验报告 开课学院及实验室:化学化工学院生化楼四楼年月日 学院 化学化工学院 年级、专业、班 姓名 学号 实验课程名称 分析化学实验 成绩 实验项目名称 原子吸收光谱法测定铝合金中的铜 指导老师 一、实验目的 1.巩固加深理解原子吸收光谱分析的基本原理。 2.掌握原子吸收光谱分析中标准加入法进行定量分析,以消除基体效应及某些干扰对测定结果的影响。 3.学会铝合金样品的制备技术。 二、实验原理 铜是原子吸收光谱分析中经常和容易测定的元素,在贫燃的空气~火焰干扰很少。为了消除铝基的影响,在绘制工作曲线时,标准溶液浓度系列可加入与被测试样溶液相近的铝量或采用标准加入法定量测定。 标准加入法是将已知浓度不同体积的标准溶液加到几个相同量的待测试样溶液中,然后一起

测定,并绘制标准曲线,将直线外推延长至与横轴相交,其交点与原点的距离所相应的浓度,即为待测试样溶液的浓度。这种方法是针对试样组成复杂,待测元素含量低,样品数量少的情况下可采用的一种定量分析测定方法。 三、仪器与试剂 1.仪器 TAS-990型原子吸收分光光度计,铜空心阴极灯,100mL容量瓶6个。 2.试剂 ⑴1000mg·L-1铜标准储备溶液⑵100mg·L-1铜标准工作液⑶20g·L-1铝标准⑷HCl(AR)1:1。⑸试样。 四、实验步骤 1.工作条件 铜空心阴极灯工作电流 3.0mA 波长324.8nm 光谱带宽0.4mm 燃烧器高度 6.0mm 燃气流量 2.0L/min 2.标准加入法 分别取试样溶液10.0mL四份于4个100mL容量瓶中,分别加入100 mg·、L-1铜标准溶液0.0、0.5、1.0、2.0mL,10滴1:1HCl,(针对模拟样, 每份加20g·L-1铝标准10mL)用水稀释至刻度,摇匀。按以上条件测量各自吸光度。 五、数据处理 绘制标准曲线,将直线外推与横轴相交,其交点与原点的距离所对应的浓度,即为试液的浓度,从而可计算出试样中铜的百分含量。 六、注意事项 1.对不易溶解于硝酸的试样可先用高氯酸和硝酸的混合酸10~15mL分解处理,蒸发至冒高氯酸白烟,并保持1min左右,余下步骤与试样处理过程相同。 2.本法适用于铝合金中0.005~1.00%铜的测定。 七、思考题 工作曲线法与标准加入法定量分析各有什么优点?在什么情况下采用这些方法? 答:工作曲线法适用于标准曲线的基体和样品的基体大致相同的情况,优点是速度快,缺点是当样品基体复杂时不正确。标准加入法可以有效克服上面所说的缺点,因为他是把样品和标准混在一起同时测定的,但他也有缺点就是速度很慢

相关文档
最新文档