目标函数的几种极值求解方法

目标函数的几种极值求解方法
目标函数的几种极值求解方法

目标函数极值求解的几种方法

题目:()()

2

22

1

122min -+-x x

,取初始点()()

T

x 3,11

=,分别用最速下降法,

牛顿法,共轭梯度法编程实现。

一维搜索法:

迭代下降算法大都具有一个共同点,这就是得到点()k x 后需要按某种规则确定一个方向()k d ,再从()k x 出发,沿方向()k d 在直线(或射线)上求目标函数的极小点,从而得到()k x 的后继点()1+k x ,重复以上做法,直至求得问题的解,这里所谓求目标函数在直线上的极小点,称为一维搜索。

一维搜索的方法很多,归纳起来大体可以分为两类,一类是试探法:采用这类方法,需要按某种方式找试探点,通过一系列的试探点来确定极小点。另一类是函数逼近法或插值法:这类方法是用某种较简单的曲线逼近本来的函数曲线,通过求逼近函数的极小点来估计目标函数的极小点。本文采用的是第一类试探法中的黄金分割法。原理书上有详细叙述,在这里介绍一下实现过程:

⑴ 置初始区间[11,b a ]及精度要求L>0,计算试探点1λ和1μ,计算函数值

()1λf 和()1μf ,计算公式是:()1111382.0a b a -+=λ,()1111618.0a b a -+=μ。令

k=1。

⑵ 若L a b k k <-则停止计算。否则,当()K f λ>()k f μ时,转步骤⑶;当

()K f λ≤()k f μ时,转步骤⑷ 。

⑶ 置k k a λ=+1,k k b b =+1,k k μλ=+1,()1111618.0++++-+=k k k k a b a μ,计算函数值

()1+k f μ,转⑸。

⑷ 置k k a a =+1,k k b μ=+1,k k μμ=+1,()1111382.0++++-+=k k k k a b a λ,计算函数值()1+k f λ,转⑸。

⑸ 置k=k+1返回步骤 ⑵。

1. 最速下降法

实现原理描述:在求目标函数极小值问题时,总希望从一点出发,选择一个目

标函数值下降最快的方向,以利于尽快达到极小点,正是基于这样一种愿望提出的最速下降法,并且经过一系列理论推导研究可知,负梯度方向为最速下降方向。

最速下降法的迭代公式是()()()k k k k d x x λ+=+1,其中()k d 是从()k x 出发的搜索方

向,这里取在点()k x 处最速下降方向,即()()k k x f d -?=。k λ是从()k x 出发沿方向()k d 进行的一维搜索步长,满足()()()()()()k k k k k d x f d x f λλλ+=+≥0

min 。

实现步骤如下:

⑴ 给定初点()n R x ∈1 ,允许误差0>ε,置k=1。 ⑵ 计算搜索方向()()k k x f d -?=。

⑶ 若()ε≤k d ,则停止计算;否则,从()k x 出发,沿方向()k d 进行的一维搜索,求k λ,使()()()()()()k k k k k d x f d x f λλλ+=+≥0

min 。

⑷ ()()()k k k k d x x λ+=+1,置k=k+1返回步骤 ⑵。

2. 拟牛顿法

基本思想是用不包括二阶导数的矩阵近似牛顿法中的Hesse 矩阵的逆矩阵,

因构造近似矩阵的方法不同,因而出现了不同的拟牛顿法。

牛顿法迭代公式:()()()k k k k d x x λ+=+1,()k d 是在点()k x 处的牛顿方向,

()()

()

()()

k k k x f x f d ?-?=-1

2,k λ是从()k x 出发沿牛顿方向()k d 进行搜索的最优步长。

用不包括二阶导数的矩阵k H 近似取代牛顿法中的Hesse 矩阵的逆矩阵

()

()

1

2-?k x f ,1+k H 需满足拟牛顿条件。

实现步骤:

⑴ 给定初点()1x ,允许误差0>ε。

⑵ 置n I H =1(单位矩阵),计算出在()1x 处的梯度()()11x f g ?=,置k=1。 ⑶ 令()k k k g H d -=。

⑷ 从()k x 出发沿方向()k d 搜索,求步长k λ,使它满足

()()()()()()

k k k k k d x f d x f λλλ+=+≥0

min ,令()()()k k k k d x x λ+=+1。

⑸ 检验是否满足收敛标准,若()

(

)ε≤+1k y f ,

则停止迭代,得到点()

1+-

=k x x ,

否则进行步骤⑹。

⑹ 若k=n ,令()()11+=k x x ,返回⑵;否则进行步骤⑺。 ⑺

()

()

11++?=k k x f g ,

()()()

k k k x x p -=+1,

()k

k k g g q -=+1,

()()()()()()()()k k T

k k

T k k k k T k T k k k k q H q H q q H q p p p H H -+=+1,置k=k+1 。返回⑶。

3. 共轭梯度法

若()()()k d d d ,,,21 是n R 中k 个方向,它们两两关于A 共轭,即满足

()()k j i j i Ad d j T i ,,1,;,0 =≠=,称这组方向为A 的k 个共轭方向。共轭梯度法的

基本思想是把共轭性与最速下降法相结合,利用已知点处的梯度构造一组共轭方向,并沿这组方向进行搜索,求出目标函数的极小点,根据共轭方向的基本性质这种方法具有二次终止性。

实现步骤如下:

⑴ 给定初点()1x ,允许误差0>ε,置 ()()11x y =,()()()11y f d -?=,k=j=1。

⑵ 若()()

ε≤j y f ,则停止计算;否则,作一维搜索,求j λ,满足 ()()()()()()j j j j j d y f d y f λλλ+=+≥0

min ,令()()()j j j j d y y λ+=+1。

⑶ 若n j <,则进行步骤⑷,否则进行步骤⑸

⑷ 令()()()

()j j j j d y f d β+-?=++11,其中()

()

()()

2

2

1j

j j y f y f ??=

+β,置j=j+1,转⑵。

⑸ 令()()11++=n k y x ,()()11+=k x y ,()()()11y f d -?=,置j=1,k=k+1,转⑵ 。

4. 实验结果

1=。迭用以上三种方法通过Matlab编程得到实验数据。初始值()()T

x3,1

代精度sum(abs(x1-x).^2)<1e-4。

实验结果分析:

由上表格可以看到最速下降法需要四次迭代实现所要求的精度,拟牛顿法和共轭梯度法需要三次。

程序:

%精确一维搜索法的子函数,0.618(黄金分割)法,gold.m

%输入的变量x为初始迭代点是二维的向量,d为初始迭代方向是二维的向量

%输出变量是在[0,10]区间上使函数取得极小值点的步长因子

function alfa=gold(x,d)

a=0;b=10;tao=0.618;

lanmda=a+(1-tao)*(b-a);

mu=a+tao*(b-a);alfa=lanmda;%初始化

f=((x(1)+alfa*d(1))-2)^2+2*(x(2)+alfa*d(2)-1)^2;%目标函数

m=f;alfa=mu;n=f;

while 1

if m>n

if abs(lanmda-b)<1e-4

alfa=mu; return

else

a=lanmda; lanmda=mu; m=n;

mu=a+tao*(b-a); alfa=mu;

n=((x(1)+alfa*d(1))-2)^2+2*(x(2)+alfa*d(2)-1)^2;

end

else

if abs(mu-a)<1e-4

alfa=lanmda; return

else

b=mu; mu=lanmda; n=m;

lanmda=a+(1-tao)*(b-a); alfa=lanmda;

m=((x(1)+alfa*d(1))-2)^2+2*(x(2)+alfa*d(2)-1)^2;

end

end

end

%梯度子函数,tidu.m,输入的变量为二维的向量,返回梯度在x处的数值向量function g=tidu(x)

%待求解的函数

f=(x(1)-2)^2+2*(x(2)-1)^2;

%求函数的梯度表达式

g=[2*(x(1)-2) 4*(x(2)-1)];

x1=x(1); x2=x(2);

%最速下降法极小化函数的通用子函数zuisu.m

%输入变量为初始的迭代点,输出变量为极小值点

function x0=zuisu(x)

%判断梯度范数是否满足计算精度1e-4的要求.是,标志变量设为1,输出结果; %否,标志变量设为0

if sum(abs(tidu(x)).^2)<1e-4

flag=1; x0=x;

else

flag=0;

end

%循环求解函数的极小点

while flag==0

d=-tidu(x); a=gold(x,d); x=x+a*d

%判断梯度范数是否满足计算精度的要求.是,标志变量设为1,输出结果;

%否,标志变量设为0,继续迭代

if sum(abs(tidu(x)).^2)<1e-4

flag=1; x0=x;

else

flag=0;

end

End

%拟牛顿法极小化函数的通用子函数,gonge.m

%输入变量为初始的迭代点,输出变量为极小值点

function x0=ninewton(x)

%判断梯度范数是否满足计算精度的要求.是,标志变量设为1,输出结果;

%否,标志变量设为0,继续迭代

if sum(abs(tidu(x)).^2)<1e-4

flag=1; x0=x;

else

flag=0;

end

%初始的H矩阵为单位矩阵

h0=eye(2);

%循环求解函数的极小点

while flag==0

%计算新的迭代方向

d=-h0*tidu(x)'; a=gold(x,d);

x1=(x'+a*h0*d)'; s=x1-x;

y=tidu(x1)-tidu(x); v=s*y';

%校正H矩阵

h0=(eye(2)-s'*y./v)*h0*(eye(2)-y'*s./v)+s'*s./v;

%判断下一次和上一次迭代点之差是否满足计算精度的要求.是,标志变量设为1,输出结果;否,标志变量设为0,继续迭代

if sum(abs(x-x1).^2)<1e-4

flag=1; x0=x;

else

flag=0;

end

x=x1

end

%共轭剃度法极小化函数的通用子函数,gonge.m

%输入变量为初始的迭代点,输出变量为极小值点

function x0=gonge(x)

%判断梯度范数是否满足计算精度的要求.是,标志变量设为1,输出结果;

%否,标志变量设为0,继续迭代

if sum(abs(tidu(x)).^2)<1e-4

flag=1; x0=x;

else

flag=0;

end

%第一次的迭代方法为负梯度方向

d1=-tidu(x);a=gold(x,d1);x1=x+a*d1;

%循环求解函数的极小点

while flag==0

g1=tidu(x); g2=tidu(x1);

%利用FR公式求解系数bata

bata=(g2*g2')/(g1*g1');

d2=-g2+bata*d1;

a=gold(x1,d2);

x=x1;

x1=x+a*d2

%判断下一次和上一次迭代点之差是否满足计算精度的要求.是,标志变量设为1,输出结果;否,标志变量设为0,继续迭代

if sum(abs(x1-x).^2)<1e-4

flag=1; x0=x1;

else

flag=0;

end

end

函数的单调性、极值与最值问题

函数的单调性、极值与最值问题 典例9 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性; (2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审 题 路 线 图 求f ′(x ) ――――――→讨论f ′(x ) 的符号 f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.

评分细则(1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分; (4)构造函数g(a)=ln a+a-1给2分; (5)通过分类讨论得出a的范围,给2分.

跟踪演练9(优质试题·天津)已知函数f(x)=a x,g(x)=log a x,其中a>1. (1)求函数h(x)=f(x)-x ln a的单调区间; (2)若曲线y=f(x)在点(x1,f(x1))处的切线与曲线y=g(x)在点(x2, g(x2))处的切线平行,证明x1+g(x2)=-2ln ln a ln a; (3)证明当a≥1e e时,存在直线l,使l是曲线y=f(x)的切线,也是曲线y=g(x)的切线. (1)解由已知得h(x)=a x-x ln a, 则h′(x)=a x ln a-ln a. 令h′(x)=0,解得x=0. 由a>1,可知当x变化时,h′(x),h(x)的变化情况如下表: 所以函数h(x)的单调递减区间为(-∞,0),单调递增区间为(0,+∞). (2)证明由f′(x)=a x ln a,可得曲线y=f(x)在点(x1,f(x1))处 的切线斜率为1x a ln a.由g′(x)= 1 x ln a,可得曲线y=g(x)在点

求极值的若干方法

求极值的若干方法 1 序言 一般来说函数的极值可以分为无条件极值和条件极值两类.无条件极值问题即是函数中的自变 量只受定义域约束的极值问题;而条件极值问题即是函数中的自变量除受定义域约束外还受其它条件限制的极值问题.下面我们给出极值的定义 定义1) 136](1[P 设函数f 在点0P 的某邻域0()U P 内有定义,若对于任何点 0()P U P ∈,成立不等式 0()()f P f P ≤(或0()()f P f P ≥), 则称函数f 在点0P 取得极大(或极小)值,点0P 称为f 的极大(或极小)值点.极大值、极小值统称为极值.极大值点、极小值点统称为极值点. 2 求解一元函数无条件极值的常用方法 2.1 导数法 定理1 ) 142](2[P 设f 在点0x 连续,在某邻域0(;)o U x δ内可导. (i)若当00(,)x x x δ∈-时()0f x '≤,当00(,)x x x δ∈+时()0f x '≥,则f 在点0x 取得极小值. (ii)若当00(,)x x x δ∈-时()0f x '≥,当00(,)x x x δ∈+时()0f x '≤,则f 在点0x 取得极大值. 由此我们可以推出当0(;)o x U x δ∈时,若()f x '的符号保持不变,则()f x 在0x 不取极值. 定理2 ) 142](2[P 设f 在0x 的某邻域0(;)U x δ内一阶可导, 在0x x =处二阶可导,且()0f x '=,()0f x ''≠. (i)若0()0f x ''<,则f 在0x 取得极大值. (ii)若0()0f x ''>,则f 在0x 取得极小值. 对于一般的函数我们既可以利用定理1,也可以利用定理2,但对于有不可导点的函数只能用定理1. 例1 求函数2 ()(1)f x x x =-的极值.

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者善兰给出的定义是:

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

多元函数的极值及其求法.pdf

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x ?+?=? 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

求极值与最值的方法

求极值与最值的方法 1 引言 在当前的数学教育中,求初等函数的极值与最值占有比较重要的位置,由于其解法灵活,综合性强,能力要求高,故而解决这类问题,要掌握各数学分支知识,能综合运用各种数学技能,灵活选择合理的解题方法。下面我们将要介绍多种求初等函数的极值和最值的方法。 2 求函数极值的方法 极值定义:设函数()f x 在0x 的某邻域内有定义,且对此邻域内任一点 x 0()x x ≠,均有0()()f x f x <,则称0()f x 是函数错误!未找到引用源。的一个极大值;同样如果对此邻域内任一点x 0()x x ≠,均有错误!未找到引用源。,则称0()f x 是函数错误!未找到引用源。的一个极小值。函数的极大值与极小值统称为函数的极值。使函数取得极值的点0x ,称为极值点。 2.1 求导法 判别方法一: 设()f x 在点0x 连续,在点错误!未找到引用源。的某一空心邻域内可导。当 x 由小增大经过错误!未找到引用源。时,如果: (1)'()f x 由正变负,那么0x 是极大值点; (2)错误!未找到引用源。由负变正,那么0x 是极小值点; (3)错误!未找到引用源。不变号,那么0x 不是极值点。 判别方法二: 设()f x 在点0x 处具有二阶导数,且'()0f x =,''()0f x =。 (1)如果''()0f x <,则()f x 在点0x 取得极大值; (2)如果''()0f x >,则()f x 在点0x 取得极小值。

判别方法三: 设()f x 在点0x 有n 阶导数,且0)()()(0)1(00===''='-x f x f x f n 0)(0)(≠x f n ,则: (1)当为偶数时,)(x f 在0x 取极值,有0)(0)(x f n 时,)(x f 在0x 取极小值。 (2)当为奇数时,)(x f 在0x 不取极值。 求极值方法: (1)求一阶导数,找出导数值为0的点(驻点),导数值不存在的点,及端点; (2)判断上述各点是否极值点 例 1 求函数32()69f x x x x =-+的极值。 解法一 : 因为32()69f x x x x =-+的定义域为错误!未找到引用源。, 且'2()31293(1)(3)f x x x x x =-+=--, 令'()0f x =,得驻点11x =, 23x =; 在错误!未找到引用源。内,错误!未找到引用源。,在错误!未找到引用源。内,'()0f x <,(1)4f =为函数()f x 的极大值。 解法二: 因为错误!未找到引用源。的定义域为错误!未找到引用源。, 且错误!未找到引用源。,错误!未找到引用源。。 令错误!未找到引用源。,得驻点错误!未找到引用源。,错误!未找到引用源。。又因为错误!未找到引用源。,所以,错误!未找到引用源。为)(x f 极大值。 错误!未找到引用源。,所以错误!未找到引用源。为)(x f 极小值.

函数的极值及其求法1

三、导数的应用 函数的极值及其求法 在学习函数的极值之前,我们先来看一例子:设有函数,容易知道点x=1及x=2是此函数单调区间的分界点,又可知在点x=1左侧附近,函数值是单调增加的,在点x=1右侧附近,函数值是单调减小的.因此存在着点x=1的一个邻域,对于这个邻域内,任何点x(x=1除外),<均成立,点x=2也有类似的情况(在此不多说),为什么这些点有这些性质呢? 事实上,这就是我们将要学习的内容——函数的极值, 函数极值的定义设函数在区间(a,b)内有定义,x 0是(a,b)内一点. 若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),<均成立,则说是函数的一个极大值; 若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),>均成立,则说是函数的一个极小值.函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。 我们知道了函数极值的定义了,怎样求函数的极值呢? 学习这个问题之前,我们再来学习一个概念——驻点凡是使的x 点,称为函数的驻点。 判断极值点存在的方法有两种:如下 方法一:设函数在x 0点的邻域可导,且. 情况一:若当x 取x 0左侧邻近值时, >0,当x 取x 0右侧邻近值时,<0,则函数在x 0点取极大值。 情况一:若当x 取x 0左侧邻近值时, <0,当x 取x 0右侧邻近值时,>0,则函数在x 0点取极小值。 注:此判定方法也适用于导数在x 0点不存在的情况。 用方法一求极值的一般步骤是:

a):求; b):求的全部的解——驻点; c):判断在驻点两侧的变化规律,即可判断出函数的极值。例题:求极值点 解答:先求导数 再求出驻点:当时,x=-2、1、-4/5 判定函数的极值,如下图所示

二次函数最值问题与解题技巧(个人整理)

一、二次函数线段最值问题 1、平行于x轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用右侧端点的横坐标减去左侧端点的横坐标 3)得到一个线段长关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、平行于y轴的线段最值问题 1)首先表示出线段两个端点的坐标 2)用上面端点的纵坐标减去下面端点的纵坐标 3)得到一个线段长关于自变量的二次函数解析式 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 3、既不平行于x轴,又不平行于y轴的线段最值问题 1)以此线段为斜边构造一个直角三角形,并使此直角三角形的两条直角边分别平行于 x轴、y轴 2)根据线段两个端点的坐标表示出直角顶点坐标 3)根据“上减下,右减左”分别表示出两直角边长 4)根据勾股定理表示出斜边的平方(即两直角边的平方和) 5)得到一个斜边的平方关于自变量的二次函数 6)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 7)根据所求得的斜边平方的最值求出斜边的最值即可 二、二次函数周长最值问题 1、矩形周长最值问题 1)一般会给出一点落在抛物线上,从这点向两坐标轴引垂线构成一个矩形,求其周长 最值 2)可先设此点坐标,点p到x轴、y轴的距离和再乘以2,即为周长 3)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、利用两点之间线段最短求三角形周长最值 1)首先判断图形中那些边是定值,哪些边是变量 2)利用二次函数轴对称性及两点之间线段最短找到两条变化的边,并求其和的最小值 3)周长最小值即为两条变化的边的和最小值加上不变的边长 三、二次函数面积最值问题 1、规则图形面积最值问题(这里规则图形指三角形必有一边平行于坐标轴,四边形必有一组对边平行于坐标轴) 1)首先表示出所需的边长及高 2)利用求面积公式表示出面积 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 2、不规则图形面积最值问题 1)分割。将已有的不规则图形经过分割后得到几个规则图形 2)再分别表示出分割后的几个规则图形面积,求和 3)得到一个面积关于自变量的二次函数 4)将其化为顶点式,并根据a的正负及自变量的取值范围判断最值 或1)利用大减小,不规则图形的面积可由规则的图形面积减去一个或几个规则小图形的 面积来得到

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y ==为原问题的最小值点. 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值 【学习目标】 1. 理解极值的概念和极值点的意义。 2. 会用导数求函数的极大值、极小值。 3. 会求闭区间上函数的最大值、最小值。 4. 掌握函数极值与最值的简单应用。 【要点梳理】 要点一、函数的极值 (一)函数的极值的定义: 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 由函数的极值定义可知: (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. (二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

求函数最值常用的方法及经典例题讲解

求函数最值常用的方法及经典例题讲解 知识点: 一、函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意: ①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有()(())f x M f x m ≤≥. 二、求函数最大(小)值常用的方法. 案例分析: 例1、画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈-

类型一、直接观察法 对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等, 其值域可通过观察直接得到。 例 1、求函数 1 ,[1,2] y x x =∈ 的值域 A、单调递减,无最小值 B、单调递减,有最小值 B、单调递增,无最大值 D、单调递增,有最大值小试牛刀: 1、求函数 2 1 y x = - 在区间[2,6] 上的最大值和最小值. 2

()5522++=x x x f 类型二、反函数法(原函数的值域是它的反函数的定义域) 例: 求函数3456x y x +=+值域。 实战训练场: 1) 求函数2 13-+= x x y 的值域; 2) 函数.11的值域是x x y +-= 类型三、倒数法 有时,直接看不出函数的值域时,把它倒过来之后,你会发现另一番境况 例1 、求函数 y = 的值域。 例2、求函数 的值域。

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

求函数极值的若干方法学位论文

学科分类号110 本科毕业论文 题目求函数极值的若干方法 姓名张成银学号1106020540066 院(系) 数学与计算机科学学院 专业数学与应用数学年级11级 指导教师李晟职称副教授 二○一五年五月

贵州师范学院本科毕业论文诚信声明 本人郑重声明:所呈交的本科毕业论文是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业论文作者签名: 年月日

目录 摘要 (1) Abstract (2) 引言 (3) 1 一元函数极值问题 (3) 1.1一元函数极值的定义 (3) 1.2 一元函数极值的求解方法 (3) 1.2.1 导数法 (3) 1.2.2 配方法 (4) 1.2.3 实例分析 (5) 2 二元函数极值问题 (8) 2.1 二元函数极值的定义 (8) 2.2 二元函数极值求解的一般方法 (8) 2.2.1 二元函数取得极值的条件 (8) 2.2.2 二元函数一般求解步骤 (9) 2.2.3实例分析 (9) 2.3 二元函数条件极值的求解 (11) 3 函数的极值在经济生活中的应用 (12) 结语 (15) 参考文献 (16) 致谢 (17)

摘要 函数极值是函数很重要的性质之一,求函数极值的问题既是一个培养学生逻辑思维能力的问题,又是一个学以致用、解决生产科研问题的数学方法。并且,在生产、生活中,生产者和消费者经常以利润为主,把实际问题按要求达到最大和最小的优化,形成一定的有效理论,实现效用最大的目标。本文主要是研究并归纳当函数极值分别为一元函数或者为二元函数时,用简单的定义求解其极值的方法和函数的极值在经济生活中的运用。 关键词:函数极值;极大值;极小值

求函数最值的方法归纳

求函数最值的常用以下方法: 1.函数单调性法 先确定函数在给定区间上的单调性,然后依据单调性求函数的最值.这种利用函数单调性求最值的方法就是函数单调性法.这种求解方法在高考中是必考的,且多在解答题中的某一问中出现. 例1 设a >1,函数f (x )=log a x 在区间[a,2a ]上的最大值与最小值之差为1 2,则a =________. 【思路】 先判断函数在指定区间上的单调性,再求出函数的最值,然后利用条件求得参数a 的值. 【解析】 ∵a >1,∴函数f (x )=log a x 在区间[a,2a ]上是增函数,∴函数在区间[a,2a ]上的最大值与最小值分别为log a 2a ,log a a =1.∴log a 2=1 2 ,a =4.故填4. 【讲评】 解决这类问题的重要的一步就是判断函数在给定区间上的单调性.这一点处理好了,以下的问题就容易了.一般而言,对一次函数、幂函数、指数函数、对数函数在闭区间[m ,n ]上的最值:若函数f (x )在[m ,n ]

上单调递增,则f(x)min=f(m),f(x)max=f(n);若函数f(x)在[m,n]上单调递减,则f(x)min=f(n),f(x)max=f(m);若函数f(x)在[m,n]上不单调,但在其分成的几个子区间上是单调的,则可以采用分段函数求最值的方法处理.2.换元法 换元法是指通过引入一个或几个新的变量,来替换原来的某些变量(或代数式),以便使问题得以解决的一种数学方法.在学习中,常常使用的换元法有两类,即代数换元和三角换元,我们可以根据具体问题及题目形式去灵活选择换元的方法,以便将复杂的函数最值问题转化为简单函数的最值问题,从而求出原函数的最值.如可用三角代换解决形如a2+b2=1及部分根式函数形式的最值问题. 例2 (1)函数f(x)=x+21-x的最大值为________. 【解析】方法一:设1-x=t(t≥0), ∴x=1-t2, ∴y=x+21-x=1-t2+2t

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

函数的极值与最值练习题

函数的极值与最值练习题 一、选择题 1.下列说法正确的是 A.当f ′(x 0)=0时,则f (x 0)为f (x )的极大值 B.当f ′(x 0)=0时,则f (x 0)为f (x )的极小值 C.当f ′(x 0)=0时,则f (x 0)为f (x )的极值 D.当f (x 0)为函数f (x )的极值且f ′(x 0)存在时,则有f ′(x 0)=0 2.下列四个函数,在x =0处取得极值的函数是 ①y =x 3 ②y =x 2+1 ③y =|x | ④y =2x A.①② B.②③ C.③④ D.①③ 3.函数y =216x x +的极大值为 A.3 B.4 C.2 D.5 4.函数y =x 3-3x 的极大值为m ,极小值为n ,则m +n 为 A.0 B.1 C.2 D.4 5.y =ln 2x +2ln x +2的极小值为 A.e -1 B.0 C.-1 D.1 6.y =2x 3-3x 2+a 的极大值为6,那么a 等于 A.6 B.0 C.5 D.1 二、填空题 7.函数f (x )=x 3-3x 2+7的极大值为___________. 8.曲线y =3x 5-5x 3共有___________个极值. 9.若函数y =x 3+ax 2+bx +27在x =-1时有极大值,在x =3时有极小值,则a=____,b=____. 10.函数y =2x 3-3x 2-12x +5在[0,3]上的最小值是___________. 11.函数f (x )=sin2x -x 在[-2π,2 π]上的最大值为_____;最小值为____ 12.在半径为R 的圆内,作内接等腰三角形,当底边上高为______时,它的面积最大. 三、解答题 13.已知函数f (x )=x 3+ax 2+bx +c ,当x =-1时,取得极大值7;当x =3时,取得极小值.求这个极小值及a 、b 、c 的值. 14.设y =f (x )为三次函数,且图象关于原点对称,当x = 2 1时,f (x )的极小值为-1,求函数的解析式.

相关文档
最新文档