环焦天线参数设计及效率估算赵润2010

环焦天线参数设计及效率估算

赵润2010-7-16

罗嗦两句:前不久做了个数据表文件(ADE-5.xls),可以设计环焦天线的几何参数,并可以对天线效率进行估计。本想写篇有些条理的文章,后来放弃了,感觉意义不大,不过还是想把做这个文件所用到的基本原理和计算技巧胡乱总结一下,留下一段文字,不然过不久自己也忘记了。

1、环焦天线的介绍

环焦天线是一种有多个反射面的天线,(说来丢人,我没见过实物),我在网上看过图片,感觉很神秘,而它的性能被有意无意地夸大了,好象在烧友心目中,3米的环焦天线性能会相当于普通主焦锅5米的。

而我第一次了解环焦天线的工作原理和几何结构是读了Paul Wade写的Multiple Reflector Dish Antennas,我翻译成了《多反射锅形天线》,或《多反射面天线》,并且翻译了全文。这篇文章介绍了各种多反射面天线,而环焦天线在该文中被称为ADE天线,这里我也就把ADE作为环焦天线的代名词了。很可惜的是《多反射面天线》一文虽然画出了ADE 天线的工作原理,但没有讲如何对ADE进性参数设计,也只是说效率很高而没有给出具体计算数值。

2、环焦天线的主反射面设计

主反射面在《多反射面天线》一文中已有清晰的描述,这里概述一下。

“要在三维形式理解这个天线,需要一点想象力,将草图轴向旋转即可。半边抛物线并不是绕着通过顶点的轴线(即原始抛物线的对称轴,译者)旋转,而是绕着与次反射面同样直径的圆柱旋转。”也就是说环焦天线的主反射面也是由抛物线旋转而成的,与普通天线面不同的是:它的旋转轴不再是抛物线的对称轴,而是将旋转轴从对称轴平移了一段距离,这段距离就是次反射面的半径。而因为旋转轴的平移,主反射面中间留下一个与次反射面直径一样大的洞。因为这个洞不在抛物面上,所以不产生次反射面的遮挡,不产生遮挡损耗,但因为我们计算辐照损耗时天线的物理口径是按天线整体的口径计算的,所以这个洞会产生一点辐照损耗。(关于如何计算效率后面会讲)

至于如何设计上面所说的抛物线,见我写的文章《丝网反射面卫星天线龙骨设计》,文章中介绍了焦径比(F/D)与会聚信号波的馈角的关系。如果主反射面也是金属网的,那么单根龙骨设计与文中介绍是一样的,只是龙骨组装略有不同了(同心圆直径都扩大了一圈)。

主反射面的直径大些当然会好,但大了成本高,对支撑结构的要求也变得苛刻,所以要考虑实用,又要量力而行。

3、环焦天线的馈源选择

选择什么样的馈源,其实是和什么样的次反射面联系在一起的。如果能自己加工次反射面,那么原则上选择什么样的馈源没有特别的要求。虽这么说,笔者认为专业的波纹喇叭口馈源当然是最好的选择,这样的馈源波束窄,易于降低溢出损耗,也易于调节馈源位置,就是安装时馈源位置要求不是很苛刻。当然业余条件下,也可以采用其他馈源,如一体化的普通偏馈Ku头或其他能找到的馈源。

4、环焦天线的次反射面设计

选定的主反射面的焦径比(这里的直径应该是天线口径去掉中间的洞的净直径)和馈源,那么就可以设计次反射面了。

次反射面的形状由三个参数来确定:次反射面直径D s,馈源对次反射面的辐照角Φs,

和次反射面反射波束聚焦(环焦)后对主反射面的辐照角度Φp,这三个参数见下图示意:

上图是次反射面剖面图,其中标出了三个设计参数,还标出了几个关键点:馈源相位中心O、次反射面中心T、次反射面边缘点E和次反射面环焦点C. 其中C点在空间中代表一个聚焦环,这个聚焦环是与主反射面的聚焦环重合的。

比如以O点为原点,建立坐标系,通过三个参数D s、Φs和Φp,利用椭圆的基本性质(O,C 为椭圆的两个焦点,T,E为椭圆周上的两点)和角度关系可以方便地解出各点的坐标(只用到了二次方程而已),进而求出椭圆方程。该椭圆方程当然可以描述T点到E点的椭圆弧了。这样我们就得到了次反射面形状,因为它不过是这段椭圆弧轴向旋转得到的。

5、如何计算效率——从主焦锅谈起

我们常用的主焦锅的效率损失理论上包括:溢出损耗、馈源遮挡损耗和辐照损耗。实际中存在的衍射损耗、馈源支杆遮挡损耗、馈源模式的相位不一致或锅面精度超差引起的相位损耗等等本来是不可忽略的,但作为业余条件下估算效率只考虑前三项就可以了,实际效率差不多要在这基础上减去15%,甚至更多。

这里要说明一点,馈源的辐射模式是馈源的基本特性,专业的方法是采用数值模拟来设计馈源,并采用实际测量得到馈源的辐射模式。实际的馈源模式是很复杂的,不能通过一个简单的函数描述,这里我所有的计算都把馈源模式看成cos nθ的形式,忽略掉了相位问题、E平面和H平面不对称性问题、背向辐射问题等等。

再说明一点,本来我们关心的是接收天线的效率问题,但把接收逆过来考虑,即看成发射在数学上更容易处理,物理上也是成立的。即接收和发射效率是等同的。

下面我们就具体讨论一下,首先看一下Paul Wade文章(《微波天线在线电子书》,我已经翻译了前几章)中的一个图:

这个图看起来很直观:图中红色部分为溢出损耗,容

易理解,就是馈源模式中没有照到天线面的部分,即溢出

天线面。这一点是没有问题的。但强度都用dB表示和实

际空间是三维的这两个原因造成:实际溢出损耗并不简单

地等同于红色部分占整体的面积比,而要进行积分计算。

而辐照损耗直观地表示出了不匹配程度与辐照损耗的大

小相关,但并没有明确的物理意义,同样不能把辐照损耗

简单的当成蓝色区域的面积(比)。

我们假设馈源模式是圆对称的,表示为F(θ),天线面

对应的辐照角为Φ,而中间馈源遮挡部分的遮挡角为Φd,

于是:

溢出损耗(比率形式)表示为:

遮挡损耗(比率形式)表示为:

而辐照损耗应该按发射口径内的场强分布来处理。从宋铮的书《天线与电波传播》里摘录个公式:,这里的D表示指向系数,就是天线增益的比率形式。如果

场强分布是均匀的,积分项的比值等于面积S,而不均匀的情况下是小于面积S的,这样就可以求得等效面积或者这里关心的天线的辐照效率。

因为馈源对锅的辐照为中心对称的,所以可以用极坐标形式并只对天线的径向积分。于是这里的辐照效率可表示为:(公式分母中多了个2,不改了),这里

R为天线半径,R b为馈源遮挡的半径,为场强,=P(r)为功率密度。而P(r)很容易

通过馈源的辐射模式和天线的几何关系求出。而上面的积分为一元积分,很容易使用excel 数据表计算。

6、环焦天线的效率估算

前面讲了,环焦天线中间的洞并不是抛物面的一部分,所以馈源和次反射面都不产生遮挡损耗。但溢出损耗是有的,只不过是馈源模式溢出次反射面的部分,而不是象主焦天线那样溢出主反射面。而辐照效率的计算类似于上面讲的主反射面的辐照效率计算,这里就不展开讲了。

7、ADE-5.xls的使用说明

1)用处:该数据可以设计环焦天线的几何尺寸,也可以对确定参数的环焦天线进行效率估算,所以可以用于环焦天线优化设计的手段。

2)输入参数:表中的输入参数的位置都是红色背景的,所以不用也不要改其他数据。

而输入参数只有4个:D s、Φs和Φp,及n. 这些参数的含义上面也讲了。

8、结论:我们可以利用ADE-5.xls设计或者去优化环焦天线参数,所得的结果当然是在一系列理想近似的基础上得到的,可以帮助爱好者设计自己的环焦天线,也可以帮助爱好者去理解环焦天线。要是专业的天线设计者看到我做的这点工作会得到些许启发,那最好了,只是可能性不大。

如何用频率来估计概率

如何用频率来估计概率 在苏科版初中数学课本里所学习的概率计算问题有 以下类型:第一类是可以列举有限个等可能发生的结果的概率计算问题(一步试验直接列举,两步以上的试验可以借助树状图或表格列举),比如掷一枚均匀硬币的试验;第二类 是用试验或者模拟试验的数据计算频率,并用频率估计概率的概率计算问题,比如掷图钉的试验。在八年级的数学学习中概率的计算,主要是第二类题型,我们知道频率是研究概率的基础,所以利用频率估计概率的试题频频出现在各地的中考试卷中,下面以中考题为例,来剖析这一类题型的解法。 一、填空题中的用频率估计概率 例1.在课外活动中,小明同学在相同的条件下做了某种作物种子发芽的实验,结果如下表所示: 由此估计这种作物种子发芽率约为(精确到0.01). 解:由公式种子的发芽率= 可求出种子的发芽率为0.939,因为精确到0.001故答案为0.94. 点评:本题考察了百分率问题(1)种子的发芽率= ;(2)注意括号的中的要求为精确到0.01 例2.有一箱规格相同的红、黄两种颜色的小塑料球共1000个.为了估计这两种颜色的球各有多少个,小明将箱子

里面的球搅匀后从中随机摸出一个球记下颜色,再把它放回箱子中,多次重复上述过程后,发现摸到红球的频率约为0.6,据此可以估计红球的个数约为. 解:解:∵摸到红球的频率约为0.6,∴红球所占的百分比是60%.∴1000×60%=600. 故答案为:600. 点评:本题考查用频率估计概率,因为多次重复上述过程后,发现摸到红球的频率约为0.6,所以红球所占的百分比也就是60%,根据总数可求出红球个数. 二、选择题中的用频率估计概率 例3.“六?一”儿童节,某玩具超市设立了一个如图所示的可以自由转动的转盘,开展有奖购买活动.顾客购买玩具就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应奖品.下表是该活动的一组统计数据:下列说法不正确的是() A.当n很大时,估计指针落在“铅笔”区域的频率大约是0.70 B.假如你去转动转盘一次,获得铅笔的概率大约是0.70 C.如果转动转盘2000次,指针落在“文具盒”区域的次数大约有600次 D.转动转盘10次,一定有3次获得文具盒 解:由表中提供的信息可知,只有“转动转盘10次,

几种天线的比较

天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。

图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线 卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。

基站美化天线技术规范

美化天线技术规范

总体概况 随着移动通信的快速发展,城市基站数量不断增多,天线星罗密布,对周围环境带来了一定的负面影响,难以满足对环境美观的要求;同时群众对天线辐射的普遍抗拒心理也导致基站选址建设相当困难,这就要求对天线的安装方案进行特别设计,使之与周围环境协调统一。 美化天线是在尽量不增加传播损耗的情况下,通过一些美学、工艺技术的手段对天线进行伪装,来达到隐蔽的目的。通过采用美化天线,既美化了城市环境,也避免了居民对无线辐射恐惧和抵触,保证通信的覆盖和质量。 经过几年的积累,在美化天线的规范、分类、应用上积累了丰富经验,制定了完善的标准化美化天线体系和定价模式。本手册对美化天线的技术标准、安装验收规范、采购模式等内容进行了梳理,供各分公司参考。 1 建设总体要求 美化天线在满足通信基站工程建设规范要求的基础上,同时需要满足以下原则: (1)技术性原则:在进行天线隐蔽时,首先必须满足无线覆盖的要求,无线信号衰减尽量低,衰减增加不超过1dB。 由于天线需要±30°内的方位角,15°内俯仰角(电调+机械角度)可调整,美化天线的材料和结构对天线调整后的发射性能应没有影响,在天线安装位置的垂直面的正前方不能有金属阻挡。 (2)经济性原则:在进行天线隐蔽时,需要考虑经济效益,尽量选用通用型强、结构简单的隐蔽方案,以节省隐蔽费用。 (3)维护性原则:天线有时需要调整下倾角和方位角以及维护等,天馈线隐蔽方案需要考虑天馈线的维护和扩容的方便。 (4)安全性原则:美化天线要求结构牢固,满足各地风压设计要求。产品应适应全天侯使用,在雨、雪天气及-40℃~70℃温度均可保持良好物理特性;天线罩材料阻燃性好,达到GB8624-1997难燃Ⅰ级。 (5)耐用性原则:要求隐蔽材料经久耐用,耐高温和耐腐蚀,使用寿命不少于10年。

频率合成器设计报告

频率合成器课程设计 总结报告 指导教师:曹俊友 组员:李刚、魏虹宇、张朋、蒙荣鸿 专业:电子信息科学与技术092 日期: 2012年1月1日

摘要:本设计是关于锁相环频率合成器的设计,设计主要由电源、自制压控振荡器(VCO)、锁相环频率合成器(PLL)、单片机控制(MCU)显示以及键盘操作五部分组成。电源部分采用稳压芯片获得稳定的3.3V以及5V的电压输出,压控振荡器采用MAX2620芯片外接电感电容并联谐振回路制成,锁相环频率合成器采用ADF4106制成,、采用AT89C52单片机作为系统的控制单元。基本要求:输出频率可改变,输出功率可调整。扩展要求:具有显示功能,具有键盘控制功能。 关键词:锁相环(PLL)、压控振荡器(VCO)、环路滤波(LPF)、单片机(MCU) Abstract:This design is about lock cirtle frequency synthesizer design, design mainly by power supply, self-control voltage control oscillation (VCO), and phase lock loop (PLL) frequency synthesizer and single-chip microcomputer control (MCU) display and keyboard five parts. The power supply voltage of the chip made steady 3.3 V and 5 V voltage output, controlled oscillator MAX2620 adopts chip made, lock cirtle frequency synthesizer made by ADF4106, by AT89C52 single chip microcomputer as system, the control unit. Basic requirements: output frequency can change, output power can be adjusted. Expand requirements: display function with the keyboard control function. Key words:Phase lock loop (PLL)、Voltage control oscillation (VCO)、LPF、SCM (MCU)

用频率估计概率教案

利用频率估计概率》教案1 第一课时 ★新课标要求知识与技能: 1.当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率. 2.通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念.过程与方法: 通过试验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系 与区别,发展学生根据频率的集中趋势估计概率的能力. 情感态度与价值观: 1.通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯. 2.在活动中进一步发展合作交流的意识和能力. 教学重点:理解当试验次数较大时,试验频率稳定于理论概率.教学难点:对概率的理解. 设计教学程序: 一、问题情境: 教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都 是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票 给谁. 学生:抓阄、抽签、猜拳、投硬币,…… 教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认 可的方法.如抓阄、投硬币) 追问,为什么要用抓阄、投硬币的方法呢由学生讨论:这样做公平.能保证小强与小明得到球票 的可能性一样大.在学生讨论发言后,教师评价归纳. 用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上” 还上“反面朝 上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小 明得到球票的可能性一样大. 质疑:那么,这种直觉是否真的是正确的呢引导学生以投掷壹元硬币为例,不妨动手做投掷硬币 的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当 是现实的、有意义、富有挑战的” ,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的 学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下 一步引导学生开展探索交流活动打下基础. 二、合作游戏: 1.教师布置试验任务. (1)明确规则. 把全班分成10 组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在 同样条件下进行. (2)明确任务,每组掷币50 次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝 上”的频率,整理试验的数据,并记录下来. 2.教师巡视学生分组试验情况. (1)观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难. (2)要求真实记录试验情况?对于合作学习中有可能产生的纪律问题予以调控. 3 ?各组汇报实验结果. 由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.

卫星通信天线简介

常用卫星通信天线简介 天线是卫星通信系统的重要组成部分,是地球站射频信号的输入和输出通道,天线系统性能的优劣影响整个通信系统的性能。地球站与卫星之间的距离遥远,为保证信号的有效传输,大多数地球站采用反射面型天线。反射面型天线的特点是方向性好,增益高,便于电波的远距离传输。 反射面的分类方法很多,按反射面的数量可分为双反射面天线和单反射面天线;按馈电方式分为正馈天线和偏馈天线;按频段可分为单频段天线和多频段天线;按反射面的形状分为平板天线和抛物面天线等。下文对一些常用的天线 作简单介绍。 1.抛物面天线 抛物面天线是一种单反射面型天线,利用轴对称的旋转抛物面作为主反射面,将馈源置于抛物面的焦点F上,馈源通常采用喇叭天线或喇叭天线阵列,如图1所示。发射时信号从馈源向抛物面辐射,经抛物面反射后向空中辐射。由于馈源位于抛物面的焦点上,电波经抛物面反射后,沿抛物面法向平行辐射。接收时,经反射面反射后,电波汇聚到馈源,馈源可接收到最大信号能量。 图1 抛物面天线 抛物面天线的优点是结构简单,较双反射面天线便于装配。缺点是天线噪声温度较高;由于采用前馈,会对信号造成一定的遮挡;使用大功率功放时,功放重量带来的结构不稳定性必须被考虑。 2.卡塞格伦天线

卡塞格伦天线是一种双反射面天线,它由两个发射面和一个馈源组成,如图2所示。主反射面是一个旋转抛物面,副反射面为旋转双曲面,馈源置于旋转双曲面的实焦点F1上,抛物面的焦点与旋转双曲面的焦点重合,即都位于F2点。从从馈源辐射出来的电磁波被副反射面反射向主反射面,在主反射面上再次被反射。由于主反射面的焦点与副反射面的焦点重合,经主副反射面的两次反射后,电波平行于抛物面法向方向定向辐射。对经典的卡塞格伦天线来说,副反射面的存在遮挡了一部分能量,使得天线的效率降低,能量分布不均匀,必须进行修正。修正型卡塞格伦天线通过天线面修正后,天线效率可提高到0.7—0.75,而且能量分布均匀。目前,大多数地球站采用的都是修正型卡塞格伦天线。 卡塞格伦天线的优点是天线的效率高,噪声温度低,馈源和低噪声放大器可以安装在天线后方的射频箱里,这样可以减小馈线损耗带来的不利影响。缺点是副反射面极其支干会造成一定的遮挡。 图2 卡塞格伦天线 3.格里高利天线 格里高利天线也是一种双反射面天线,也由主反射面、副反射面及馈源组成,如图3所示。与卡塞格伦天线不同的是,它的副反射面是一个椭球面。馈源置于椭球面的一个焦点F1上,椭球面的另一个焦点F2与主反射面的焦点重

天线CAD大作业微带天线设计

天线CAD大作业 学院:电子工程学院 专业:电子信息工程

微带天线设计 一、设计要求: (1)工作频带1.1-1.2GHz ,带内增益≥4.0dBi ,VSWR ≤2:1。微波基板介电常数为r ε = 6,厚度H ≤5mm ,线极化。总结设计思路和过程,给出具体的天线结构参数和仿真结果,如VSWR 、方向图等。 (2)拓展要求:检索文献,学习并理解微带天线实现圆极化的方法,尝试将上述天线设计成左旋圆极化天线,并给出轴比计算结果。 二、设计步骤 计算天线几何尺寸 微带天线的基板介电常数为r ε= 6,厚度为 h=5mm,中心频率为 f=1.15GHz,s m /103c 8?=天线使用50Ω同轴线馈电,线极化,则 (1)辐射切片的宽度2 1 )2 1(2-+=r f c w ε=69.72mm (2)有效介电常数2 1)12 1(2 1 2 1 r e - +-+ += w h r εεε=5.33 (3)辐射缝隙的长度) 8.0/)(258.0() 264.0/)(3.0(h 412.0+-++=?h w e h w e L εε=2.20 (4)辐射切片的长度L e f c L ?-=22ε=52.10mm (5)同轴线馈电的位置L1 21 )121(21 2 1)(re -+-+ += L h r r L εεξ=5.20 )1 1(21re L L ξ-= =14.63mm 三、HFSS 设计 (1)微带天线建模概述 为了方便建模和后续的性能分析,在设计中定义一系列变量来表示微带天线的结构尺寸,变量的定义及天线的结构尺寸总结如下:

微带天线的HFSS设计模型如下: 立体图俯视图 模型的中心位于坐标原点,辐射切片的长度方向沿着x轴,宽度方向沿着y 轴。介质基片的大小是辐射切片的2倍,参考地和辐射切片使用理想导体来代替。对于馈电所用的50Ω同轴线,这用圆柱体模型来模拟。使用半径为0.6mm、坐标为(L1,0,0);圆柱体顶部与辐射切片相接,底部与参考地相接,及其高度使用变量H表示;在与圆柱体相接的参考地面上需要挖一个半径为1.5mm的圆孔,作为信号输入输出端口,该端口的激励方式设置为集总端口激励,端口归一化阻抗为50Ω。模型建立好后,设置辐射边界条件。辐射边界表面距离辐射源通常需要大于1/4波长,1.15GHz时自由空间中1/4个波长约为65.22mm,用变量length 表示。 (2) HFSS设计环境概述 *求解类型:模式驱动求解。 *建模操作 ①模型原型:长方体、圆柱体、矩形面、圆面。 ②模型操作:相减操作 *边界条件和激励 ①边界条件:理想导体边界、辐射边界。 ②端口激励:集总端口激励。 *求解设置:

频率合成器的设计

前言 频率合成器是现代无线通信设备中一个重要的组成部分,直接影响着无线通信设备的性能。频率合成技术历经了早期的直接合成技术(DS)和锁相合成技术(PLL),发展到如今的直接数字合成技术(DDS)。直接数字合成技术具有分辨率高,转换速度快,相位噪声低等优点,在无线通信中发挥着越来越重要的作用。随着大规模集成电路的发展,利用锁相环频率合成技术研制出了很多频率合成集成电路。频率合成器是电子系统的心脏,是决定电子系统性能的关键设备,随着通信、数字电视、卫星定位、航空航天、雷达和电子对抗等技术的发展,对频率合成器提出了越来越高的要求。频率合成技术是将一个或多个高稳定、高精确度的标准频率经过一定变换,产生同样高稳定度和精确度的大量离散频率的技术。频率合成理论自20世纪30年代提出以来,已取得了迅速的发展,逐渐形成了目前的4种技术:直接频率合成技术、锁相频率合成技术、直接数字式频率合成技术和混合式频率合成技术。 本文是以如何设计一个锁相环频率合成器为重点,对频率合成器做了一下概述,主要介绍了锁相环这一部分,同时也对锁相环频率合成器的设计及调试等方面进行了阐述。

1 总体方案设计 实现频率合成的方法有多种,可用直接合成,锁相环式,而锁相环式的实现方法又有多种,例如可变晶振,也可变分频系数M,还可以用单片机来实现等等。下面列出了几种用锁相法实现频率合成的方案。 1.1方案一 图1.1 方案一原理框图 如图1.1所示,在VCO的输出端和鉴相器的输入端之间的反馈回路中加入了一个÷N的可变分频器。高稳定度的参考振荡器信号fR经R次分频后,得到频率为fr的参考脉冲信号。同时,压控振荡器的输出经N次分频后,得到频率为fd的脉冲信号,两个脉冲信号在鉴频鉴相器进行频率或相位比较。当环路处于锁定状态时,输出信号频率:fo=N*fd。只要改变分频比N,即可实现输出不同频率的fo,从而实现由fr合成fo的目的。其输出频率点间隔Δf=fr。 1.2方案二

25.3用频率估计概率(教案)

25.3用频率估计概率 教学目标 【知识与技能】 理解每次试验可能的结果不是有限个,或各种可能结果发生的可能性不相等时,利用统计频率的方法估计概率. 【过程与方法】 经历利用频率估计概率的学习,使学生明白在同样条件下,大量重复试验时,根据一个随机事件发生的频率所逐渐稳定到的常数,可以估计这个事件发生的概率? 【情感态度】 通过研究如何用统计频率求一些现实生活中的概率问题,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值. 【教学重点】 对利用频率估计概率的理解和应用. 【教学难点】 利用频率估计概率的理解. 教学过程 一、情境导入,初步认识 问题1400个同学中,一定有2个同学的生日相同(可以不同年)吗?那么300个同学中一定有2个同学的生日相同吗? 有人说:“50个同学中,就很可能有2个同学的生日相同这话正确吗?调查全班同学,看看有无2个同学的生日相同. 问题2要想知道一个鱼缸里有12条鱼,只要数一数就可以了.但要估计一个鱼塘里有多少条鱼,该怎么办呢? 【教学说明】在前面我们学习了能列举所有可能的结果,并且每种结果的可能性相等的随机事件的概率的求法?那么这里的两个问题情境中,很容易让学生想到这些事件的结果不容易完全列举出来,而且每种结果出现的可能性也不一定是相同的.从而引发学生的求知欲,对于这类事件的概率该怎样求解呢,引入课题.

二、思考探究,获取新知 1.利用频率估计概率 试验:把全班同学分成10组,每组同学掷一枚硬币50次,整理同学们获得的试验数据,并记录在下表中: 填表方法:第1组的数据填在第1行;第1,2组的数据之和填在第2行,…, 10个组的数据之和填在第10行. 如果在抛掷n次硬币时,出现m次“正面向上”,则随机事件“正面向上” 出现的频率为m/n. 【教学说明】分组是为了减少劳动强度加快试验速度,当然如果条件允许, 组数分得越多,获得的数据就会越多,就更容易观察出规律.让学生再次经历数据的收集,整理描述与分析的过程,进一步发展学生的统计意识,发现数据中隐藏的规律. 请同学们根据试验所得数据想一想:“正面向上”的频率有什么规律?历史 上,有些人曾做过成千上万次抛掷硬币的试验,试验结果如下:

(完整版)用频率估计概率讲解

10.1《用频率估计概率》导学提纲 一、情境切入———激活思维现涟漪 我们在七年级时曾用掷硬币的方法决定小明和小丽谁去看周末的电影:任意掷一枚均匀的硬币,如果正面朝上,小丽去;如果反面朝上,小明去. 1、这样决定对双方公平吗? 2、如果是连续掷两次均匀的硬币,会出现几种等可能的结果,出现“一正一反”的概率为多少呢? 二、学海导航———提纲挈领把方向 1、学会根据问题的特点,用统计来估计事件发生的概率,培养分析问题,解决问题的能力。 2、通过对问题的分析,理解用频率来估计概率的方法,渗透转化和估算的思想方法。 3、通过对试际问题的分析,培养使用数学的良好意识,激发学习兴趣,体验数学的应用价值。 三、完全解读———品尝知识享盛宴 (一)试验探究: 准备两枚质地均匀、大小相同的硬币,做下面的掷币试验: 1、抛掷其中一枚硬币,落定后,正面朝上的概率是多少?你是怎样求出来的? 2、连续抛掷两枚硬币,落定后,可能出现几种不同的结果?你认为这几种结果出现的可能性相同吗? 3、连续抛掷两枚硬币,称为一次试验,如果做100次试验,猜一猜各种结果可能分别出现多少次?如果做200次试验呢? (二)合作探究 1、每两名同学一组,由一名同学连续抛掷两枚硬币,做50次试验,另一

名同许分别记录落地后各种结果出现的次数,然后二人交换,再进行试验,分别统计100次试验中各种结果发生的频数与频率,将数据填入下表中: 2、将两个小组的试验次数分别相加,相当于做了多少次试验?分别统计三种结果发生的频数与频率,然后填写在下表中。 3、将全班所有小组的试验次数分别相加,这相当于做了多少次试验?请统计“两枚硬币正面均朝上”发生的频数与频率,分别汇总4个小组、6个小组、8个小组......的试验结果,然后填写在下表中 “两枚硬币正面均朝上”试验结果 【温馨提示】: 试验时要避免走两个极端既不能为了追求精确的概率而把试验的次数无限的增多,也不能为了图简单而使试验次数很少。由于众多微小因素的影响,每次测得的结果虽不尽相同,但大量重复试验所得的结果却能反应客观规律。 4、利用上表,根据“两枚硬币正面均朝上”出现的频率,绘制折线统计图。

环焦天线参数设计及效率估算赵润2010

环焦天线参数设计及效率估算 赵润2010-7-16 罗嗦两句:前不久做了个数据表文件(ADE-5.xls),可以设计环焦天线的几何参数,并可以对天线效率进行估计。本想写篇有些条理的文章,后来放弃了,感觉意义不大,不过还是想把做这个文件所用到的基本原理和计算技巧胡乱总结一下,留下一段文字,不然过不久自己也忘记了。 1、环焦天线的介绍 环焦天线是一种有多个反射面的天线,(说来丢人,我没见过实物),我在网上看过图片,感觉很神秘,而它的性能被有意无意地夸大了,好象在烧友心目中,3米的环焦天线性能会相当于普通主焦锅5米的。 而我第一次了解环焦天线的工作原理和几何结构是读了Paul Wade写的Multiple Reflector Dish Antennas,我翻译成了《多反射锅形天线》,或《多反射面天线》,并且翻译了全文。这篇文章介绍了各种多反射面天线,而环焦天线在该文中被称为ADE天线,这里我也就把ADE作为环焦天线的代名词了。很可惜的是《多反射面天线》一文虽然画出了ADE 天线的工作原理,但没有讲如何对ADE进性参数设计,也只是说效率很高而没有给出具体计算数值。 2、环焦天线的主反射面设计 主反射面在《多反射面天线》一文中已有清晰的描述,这里概述一下。 “要在三维形式理解这个天线,需要一点想象力,将草图轴向旋转即可。半边抛物线并不是绕着通过顶点的轴线(即原始抛物线的对称轴,译者)旋转,而是绕着与次反射面同样直径的圆柱旋转。”也就是说环焦天线的主反射面也是由抛物线旋转而成的,与普通天线面不同的是:它的旋转轴不再是抛物线的对称轴,而是将旋转轴从对称轴平移了一段距离,这段距离就是次反射面的半径。而因为旋转轴的平移,主反射面中间留下一个与次反射面直径一样大的洞。因为这个洞不在抛物面上,所以不产生次反射面的遮挡,不产生遮挡损耗,但因为我们计算辐照损耗时天线的物理口径是按天线整体的口径计算的,所以这个洞会产生一点辐照损耗。(关于如何计算效率后面会讲) 至于如何设计上面所说的抛物线,见我写的文章《丝网反射面卫星天线龙骨设计》,文章中介绍了焦径比(F/D)与会聚信号波的馈角的关系。如果主反射面也是金属网的,那么单根龙骨设计与文中介绍是一样的,只是龙骨组装略有不同了(同心圆直径都扩大了一圈)。 主反射面的直径大些当然会好,但大了成本高,对支撑结构的要求也变得苛刻,所以要考虑实用,又要量力而行。 3、环焦天线的馈源选择 选择什么样的馈源,其实是和什么样的次反射面联系在一起的。如果能自己加工次反射面,那么原则上选择什么样的馈源没有特别的要求。虽这么说,笔者认为专业的波纹喇叭口馈源当然是最好的选择,这样的馈源波束窄,易于降低溢出损耗,也易于调节馈源位置,就是安装时馈源位置要求不是很苛刻。当然业余条件下,也可以采用其他馈源,如一体化的普通偏馈Ku头或其他能找到的馈源。 4、环焦天线的次反射面设计 选定的主反射面的焦径比(这里的直径应该是天线口径去掉中间的洞的净直径)和馈源,那么就可以设计次反射面了。 次反射面的形状由三个参数来确定:次反射面直径D s,馈源对次反射面的辐照角Φs,

天线设计规范

天线设计规范 深圳麦汉科技技术有限公司 研发部内部标准及对外培训资料 2013.7.10 编制:黄年宇

第1篇 项目评估基本概念

1-1 背景 根据公司年度经营计划,研发工程师要同客户建立积极主动地工作关系,不仅要现场分析和解决测试中遇到的问题,还要能够对客户的新项目进行现场评估和提出建议。而后者是目前大部分工程师的弱项,掌握基本的评估技巧和准则,不仅是公司实力的体现,也是个人能力的提升。 下面将分为几方面对项目的评估做基本的介绍: *天线的空间和性能 *直板机PIFA天线的评估 *直板机Monopole天线的评估 *翻盖机PIFA天线的评估 *翻盖机Monopole天线的评估 *滑盖机PIFA天线的评估 *滑盖机Monopole天线的评估 *双模机的评估 *SAR的评估 *装饰件的评估 *天线材质的选择 *人体模拟评估 *评估中的注意事项

1-2 天线空间和性能(PIFA ) 所需空间H>6.0mm S>400mm2H>6.5mm S>450mm2H>6.5mm S>450mm2H>7.0mm S>500mm2H>7.0mm S>500mm2H>7.0mm S>550mm2H>7.0mm S>600mm2H>7.0mm S>600mm2H>5.5mm S>200mm2H>7.0mm S>550mm2H>5mm S>150mm2频段 CDMA800 850&1900 900&1800 850&1800&1900 900&1800&1900 GSM 四频 GSM 三频+WCDMA GSM 四频+WCDMA GPS LTE-38、39、40 Bluetooth 可能达到的性能VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈40%VSWR<3 EFF ≈35%VSWR<3 EFF ≈40%VSWR<3 EFF ≈35%VSWR<1.5 EFF >50%VSWR<2 EFF >50%VSWR<2 EFF ≈50%

用频率估计概率(1)

用频率估计概率 1.理解试验次数较大时试验频率趋于稳定这一规律. 2.结合具体情境掌握如何用频率估计概率. 3.通过概率计算进一步比较概率与频率之间的关系. 一、情境导入 养鱼专业户为了估计他承包的鱼塘里有多少条鱼(假设这个鱼塘里养的是同一种鱼),先捕上100条做上标记,然后放回塘里,过了一段时间,待带标记的鱼完全和塘里的鱼混合后,再捕上100条,发现其中带标记的鱼有10条,塘里大约有鱼多少条? 二、合作探究 探究点一:频率 【类型一】频率的意义 某批次的零件质量检查结果表: 抽检 个数801002003004006008001000 优等品 个数6083154246312486634804 优等品 频率 (1)计算并填写表中优等品的频率; (2)估计从该批次零件中任取一个零件是优等品的概率. 解析:通过计算可知优等品的频率稳定在0.8附近,可用这个数值近似估计该批次中优等品的概率. 解:(1)填表如下: 抽检 个数801002003004006008001000 优等品

个数 60 83 154 246 312 486 634 804 优等品 频率 0.75 0.83 0.77 0.82 0.78 0.81 0.7925 0.804 (2)0.8 【类型二】频率的稳定性 在“抛掷正六面体”的试验中,正六面体的六个面分别标有数字“1”、“2”、“3”、 “4”、“5”和“6”,如果试验的次数增多,出现数字“1”的频率的变化趋势是________________________. 解析:随着试验的次数增多,出现数字“1”的频率愈来愈接近于一个常数,这个常数即为它的概率.故答案是:接近1 6 . 探究点二:用频率估计概率 【类型一】用频率估计概率 掷一枚质地均匀的硬币10次,下列说法正确的是( ) A .可能有5次正面朝上 B .必有5次正面朝上 C .掷2次必有1次正面朝上 D .不可能10次正面朝上 解析:掷一枚质地均匀的硬币1次,出现正面或反面朝上的概率都是错误!,因此,平均每两次中可能有1次正面向上或有1次反面向上.选项B 、C 、D 不一定正确,选项A 正确,故选A . 方法总结:随机事件的频率,指此事件发生的次数与试验总次数的比值,当试验次数很多时,它具有一定的稳定性,即稳定在某一常数附近,而偏离的它可能性很小. 【类型二】推算影响频率变化的因素 “六·一”期间,小洁的妈妈经营的玩具店进了一纸箱除颜色外都相同的散装塑 料球共1000个,小洁将纸箱里面的球搅匀后,从中随机摸出一个球记下其颜色,把它放回纸箱中;搅匀后再随机摸出一个球记下其颜色,把它放回纸箱中;……多次重复上述过程后,发现摸到红球的频率逐渐稳定在0.2,由此可以估计纸箱内红球的个数约是________个. 解析:因为大量重复摸球实验后,摸到红球的频率逐渐稳定在0.2,说明红球大约占总数的0.2,所以球的总数为1000×0.2=200,故答案为:200. 方法总结:解题的关键是知道在大量重复摸球实验后,某个事件发生的频率就接近于该事件发生的概率.概率与频率的关系是:(1)试验次数很大时,频率稳定在概率附近;(2)用频率估计概率. 【类型三】 频率估计概率的实际应用 为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘,经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中带标记的鱼有5条,则鱼塘中估计有________条鱼. 解析:设鱼塘中估计有x 条鱼,则5∶200=30∶x ,解得:x =1200,故答案为:1200. 方法总结:求出带标记的鱼占的百分比,运用了样本估计总体的思想.

天线技术标准

无线网络系统菜用标准化设计:所选设备全部符合国际标准、行业标准和国家标准。 技术规范: 无线: 1. 无线标准:IEEE 80 2.11a/b/g 2. 频带: A Mode: 5725~ 5850 MHz for US B/G Mode: 2400~2483.5 MHz All Mode: Frequency accuracy < 20ppm 3. 数据速率(Mbps): 6,9,12,18,24,36,48,54(802.11a/b/g) 4. 无线协议: 802.11a:OFDM,802.11b/g:DSSS 5. 调制: 802.11a:BPSK、QPSK、16QAM、64QAM 802.11b/g:DBPSK、DQPSK、CCK 6. 信道: 802.11a: 13(美国,FCC):8个室内信道,5个室外信道 13+(欧洲,ETSI),13(日本,MKK) 5 (Ch: 149,153,157,161,165):中国 802.11b/g: 11(美国,FCC) 13(欧洲,ETSI) 11(1~11)(中国) 7. 发射功率: 视配置而定 8. 接收灵敏度 A Mode: -87dBm@6Mbps -70dBm@54Mbps B Mode: -94dBm@1Mbps -87dBm@11Mbps G Mode: -87dBm@6Mbps -70dBm@54Mbps 9. LO(晶体)频率稳定性: +/-20PPM,在普通操作范围(0到55°C)内、 电气特性: 1. 电源输入:自感应120/240 V AC,50/60Hz,单一分离的相位,内置ANSI / IEEE C6 2.41 C3级别集成的分支电路保护 2. 直流输入:48V,最大6A 3. 802.3af PoE(以太网线供电) 保护电路: 天线保护: < 0.5uJ for 6kV/3kA 电气保护: - ANSI/IEEE C62.41, UL 1449-2 ed., 10kA@8/20 uS Waveform, 36kA per phase - EN61000-4-5 Level 4 AC Surge Immunity - EN61000-4-4 Level 4 EMC Field Immunity

锁相环CD4046设计频率合成器

通信专业课程设计——基于锁相环的频率合成器的设计 设 计 报 告 姓名:曾明 班级:通信工程2班 学号:2008550725 指导老师:粟建新

目录 一、设计和制作任务 (3) 二、主要技术指标 (3) 三、确定电路组成方案 (3) 四、设计方法 (4) (一)、振荡源的设计 (4) (二)、N分频的设计 (4) (三)、1KHZ标准信号源设计(即M分频的设计) (5) 五、锁相环参数设计 (6) 六、电路板制作 (7) 七、调试步骤 (8) 八、实验小结 (8) 九、心得体会 (9) 十、参考文献 (9) 附录:各芯片的管脚图 (10)

锁相环CD4046设计频率合成器 内容摘要: 频率合成是以一个或少量的高准确度和高稳定度的标准频率作为参考频率,由此导出多个或大量的输出频率,这些输出的准确度与稳定度与参考频率是一致的。在通信、雷达、测控、仪器表等电子系统中有广泛的应用, 频率合成器有直接式频率合成器、直接数字式频率合成器及锁相频率合成器三种基本模式,前两种属于开环系统,因此是有频率转换时间短,分辨率较高等优点,而锁相频率合成器是一种闭环系统,其频率转换时间和分辨率均不如前两种好,但其结构简单,成本低。并且输出频率的准确度不逊色与前两种,因此采用锁相频率合成。 关键词:频率合成器CD4046 一、设计和制作任务 1.确定电路形式,画出电路图。 2.计算电路元件参数并选取元件。 3.组装焊接电路。 4.调试并测量电路性能。 5.写出课程设计报告书 二、主要技术指标 1.频率步进 1kHz 2.频率稳定度f ≤1KHz 3.电源电压 Vcc=5V 三、确定电路组成方案 原理框图如下,锁相环路对稳定度的参考振动器锁定,环内串接可编程的分频器,通过改变分频器的分配比N,从而就得到N倍参考频率的稳定输出。 晶体振荡器输出的信号频率f1, 经固定分频后(M分频)得到 基准频率f1’,输入锁相环的相 位比较器(PC)。锁相环的VCO

《用频率估计概率》练习1(有答案)

2.3 用频率估计概率 一、仔仔细细,记录自信 1.公路上行驶的一辆汽车车牌为偶数的频率约是()A.50% B.100% C.由各车所在单位或个人定D.无法确定 2.实验的总次数、频数及频率三者的关系是()A.频数越大,频率越大 B.频数与总次数成正比 C.总次数一定时,频数越大,频率可达到很大 D.频数一定时,频率与总次数成反比 3.在一副(54张)扑克牌中,摸到“A”的频率是() A.1 4 B. 2 27 C. 1 13 D.无法估计 4.在做针尖落地的实验中,正确的是() A.甲做了4000次,得出针尖触地的机会约为46%,于是他断定在做第4001次时,针尖肯定不会触地 B.乙认为一次一次做,速度太慢,他拿来了大把材料、形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的次数,这样大大提高了速度C.老师安排每位同学回家做实验,图钉自由选取 D.老师安排同学回家做实验,图钉统一发(完全一样的图钉).同学交来的结果,老师挑选他满意的进行统计,他不满意的就不要 二、认认真真,书写快乐 5.通过实验的方法用频率估计概率的大小,必须要求实验是在的条件下进行. 6.某灯泡厂在一次质量检查中,从2 000个灯泡中随机抽查了100个,其中有10个不合格,则出现不合格灯泡的频率是,在这2 000个灯泡中,估计有个为不合格产品. 7.在红桃A至红桃K这13张扑克牌中,每次抽出一张,然后放回洗牌再抽,研究恰好抽到的数字小于5的牌的概率,若用计算机模拟实验,则要在的范围中产生随机数,若产生的随机数是,则代表“出现小于5”,否则

就不是. 8.抛一枚均匀的硬币100次,若出现正面的次数为45次,那么出现正面的频率是. 三、平心静气,展示智慧 9.一个口袋中有10个红球和若干个白球,请通过以下实验估计口袋中白球的个数:从口袋中随机摸出一球,记下其颜色,再把它放回口袋中,不断重复上述过程.实验中总共摸了200次,其中有50次摸到红球. 10.如图,某商场设立了一个可以自由转动的转盘,并规定:顾客购物10元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是活动进行中的一组统计数据: (1)计算并完成表格: 转动转盘的次数n100 150 200 500 800 1 1000 落在“铅笔”的次数m68 111 136 345 564 701 落在“铅笔”的频率 m n (2)请估计,当n很大时,频率将会接近多少? (3)假如你去转动转盘一次,你获的铅笔的概率是多少?

24GHz射频前端频率合成器设计

第48卷第1期(总第187期) 2019年3月 火控雷达技术 Fire Control Radar Technology Vol.48No.1(Series 187) Mar.2019 收稿日期:2018-10-24作者简介:饶睿楠(1977-),男,高级工程师。研究方向为频率综合器及微波电路技术。 24GHz 射频前端频率合成器设计 饶睿楠 王 栋 余铁军 唐 尧 (西安电子工程研究所西安710100) 摘要:随着微波射频集成电路集成度越来越高, 24GHz 频段的高集成雷达收发芯片逐渐大规模使用。其中英飞凌科技公司的24GHz 锗硅工艺高集成单片雷达解决方案就是其中具有代表性的一种,被大量应用在液位或物料检测、照明控制、汽车防撞、安防系统。FMCW 为此种应用最多采用的信号调制方式。本文采用锁相环频率合成方案,产生系统所需的FMCW 调制信号。关键词:24GHz 射频前端;FMCW ;频率综合器BGT24AT2ADF4159中图分类号:TN95文献标志码:A 文章编号:1008-8652(2019)01-066-04 引用格式:饶睿楠,王栋,余铁军,唐尧.24GHz 射频前端频率合成器设计[ J ].火控雷达技术,2019,48(1):66-69. DOI :10.19472/j.cnki.1008-8652.2019.01.014 Design of a Frequency Synthesizer for 24GHz RF Front Ends Rao Ruinan ,Wang Dong ,Yu Tiejun ,Tang Yao (Xi'an Electronic Engineering Research Institute ,Xi'an 710100) Abstract :With the increasing integration of microwave and radio-frequency integrated circuits ,highly integrated radar transceiver chips in 24GHz band have gradually found large-scale applications.Among those chips ,Infineon's 24GHz SiGe monolithic radar solution is a typical one.It has found wide applications in liquid (or material )detec-tion ,lighting control ,automotive collision avoidance ,and security systems.FMCW is the most widely used signal modulation method in these applications.This paper uses PLL frequency synthesis scheme to generate FMCW mod-ulation signals required by the system. Keywords :24GHz RF front end ;FMCW ;frequency synthesizer ;BGT24AT2;ADF4159 0引言 24GHz 频段雷达大量用于液位检测、照明控制、汽车防撞、安防等领域。近年来由于微波集成电路的高速发展,单芯片电路集成度越来越高,出现了一大批高集成、多功能的射频微波集成电路,以前需要几片或十几片芯片的电路被集成在一片集成电路之中。英飞凌公司推出的基于锗硅工艺的高集成单片雷达解决方案就是其中对具代表性的产品之一。FMCW 信号调制方式被广泛的应用于此类产品。本文采用英飞凌公司BGT24AT2单片信号源芯片与ADI 公司ADF4159锁相环芯片构成24GHz 射频前端频率合成器部分,产生了24GHz 24.2GHz FM-CW 发射信号。 1BGT24AT2锗硅24GHz MMIC 信号源芯片基本指标 BGT24AT2是一款低噪声24GHz ISM 波段多功能信号源。内部集成24GHzVCO 和分频器。3路独立的RF 输出可分别输出+10dBm 的信号,通过SPI 可对输出信号功率进行控制。发射信号的快速脉冲和相位反向可通过单独的输入引脚或通用的SPI 控制接口进行控制。片内集成输出功率及温度传感器,可对芯片工作情况进行监控。芯片工作的环境温度为-40? 125?,满足汽车级环境应用要求。封装为32脚VQFN 封装,单3.3V 电源供电,节省了大量板上空间。其原理框图如图1所示。

相关文档
最新文档