北邮数理方程 06级数学物理方法(A卷)

北邮数理方程 06级数学物理方法(A卷)
北邮数理方程 06级数学物理方法(A卷)

北邮数理方程课件-第八章-Green函数法

第八章 Green函数法 8.2 基础训练 8.2.1 例题分析 例1求三维泊松方程的基本解. 解:Green函数满足的方程为 (8。1) 采用球坐标,并将坐标原点放在源点上. 由于区域是无界的,点源所产生的场应与方向无关,而只是r的函数,于是式(8.1)简化为当时,方程化为齐次的,即 易于求得其一般解为 (8。2) 取,不失一般性,得 (8。3) 考虑的情形.为此,对方程(8.1)在以原点为球心、为半径的小球体内作体积分 从而 而由散度定理 为的边界面) 有 故 将式(8.3)的结果代入上式,得 代入式(8.3),于是

例2求二维泊松方程的基本解. 解:格林函数满足的方程为 (8。5) 采用极坐标,并将坐标原点放在源点上,则 与三维问题一样,G应只是r的函数,于是式(8。5)简化为 (8。6) 当时,解式(8。6),得 当时,在以原点为中心、为半径的小圆内对方程(8。.5)两边作面积分,注意到二维情况下的散度定理为 为的边界) 类似于对三维情况的讨论,得 于是 (8.7) 例3求泊松方程在矩形区域内的狄氏问题的格林函数. 解:其格林函数的定解问题为 它是定解问题 当时的特例,而与定解问题(8-10) ~ (8.11)相应的本征值问题为 它的本征值和归一化的本征函数分别是 其中 在式(8.8)中,故根据式(8.7),有

例4求解球的狄氏问题 (8.12) 解:此时方程的非齐次项,故由解的积分公式得定解问题(8.12)的解为 (8.13) 其中为球面,G为球的狄氏格林函数,它满足定解问题 (8.14) 故求u的问题就转化为求边界为球面的三维泊松方程的狄氏格林函数G的问题.而由上面所述的G的物理意义知,求G即要求在点置有正电荷的接地导体球内任意一点M处的电位,亦即要求感应电荷所产生的电位g,它满足 (8.15) 由物理学知识知,倘若在点关于球面的对称点(又称像点)放置一负点电荷,则由于在球外,它对球内电位的贡献必然满足拉氏方程.因此,只要适当选择q的大小,使之对边界面上电位的贡献与点的正电荷对边界面上电位的贡献等值,则对球内任一点电位的贡献即与g等效.为此,如图8-1所示,我们延长到,并记; ,使 即 则为关于球面的像点.显然,当M点在球面上时(如图8-2所示),,故有 (8.16) 从而有 即(8.17) 图8-1 图8-2 由式(8.17)可以看出,只要在点放置一负电荷,则它在球内直到球上任意一点

研究生数理方程期末试题-10-11-1-A-答案

北京交通大学硕士研究生2010-2011学年第一学期 《数学物理方程》期末试题(A 卷) (参考答案) 学院__________ 专业___________ 学号 __________ 姓名____________ 1、( 10分)试证明:圆锥形枢轴的纵振动方程为: 玫[I h .丿&」V h .丿& 其中E是圆锥体的杨氏模量,「是质量密度,h是圆锥的高(如下图所示) 【提示:已知振动过程中,在x处受力大小为ES ,S为x处截面面积。】 ex 【证明】在圆锥体中任取一小段,截面园的半径分别是r1和r2,如图所示。于是,我们有 2、::u(x dx,t) 2 u(x,t) — 2 u2(x,t) E( D) E( * ) ( A )dx 于 x x t r1 = (h「x)tan : r2= (h _(x dx)) tan : 上式化简后可写成

2 2 ::U(X,t) 2 ::u(x,t) 2, ;u (x,t) E[(h -x) 卜亠 & -(h -'X) 〔x J - - (h -'X)dx 2 从而有 E ::[(^x)2;:U(x ,t)H-(^x)2::u2(x,t) .x :X :t 或成 2 ::[(1「)2汽("]“2(1「)小叩) .x h ::x h ;:t 其中a^E ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片, 它的一边y=b 处于较高温度U ,其它三边y=0. x = 0和x = a 则处于冷却介质中,因而保持较低的温度 u o 。试求该截面上的稳定温度 分布u(x,y),即求解以下定解问题: u|y 卫二 %, u|y 生二 U, 0 x a. 【提示:可以令u(x, y)二u 0 v(x, y),然后再用分离变量方法求解。】 【解】令u(x, y) v(x, y),则原定解问题变为 Wl x£=0, V=0, 0cy

武大期末复习-数理方程教学指导纲要

第九章定解问题的物理意义 基本要求与教学内容: 1、理解波动方程、热传导方程、Poison方程和Laplace方程的物理意 义, 根据物理问题写出其相应的方程(不需要推导方程)。 2、第一、第二类边界条件的物理意义。根据具体物理问题,掌握确 定这两类边界条件的方法。 3、初始条件的意义及确定。 本章重点: 掌握由具体的物理问题写出其相应的定解问题方法,即泛定方程和定解条件。

第十章利用积分变换解无界问题 基本要求与教学内容: 1、熟练掌握利用d'Alembert公式计算一维无界的齐次波动方程,理 解其解的物理意义。 2、了解一维无界非齐次波动方程的通解形式及计算。 本章重点: 利用d'Alembert公式计算一维无界的齐次波动方程

第十一章一维有界问题的分离变量 基本要求与教学内容: 1、理解分离变量法的基本概念:方法、条件、不同定解问题的通解 形式。 2、熟练准确写出第一、第二类齐次边界条件的本征值和本征函数。 3、熟练掌握用分离变量法求解一维有界问题的解:1)分离变量得到 的两个方程;2)由本征值问题确定相应的本征值和本征函数;3)确定关于)(t T方程的解(或者与其对应变量方程的解);4)定解问题的通解;5)由定解条件确定待定系数(通过系数比较方法确定系数是一种重要的方法)。 4、熟练掌握利用本征函数展开解一维有界非齐次方程:1)对应齐次 方程和齐次边界条件的本征函数的确定;2)非齐次项和初始条件按本征函数的展开, 方程的解按本征函数的展开;3)求解关于)(t T 方程的解;4)定解问题的解。 5、掌握非齐次边界条件的齐次化。 本章重点: ?第二类齐次边界条件的本征值和本征函数 ?用分离变量法求解一维有界问题的解 ?利用本征函数展开解一维有界非齐次方程 ?非齐次边界条件的齐次化

数理方程(调和方程)

第四章 调和方程 §1.调和方程的定解问题 1.方程的几个例子 例1. 稳定的温度分布 温度分布满足),(2t x f u a u t =?- 稳定热源:),,,)((321x x x x x f f ==与t 无关 边界绝热(即边界条件也与t 无关) 则长时间后,温度分布必然趋于稳定状态(与t 无关),即)(x u u = 此时有)(1x f u =?, (2 1a f f - =)称为Poission 方程 当01=f 时,0=?u ,称为Laplace 方程或调和方程. 例2.弹性膜的平衡状态: u 为膜在垂直方向的位移,外力),(21x x f f =,则有 f x u x u =??+ ??2 2 22 1 2 例3.静电场的电势u Maxwell 方程组??? ? ? ? ??? ==??-=??+=ρdivD divB t B rotE t D J rotH 0 E :电场强度, H :磁场强度, D :电感应强度, B :磁感应强度 J :传导电流的面密度, ρ:电荷的体密度 物质方程?? ? ??===E J H B E D σμε :μ导磁率, σ:导电率, ε: 介质的介电常数 divE divD ερ== ∵静电场是有势场:u grad E -= ερ-=?u grad div , 即ε ρ -=u ? 若静电场是无源的,即0=ρ,则0=?u 例4.解析函数 )(),,(),()(iy x z y x iv y x u z f +=+= 则v u ,满足Cauchy-Riemann 条件:y x y x u v v u -==, 例5.布朗运动(见图) 设质点运动到边界上即终止, ?????===?0,10 `),,(),,(21 1C C u u u C z y x z y x u 概率,则上的为起点,终止在:以 易知,0,0=?=?v u 2.定解问题 (1)内问题:n R ?Ω,有界,Γ=Ω?,u 在Ω内满足f u =? 边界条件: 第一类(Dirichlet):g u =Γ| 第二类(Neumann): g n u =??Γ| 第三类(Robin):)0(|)(>=+??Γσσg u n u n 为Γ的单位外法线方向. (2) 外问题:u 在Ω外部满足f u =? 同样有三类边界条件(此时n 为Ω的内法线方向). 但解在无穷远处是否可以不加限制?要加何种限制? 先看两个例子: 例1.2=n ?????=>+=?=+0|) 1(,01 2 222y x u y x u 221 ln 1ln ,0y x r u u +===均为解, 例 2. 3=n ?????=++=>==1),1(01222r u z y x r r u ? r u u 1 ,1==均为解. 因此,解在无穷远点一定要加限制,以确定解的唯一性. 通常, :2=n 解在无穷远处有界:),(lim y x u r ∞ →有界 :3≥n 解在无穷远处趋于0:0),,(lim =∞ →z y x u r (3) 无界区域的边值问题:与外问题类似 (4) 等值面边值问题:0=?u 边界条件:?? ? ??=??=?ΓΓ)()(|已知待定A dS n u C u 这个问题可约化为 Dirichlet 问题: 设???==?Γ1|0U U 的解为)(x U U =,选取常数C , s.t.:A dS n U C =???Γ 则CU u = §2.分离变量法 1. 圆的Dirichlet 内问题与外问题 内问题?????=<+=?=+)(|)(02 222 22θf u a y x u a y x 引入极坐标θθsin ,cos r y r x == 2 22 222 221)(111θ θ??+????=??+??+??≡u r r u r r r u r r u r r u u ? 则原问题化为:

数理方程期末考试试题

2013-2014学年度第二学期数理方程(B )期末考试试题 考后回忆版本 一、求下列偏微分方程的通解),(y x u u =(16分) (1)y x y x u 22=???(2)xy x u y x u y =??+???2二、求下列固有之问题的解。要求明确指出固有值及其所对应的固有函数(10分) ?????=′+∞<<<=+′+′′.0)2(,)0()20(,022y y x y x y x y x λ三、求第一象限}0,0|),{(2 >>∈=y x R y x D 的第一边值问题的Green 函数。(12分) 四、用积分变换法求解下列方程。(12分)???=>+∞<<<=).21(),0(,)(),0(. 1)1,(,0)0,()0,10(,4x x u x x x u t u t u t x u u t xx tt δ?七、用分离变量法求解下列方程。(15分) ?????=<++=++=++0|)1(,1 222222z y x zz yy xx u z y x z u u u 八、求解下列定解问题。(5分) ?????==>+∞<

北邮数学物理方法18-19期末试题B

北京邮电大学2018-2019学年第一学期 《数学物理方法》期末试题(B ) 注意:本试卷共5 道大题。答题时不必抄题,要注明题号,所有答案一律写在答题纸上,否则不计成绩。 一、 解答下列各题(每题6分,共36分) 1、 写出三类基本方程的最简单形式。 2、求解下列本征值问题的本征值和本征函数 ()()()()()() 02,2?λ??π??π?''Φ+Φ=???''Φ+=ΦΦ+=Φ??3、将Bessel 方程 222()0x y xy x m y λ'''++-= 化成Sturm-Liouville 型方程,并指出其核函数和权函数。 4、用达朗贝尔公式求下列定解问题的解 ()()()20,0,,0cos ,,0. tt xx x t u a u x t u x x u x e ?-=-∞<<∞>??==??5、设()f x 在区间[-1,1]上的有界且连续,并设 ()()()0Legendre n n n n f x f P x P x ∞ ==∑其中是多项式 试证明 ()()11 212n n n f P x f x dx -+= ?. 6、已知Bessel 函数的递推公式1[()]()m m m m d x J x x J x dx -=,试计算30()x J x dx ?。

二、研究细杆上的热传导问题。设杆上的初始温度是均匀的为0,u 然后保持杆的一端的温度为不变的0,u 而另一端则有强度为恒定的热流0q 进入,即求解定解问题 22200000,,,.x x x l t u u a t x q u u u k u u ===???=?????==???=?? (25分) 三、 求解下列定解问题 ()222220001,0,0,,,0.b t t u u u a b t u u u u f t ρρρρρρρ====??????=+<

数理方程版课后习题答案

第一章曲线论 §1 向量函数 1. 证明本节命题3、命题5中未加证明的结论。 略 2. 求证常向量的微商等于零向量。 证:设,为常向量,因为 所以。证毕3. 证明 证: 证毕4. 利用向量函数的泰勒公式证明:如果向量在某一区间内所有的点其微商为零,则此向量在该区间上是常向量。

证:设,为定义在区间上的向量函数,因为在区间上可导当且仅当数量函数,和在区间上可导。所以,,根据数量函数的Lagrange中值定理,有 其中,,介于与之间。从而 上式为向量函数的0阶Taylor公式,其中。如果在区间上处处有,则在区间上处处有 ,从而,于是。证毕 5. 证明具有固定方向的充要条件是。 证:必要性:设具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,于是。 充分性:如果,可设,令,其中为某个数量函数,为单位向量,因为,于是

因为,故,从而 为常向量,于是,,即具有固定方向。证毕 6. 证明平行于固定平面的充要条件是。 证:必要性:设平行于固定平面,则存在一个常向量,使得,对此式连续求导,依次可得和,从而,,和共面,因此。 充分性:设,即,其中,如果,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,任取一个与垂直的单位常向量,于是作以为法向量过原点的平面,则平行于。如果,则与不共线,又由可知,,,和共面,于是, 其中,为数量函数,令,那么,这说明与共线,从而,根据第5题的结论知,具有固定方向,则可表示为,其中为某个数量函数,为单位常向量,作以为法向量,过原点的平面,则平行于。证毕 §2曲线的概念

1. 求圆柱螺线在点的切线与法平面的方程。 解:,点对应于参数,于是当时,,,于是切线的方程为: 法平面的方程为 2. 求三次曲线在点处的切线和法平面的方程。 解:,当时,,, 于是切线的方程为: 法平面的方程为 3. 证明圆柱螺线的切线和轴成固定角。 证: 令为切线与轴之间的夹角,因为切线的方向向量为,轴的方向向量为,则

研究生数理方程期末试题10111A答案

《数学物理方程》期末试题(A 卷) (参考答案) 学院 专业 学号 姓名 1、 (10分)试证明:圆锥形枢轴的纵振动方程为: 其中E 是圆锥体的杨氏模量,ρ是质量密度,h 是圆锥的高(如下图所示): 【提示:已知振动过程中,在x 处受力大小为u ES x ??,S 为x 处截面面积。】 【证明】在圆锥体中任取一小段,截面园的半径分别是1r 和2r ,如图所示。于是,我们有 上式化简后可写成 从而有 或成 其中2 E a ρ = ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片,它的一边y b =处于较高温度U ,其它三边0y =, 0x =和x a =则处于冷却介质中,因而保持较低的温度0u 。试求该截面上的稳定温度 分布(,)u x y ,即求解以下定解问题: 【提示:可以令0(,)(,)u x y u v x y =+,然后再用分离变量方法求解。】 【解】令0(,)(,)u x y u v x y =+,则原定解问题变为 分离变量:

代入方程得到关于X 和Y 的常微分方程以及关于X 的定解条件: 可以判定,特征值 特征函数 利用特征值n λ可以求得 于是求得特征解 形式解为 由边界条件,有 得到 解得 最后得到原定解问题的解是 3、 (20分)试用行波法求解下列二维半无界问题 【解】方程两端对x 求积分,得 也即 对y 求积分,得 也即 由初始条件得 也即 再取0x =,于是又有 从而得 于是 将这里的()g x 和()h y 代入(,)u x y 的表达式中,即得 4、 (20分)用积分变换法及性质,求解无界弦的自由振动问题: 【提示:可利用逆Fourier 积分变换公式:11 ,||sin []20, ||x at a t F a a x at ωω-?

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

北邮课表

2009级通信工程专业培养方案的执导教学计划 打开课组| 关闭课组 2009-2010学年 第一学期(秋季学期) [3200010]思想道德修养与法律基础 [3200020]中国近现代史纲要 [3310011]体育基础(上) [4110011]高等数学A(上) [4110071]线性代数 [4110081]高等代数 [1100310]大学计算机基础 [8200010]军事理论 [8300001]形势与政策1 [3112010]大学英语一级 [4110051]数学分析(上) 第二学期(春季学期) [3112020]大学英语二级 [3320011]体育基础(下) [4110021]高等数学A(下) [1201011]电路分析基础

[8200020]军训 [8300002]形势与政策2 [4120012]大学物理B(上) [3200030]毛泽东思想和中国特色社会主义理论体系概论 [3200031]毛泽东思想和中国特色社会主义理论体系概论(实践) [4110061]数学分析(下) [1100320]C++程序设计基础 第三学期(夏季学期) 2010-2011学年 第一学期(秋季学期) [3200040]马克思主义基本原理 [3330012]体育专项(上) [4120022]大学物理B(下) [4130021]物理实验(2) [1100330]数据结构 [1100520]计算机实习 [1201030]信号与系统 [1208011]电子测量与电子电路实验(上) [4110140]复变函数 [8300003]形势与政策3

[3112030]大学英语三级 [4130011]物理实验(1) [1100010]电子电路基础 第二学期(春季学期) [3112040]大学英语四级 [4110091]概率论与随机过程 [4110130]数理方程 [4110190]计算方法 [4110240]离散数学 [1100040]数字电路与逻辑设计 [1208021]数字电路与逻辑设计实验(上) [8300004]形势与政策4 [3112130]国家大学英语四级考试 [1100540]电路综合实验 [1208012]电子测量与电子电路实验(下) [1100550]电子工艺实习 [3340012]体育专项(下) [1100340]数据库技术与应用 [1100350]多媒体计算机应用基础 [1100020]数字信号处理 [1100030]通信电子电路

数理方程总结完整终极版

00 |()()t t u x u x t ?ψ===????=?? ?k z j y i x ?????+??+??= ?u u ?=grad 拉普拉斯算子:2222222 z y x ??+??+??=???=?2 2 22 2y u x u u ??+??=? 四种方法: 分离变量法、 行波法、 积分变换法、 格林函数法 定解问题: 初始条件.边界条件.其他 波动方程的初始条

波动方程的边界条件:

(3) 弹性支承端:在x=a端受到弹性系数为k 的弹簧的支承。 定解问题的分类和检验:(1) 初始 问题:只有初始条件,没有边界条 件的定解问题; (2) 边值问题:没有初始条件,只 有边界条件的定解问题; (3) 混合问题:既有初始条件,也 有边界条件的定解问题。 ?解的存在性:定解问题是 否有解; ?解的唯一性:是否只有一 解; ?解的稳定性:定解条件有 微小变动时,解是否有相应的微小变动。 分离变量法:基本思想:首先求出具有变量分离形式且满足边界条件的特解,然后由叠加原理作出这些解的线性组合,最后由其余的定解条件确定叠加系数。把偏微分方程化为常微分方程来处理,使问题简单化。适用范围:波动问题、热传导问题、稳定场问题等

分离变量法步骤:一有界弦的自由振动二有限长杆上的热传导三拉普拉斯方程的定解问题 常用本征方程齐次边界条件 2''0 (0)()0,/,1,2,sin k k X X X X l k l k X x λλββπβ+=?? ==? ====0,1,2,0,1,2,λ0,1,2,λ

非齐次方程的求解思路用分解原理得出对应的齐次问题。解出齐次问题。求出任意非齐次特解。叠加成非齐次解。 行波法:1.基本思想:先求出偏微分方程的通解,然后用定解条件确定特解。这一思想与常微分方程的解法是一样的。2.关键步骤:通过变量变换,将波动方程化为便于积分的齐次二阶偏微分方程。3.适用范围:无界域内波动方程,等…

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

北邮数理方程课件第三章的分离变量法

第三章 分离变量法 3。2 基础训练 3.2.1 例题分析 例1 解下列定解问题: ???? ?????=??-==??=><

其中A ,B 为积分常数,(7)代入(6)中边界条件,得 00 A B Ae +=???-+=?? (8) 由(8)得A=B=0,得X (x )=0,为平凡解,故不可能有0λ<。 (2) 当0λ=时,(6)式中方程的通解是 ()X x Ax B =+ 由边界条件得A=B=0,得X (x )=0,为平凡解,故也不可能有0λ=。 (3)当 02 >=βλ时,上述固有值问题有非零解.此时式(6)的通解为 x B x A x X ββsin cos )(+= 代入条件(6)中边界条件,得 0cos ,0==l B A β 由于 0≠B ,故 0cos =l β,即 ),2,1,0(212Λ=+= n l n πβ 从而得到一系列固有值与固有函数 2 2 24)12(l n n πλ+= ),2,1,0(2)12(sin )(Λ=+=n x l n B x X n n π 与这些固有值相对应的方程(3)的通解为 ),2,1,0(2)12(sin 2)12(cos )(Λ=+'++'=n t l a n D t l a n C t T n n n ππ 于是,所求定解问题的解可表示为 x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+??? ? ? +++=∑∞ = 利用初始条件确定其中的任意常数n n D C ,,得 0=n D

北邮数学物理方法17-18期末试题A

北京邮电大学2017-2018学年第一学期 《数学物理方法》期末试题(A ) 注:本试卷有 六 道大题。答题时,写清题号,不必抄题。所有答案写在答题纸上,否则不计成绩。 一、解答下列各题(每题6分,共30分) 1、长度为l 的均匀细杆,一端温度保持为1T ,另一端绝热,初始温度分布为()T x ,试写出杆上温度分布(),u x t 所满足的定解问题。 2、一根长度为l 的均匀细弦,两端固定,弦的初始位移为 ()(),0,h x x c c x h l x c x l l c ??≤≤??=?-?<≤?-?,初始速度是0,试写出弦的位移函数(),u x t 所满足的定解问题。 3、求下列本征值问题的本征值和本征函数 ()()() ()0,00,0.X x X x X X l λ''+=???'==?? 4、用达朗贝尔公式求解下列定解问题 ()()()20,0,,0sin ,,0. tt xx t u a u x t u x x u x x ?-=-∞<<∞>??==?? 5、计算 112018201811()?,()()?n xP x dx P x P x dx --==??

二、试证明微分方程()()()()()2220 0,1,2,R R m R m ρρρρλρρ'''++-==通过变换 x =可以化成标准Bessel 方程 ()()()()2220x R x xR x x m R x '''++-=。 (8分) 三、将Legendre 方程()2(1)210x y xy l l y '''--++=化成Sturm-Liouville 形式,并写成其核函数和权函数。 (8分) 四、 求解下列定解问题 ()()()222000,0,|0,|00, |0. x x x x l t u u a x l t t x u u t u x x l ===???=<<>?????==>??=<

数理方程试卷及答案2

长沙理工大学考试试卷 ………………………………………………………………………………………………………………… 试卷编号 拟题教研室(或教师)签名 教研室主任签名 ………………………………………………………………………………………………………………… 课程名称(含档次) 数学物理方程与特殊函数 课程代号 专 业 层次(本、专) 本 科 考试方式(开、闭卷) 闭卷 一.判断题:(本题总分25分,每小题5分) 1.二阶线性偏微分方程062242=+++-y x yy xy xx u u u u u 属于椭圆型; ( ) 2.定解问题的适定性包括解的稳定性、解的唯一性和解的存在性; ( ) 3.如果格林函数),(0M M G 已知,且它在Γ+Ω上具有一阶连续偏导数,又若狄利克雷 问题???=Ω∈=?Γ ).,,(|,),,(0z y x f u z y x u 在Γ+Ω上具有一阶连续偏导数的解存在,那么其解可 表示为=)(0M u dS n G z y x f ??Γ??-) ,,(; ( ) 4.设)(x P n 为n 次Legendre 多项式,则0)()(1 1 1050358?-=dx x P x P ; ( ) 5.设)(x J n 为n 阶Bessel 函数,则 [])()(021ax xJ a ax xJ dx d =. ( ) 二.解答题:(本题总分65分) 1.(本小题15分)设有一根长为l 的均匀细杆,它的表面是绝热的,如果它的端点温度为1),0(u t u =,2),(u t l u =,而初始温度为0T ,写出此定解问题. 2.(本小题20分)利用固有函数法求解下面的定解问题 ???????====><<+=. 0),(,0),0(,0)0,(,0)0,(),0,0(cos sin 2t l u t u x u x u t l x l x t A u a u x x t xx tt πω 其中ω,A 是常数. 3.(本小题15分)求出方程xy u u yy xx =+的一个特解. 第 1 页(共 2 页)

2012、11、10、09年电子科技大学研究生数理方程期末试卷

2012、11、10、09年电子科技大学研究生数理方程期末试卷

电子科技大学研究生试卷 (考试时间: 14点 至 16 点 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2012年 12 月 28 日 成绩 考核方式: (学生填写) 1.把方程 22222320u u u x x y y ???++=????化为标准型,指出其 类型,求出其通解. (10分) 2. 设定解问题:(10分) 2000(),0,0,,0(),(),0. tt xx x x l t t t u a u f x x l t u A u B t u x u x x l ?ψ====?-=<<>?? ==>??==≤≤?? 将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。 学 号 姓 学 院 教 座位 ……………………密……………封……………线……………以……………

第 1页 3. 长为l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为()x ?,求杆内温度分布 (,)u x t . (20分) 4.求下面的定解问题:(10分) 22 009,(,0)18,sin 18 t tt xx t t t u u x e x R t u x x u x ==?-=∈>??=++=+??.

第2页 5.求22 cos()a e x d ?τ??+∞-?.(10分) 6. 222 23()(22)(25) s s F s s s s s ++=++++,求Laplace 逆变换1 (())L F s -.(10分)

北邮通信工程课表

北邮通信工程本科专业课程表 序号 课 程 名 | 国内领先的通信技术论坛&t u-F,K%t+B5V J/W"G&L'[ 称 页 码 1SDH原理与应用MSCBSC 移动通信论坛'd$z+V1z5D3m,C3 2电子学导论3 3光纤通信https://www.360docs.net/doc/0914058883.html,$|6n$l7~2k2a3 4光纤通信网络4 5微波技术基础https://www.360docs.net/doc/0914058883.html,'a W O+B)\8J8I6e9A+t2g4 6DSP技术| 国内领先的通信技术论坛$w)X:g-A!l6I-}6Q4 7MATLAB及其在通信中的应用https://www.360docs.net/doc/0914058883.html,0]8[#K%|*N*p R)r"C0^5 8嵌入式操作系统0i*S5S4[ t6D3c-T!m5 9电磁场与电磁波6 10检测与估值理论3|3g,k(J)d+I)}%P6 11天线与电波传播| 国内领先的通信技术论坛(R/T4M&{'j*}5m6 12通信原理II7 13《通信原理II》课程设计MSCBSC 移动通信论坛8P7E m5w,L5|4e7 14卫星通信8 15移动通信mscbsc 移动通信论坛拥有30万通信专业人员,超过50万份GSM/3G 等通信技术资料,是国内领先专注于通信技术和通信人生活的社区。8t(].Y"K;t S"s+B 8 16数据结构8 17数据库应用技术| 国内领先的通信技术论坛6i#](d I&i%z%D9 18C++面向对象程序设计MSCBSC 移动通信论坛$T+`2U+Y4C:E9 19Java程序设计https://www.360docs.net/doc/0914058883.html, u/j.h&M/V"c%Q&{)N4]*|9 20Linux操作系统移动通信,通信工程师的家园,通信人才,求职招聘,网络优化,通信 工程,出差住宿,通信企业黑名单-?3M3h-]/@*I 10 21计算机操作基础和程序设计10 22微机原理与接口技术11 23计算机网络11 24软件工程| 国内领先的通信技术论坛+H:Y*Z#d7M(M-d12 25多媒体计算机应用基础mscbsc 移动通信论坛拥有30万通信专业人员, 超过50万份GSM/3G等通信技术资料,是国内领先专注于通信技术和通信人生活的 12

天津大学研究生课程-数理方程试题

一. 判断题(每题2分). 1. 2u u x y x y x ??+=???是非线性偏微分方程.( ) 2. 绝对可积函数一定可做Fourier 积分变化.( ) 3. ()(1) 1.n n F x n Legendre F =是次正交多项式, 则 ( ) 4. (,)0xy f x y =的解是调和函数.( ) 5. **12u u 已知,是线性偏微分方程(,)xx yy u u f x y +=的解,则**12u u -是0u ?= 的解.( ) 二. 填空题(每题2分). 1. ()sin t xx yy u u u xt -+= 是____________型偏微分方程. 2. 内部无热源的半径为R 的圆形薄板,内部稳态温度分布,当边界上温度为()t φ时,试建立方程的定解问题________________________. 3. 2x 的Legendre 正交多项式的分解形式为__________________. 4.某无界弦做自由振动,此弦的初始位移为()x φ,初始速度为()a x φ-,则弦振动规律为______________________________. 5. []()____________.at m L e t s = 三.求解定解问题(12分) 200sin ; 0,0;0. t xx x x x x l t u a u A t u u u ω===-====

四.用积分变换方法求解以下微分方程(每题12分,共24分) (1) 001,0,0; 1,1. xy x y u x y u y u ===>>=+= (2) 00230, 1.t t t y y y e y y =='''+-='== 五.某半无界弦的端点是自由的,初始位移为零,初始速度为cos x ,求弦的自由振动规律。(12分)

北邮数理方程课件 第三章 分离变量法

第三章 分离变量法 3。2 基础训练 3.2.1 例题分析 例1 解下列定解问题: ???? ?????=??-==??=><=βλ时,上述固有值问题有非零解.此时式(6)的通解为

x B x A x X ββsin cos )(+= 代入条件(6)中边界条件,得 0cos ,0==l B A β 由于 0≠B ,故 0cos =l β,即 ),2,1,0(21 2Λ=+= n l n πβ 从而得到一系列固有值与固有函数 2 2 24)12(l n n πλ+= ),2,1,0(2)12(sin )(Λ=+=n x l n B x X n n π 与这些固有值相对应的方程(3)的通解为 ),2,1,0(2)12(sin 2)12(cos )(Λ=+'++'=n t l a n D t l a n C t T n n n ππ 于是,所求定解问题的解可表示为 x l n t l a n D t l a n C t x u n n n 2)12(sin 2)12(sin 2)12(cos ),(0πππ+??? ? ? +++=∑∞ = 利用初始条件确定其中的任意常数n n D C ,,得 0=n D 3 32 02)12(322)12(sin )2(2ππ+- =+-=?n l xdx l n lx x l C l n 故所求的解为 x l n t l a n n l t x u n 2)12(sin 2)12(cos )12(132),(0 3 3 2 π ππ++?+- =∑∞ = 例2 演奏琵琶是把弦的某一点向旁边拨开一小段距离,然后放手任其自由振动。设弦 长为l ,被拨开的点在弦长的0 1 n (0n 为正整数)处,拨开距离为h ,试求解弦的振动,即求解定解问题

相关文档
最新文档