画凸轮轮廓曲线的步骤

画凸轮轮廓曲线的步骤

1. 确定绘制平面:在纸上或计算机绘图软件中确定绘制的平面大小和比例,以便合理地呈现凸轮的形状。

2. 绘制基准线:在所选的绘制平面上绘制一条水平基准线,用于确定凸轮的位置和形态。

3. 确定凸轮中心:根据具体要求和设计,确定凸轮的中心位置,通常相对于基准线上的一点。

4. 画出凸轮半径:以凸轮中心为圆心,在绘制平面上画出凸轮的半径,即凸轮的最外形状。

5. 划定凸轮的运动曲线:根据具体要求和设计,用曲线连接凸轮的起始点和结束点,形成满足运动要求的凸轮轮廓曲线。

6. 确定凸轮轴向:根据具体要求和设计,确定凸轮轮廓曲线相对于基准线的上下位置。

7. 添加凸轮特征:根据具体要求和设计,添加凸轮上的特征,如凹槽、齿轮等。

8. 检查和修改:在绘制完成后,仔细检查凸轮轮廓曲线的形状和位置是否符合要求,如有需要,进行必要的修改。

9. 添加细节:根据需要,可以添加细节,如标记尺寸和比例。

10. 上色和阴影处理:如果需要,可以对绘制的凸轮进行上色和阴影处理,以使其更加逼真和立体感。

以上是绘制凸轮轮廓曲线的一般步骤,具体步骤可能还会根据具体要求和设计而有所不同。

凸轮廓线的MATLAB画法

凸轮廓线的MATLAB 画法 1 凸轮轮廓方程 *()()*()()*()*() X OE EF E Cos J So S Sin J Y BD FD So S Cos J E Sin J =+=++=-=+- (X,Y):凸轮轮廓线上的任意一点的坐标。 E :从动件的偏心距。 R :凸轮的基园半径。 J :凸轮的转角。 S :S=f(J)为从动件的方程。 So :22O S R E =- H 为从动件的最大位移(mm )。

J1、J2、J3、J4为从动件的四个转角的区域。 S1、S2、S3、S4为与J1、J2、J3、J4对应的从动件的运动规律。 2 实例 R=40,E=10,H=50,J1=J2=J3=J4=900。 3 MATLAB 程序设计 用角度值计算,对于给定的J1、J2、J3、J4,把相应的公式代入其中,求出位移S 和轮廓线上的各点的坐标X 、Y ,最终求出描述凸轮的数组: J=[J1,J2,J3,J4]; S=[S1,S2,S3,S4]; X=[X1,X2,X3,X4]; Y=[Y1,Y2,Y3,Y4]; 用函数plot (X,,Y )画出凸轮的轮廓曲线; 用plot (J,S )函数位移S 的曲线; 对于速度曲线V-t 和加速度曲线a-t , ds ds ds dt dt V dJ dJ dt ω=== 在算例中已假设凸轮匀速转动的角速度为1wad/s ,所以 ds ds ds ds dt dt V dJ dt dJ dt ω====速度 同理可得: dJ ds dt dv a 22==加速度 4 程序运行结果

图一:余弦速运动规律下的凸轮轮廓曲线 图二:余弦加速作用下的S-α曲线

第4.3节(盘形凸轮廓线的设计)

第三节 盘形凸轮廓线的设计 当根据工作要求和结构条件选定了凸轮机构的类型、从动件的运动规律和凸轮的基圆半径(其确定将在下节中介绍)等结构参数后,就可以设计凸轮的轮廓曲线。凸轮廓线的设计方法有图解法和解析法,其设计原理基本相同。本节先简要介绍图解法,后重点介绍解析法设计凸轮廓线。 一、凸轮廓线设计的基本原理 图4-13 反转法设计凸轮廓线基本原理 图4-13所示为一尖顶对心盘形凸轮机构,设凸轮以等角速度ω逆时针转动,推动从动件2在导路中上、下往复移动。当从动件处于最低位置时,凸轮轮廓曲线与从动件在A 点接触,当凸轮转过1ϕ角时,凸轮的向径A A 0将转到A A '0位置,而凸轮轮廓将转到图中虚线所示的位置。从动件尖端从最低位置A 上升至B ',上升的位移为B A S '=1,这是从动件的运动位移。 若设凸轮不动,从动件及其运动的导路一起绕A 0点以等角速度-ω转过1ϕ角,从动件将随导路一起以角速度-ω转动,同时又在导路中作相对导路的移动,如图中的虚线位置,此时从动件向上移动的位移为B A 1。而且,11S B A B A ='=,即在上述两种情况下,从动件移动的距离不变。由于从动件尖端在运动过程中始终与凸轮轮廓曲线保持接触,所以从动件尖端的运动轨迹即为凸轮轮廓。设计凸轮廓线时,可由从动件运动位移先定出一系列的B 点,将其连接成光滑曲线,即为凸轮廓线。 由于这种方法是假设凸轮固定不动而使从动件连同导路一起反转,故称为反转法。对其它类型的凸轮机构,也可利用反转法进行分析和凸轮廓线设计。 二、图解法设计凸轮廓线 1. 移动从动件盘形凸轮廓线的设计 (1)尖端从动件 图4-14a 所示为一偏置移动尖端从动件盘形凸轮机构。设已知凸轮的基圆半径为b r ,从动件导路偏于凸轮轴心A 0的左侧,偏距为e ,凸轮以等角速度ω顺时针方向转动。从动件的位移曲线如图4-14b 所示,试设计凸轮的轮廓曲线。

proe凸轮画法

3.造型过程 以下就一个盘形凸轮的造型过程详细说明此种凸轮的设计思路。零件如图1所示。 图1 盘形凸轮零件图 步骤1:基础特征造型 使用拉伸命令作一圆柱形基础特征,草图和拉伸后的特征如图2所示。 图2 草图及拉伸特征 步骤2:创建方程曲线 在“基准” 工具栏中单击“插入基准曲线”按钮,在弹出的菜单管理器中选则“从方程”选项,单击“完成”,如图3中所示。弹出“曲线”对话框和次级菜单。根据系统提示选择系统默认坐标系PRT_CSYS_DEF。在下一级菜单中选择“笛卡尔”坐标系(如图5、6所示),随后弹出记事本中定义曲线方程,该方程就是从动件的位移曲线方程,根据设计的不同,可编写不同的曲线方程。

图3 曲线菜单 1 图4 “曲线”对话框 图5 曲线菜单2 图6 曲线菜单 3 在记事本输入图5所示的方程,保存并退出记事本。 图7 曲线方程

图8 生成的曲线(图中红色部分) 选择菜单“文件/保存副本”,保存格式为IGES,给定输出名称“cuve1”,在随后弹出的“输出IGES”对话框中选则“基准曲线和点”复选框,单击确定,完成IGES文件输出。 图9 “输出IGES”对话框 步骤3:创建图形特征 选择菜单“插入/模型基准/图形”选项,根据系统提示在消息输入图形名称cuve2,确定后进入草绘模式。在草绘模式中,在绘图区绘制一个坐标系,同时绘制两条通过此坐标系的中心线。选择菜单“草绘/数据来自文件”选项,选择刚才输出的“cuve1.igs”文件,打开后,在“缩放旋转”对话框输入比例和角度,拖动曲线至适当位置,单击确定按钮推出。在草绘模式中对曲线进行编辑增加,最终结果如图10中所示。 图10 最终曲线 步骤4:创建变剖面扫描特征

机械原理 凸轮机构及其设计

第六讲凸轮机构及其设计 (一)凸轮机构的应用和分类 一、凸轮机构 1.组成:凸轮,推杆,机架。 2.优点:只要适当地设计出凸轮的轮廓曲线,就可以使推杆得到各种预期的运动规律,而且机构简单紧凑。缺点:凸轮廓线与推杆之间为点、线接触,易磨损,所以凸轮机构多用在传力不大的场合。 二、凸轮机构的分类 1.按凸轮的形状分:盘形凸轮圆柱凸轮 2.按推杆的形状分 尖顶推杆:结构简单,能与复杂的凸轮轮廓保持接触,实现任意预期运动。易遭磨损,只适用于作用力不大和速度较低的场合 滚子推杆:滚动摩擦力小,承载力大,可用于传递较大的动力。不能与凹槽的凸轮轮廓时时处处保持接触。 平底推杆:不考虑摩擦时,凸轮对推杆的作用力与从动件平底垂直,受力平稳;易形成油膜,润滑好;效率高。不能与凹槽的凸轮轮廓时时处处保持接触。 3.按从动件的运动形式分(1)往复直线运动:直动推杆,又有对心和偏心式两种。(2)往复摆动运动:摆动推杆,也有对心和偏心式两种。 4.根据凸轮与推杆接触方法不同分: (1)力封闭的凸轮机构:通过其它外力(如重力,弹性力)使推杆始终与凸轮保持接触,(2)几何形状封闭的凸轮机构:利用凸轮或推杆的特殊几何结构使凸轮与推杆始终保持接触。①等宽凸轮机构②等径凸轮机构③共轭凸轮 (二)推杆的运动规律 一、基本名词:以凸轮的回转轴心O为圆心,以凸轮的最小半径r为半径所作的圆称为凸轮的基圆,r称为基圆半径。推程:当凸轮以角速度转动时,推杆被推到距凸轮转动中心最远的位置的过程称为推程。推杆上升的最大距离称为推杆的行程,相应的凸轮转角称为推程运动角。回程:推杆由最远位置回到起始位置的过程称为回程,对应的凸轮转角称为回程运动角。休止:推杆处于静止不动的阶段。推杆在最远处静止不动,对应的凸轮转角称为远休止角;推杆在最近处静止不动,对应的凸轮转角称为近休止角 二、推杆常用的运动规律 1.刚性冲击:推杆在运动开始和终止时,速度突变,加速度在理论上将出现瞬时的无穷大值,致使推杆产生非常大的惯性力,因而使凸轮受到极大冲击,这种冲击叫刚性冲击。 2.柔性冲击:加速度有突变,因而推杆的惯性力也将有突变,不过这一突变为有限值,因而引起有限冲击,

机械原理教案12凸轮机构轮廓曲线的设计

二、用图解法设计凸轮轮廓曲线 下面以偏置尖顶直动从动件盘形凸轮机 构为例,讲解凸轮廓线的设计过程。 例6-1 对心直动尖顶从动件盘形凸轮机构 设已确定基圆半径mm 150=r ,凸轮顺时针方向匀速转动,从动件行程mm 18=h 。从动件运动规律如下表所示: 推程 远休止 回程 近休止 运动角 1120δ= 260δ= 903=δ 490δ= 从动件运动规律 等速运动 正弦加速度运动 设计步骤: 1、建立推程段的位移方程:18120s δ =,回程段的位移方程: 12π181sin 902π90s δδ⎡⎤ ⎛⎫=-+ ⎪⎢⎥⎝⎭⎣ ⎦,将推程运动角、回程运动角按某一分度值等分成若干份, 并求得对应点的位移。 2、画基圆和从动件的导路位置 3、画反转过程中从动件的各导路位置 4、画从动件尖顶在复合运动中的各个位置点 5、分别将推程段和回程段尖顶的各位置点连成光滑曲线,再画出远休止段和近休止段的圆弧,即完成了尖顶从动件盘形凸轮轮廓曲线的设计,如图6-18。 需要注意:同一个图上作图比例尺必须一致。如各分点的位移与基圆应按相同比例尺量取。 2.偏置直动尖顶从动件盘形凸轮机构 凸轮转动中心O 到从动件导路的垂直距离e 称为偏距。以O 为圆心,e 为半径所作的圆称为偏距圆。显然,从动件导路与偏距圆相切(图中K 为从动件初始位置与基圆的切点)。在反转过程中,从动件导路必是偏距圆的切线。 如图6-19。 r0 a A0 A1 O B0B1

内 容 3.直动滚子从动件盘形凸轮机构 例题:已知:r r -滚子半径,0r -基圆半径,从动件运动规律。设计该机构。 设计思路:把滚子中心看作尖顶从动件的尖顶,按前述方法先画出滚子中心所在的廓线——凸轮的理论廓线。再以理论廓线上各点为圆心,以滚子半径r r 为半径画一系列的圆,这些圆的内包络线 即为凸轮的实际廓线(或称为工作廓线)。如图6-16 注意:滚子从动件盘形凸轮的基圆半径是指其理论廓线的最小向径 4.对心直动平底从动件盘形凸轮机构 思路:把平底与导路的交点A看作尖顶从动件的尖点,依次作出交点的位置,通过这些位置点画出从动件平底的各个位置线,然后作这些平底的包络线,即为凸轮的工作廓线,如图6-17 图6-16 图6-17 图6-18 图6-19

凸轮机构

机械基础一轮复习资料 (凸轮机构) 【复习要求】 1.了解凸轮机构的分类、应用及特点; 2.了解凸轮轮廊曲线的画法,熟悉常用位移曲线的画法; 3.掌握基圆半径、行程、压力角等基本参数的概念及它们对工作的影响; 4.掌握凸轮从动件的常用运动规律及其特点和应用。 【知识网络】 【知识精讲】 一、凸轮机构的基本概念 1.凸轮:具有控制从动件运动规律的曲线轮廓的构件。 2.凸轮机构:由凸轮、从动件和机架组成的传动机构,该机构中凸轮作主动件并作等速转动(往复移动)。 3.基圆(基圆半径):以凸轮回转中心为圆心,以凸轮理论廓线的最小回转半径为半径所作的圆称为基圆。该圆的半径称为基圆半径,用r0表示。 4.凸轮理论廓线:凸轮从动件的参考点(尖端或滚子中心或平底中点)在凸轮平面内的运动轨迹。 5.凸轮实际廓线:直接与从动件接触的凸轮廓线。 6.位移及行程:凸轮转过一个角度,从动件对应移动的距离,称为从动件的位移S。在凸轮一转中,从 动件所能达到的最大位移称为行程,用符号h表示。 7.压力角(α):凸轮理论廓线上某点的法线方向(即从动件的受力方向)和从动件运动速度方向之间所 夹的锐角。 8.S—δ曲线:表达从动件位移S与凸轮转角δ关系的曲线。 9.转角(运动角)δ:凸轮转过的角度。 二、凸轮机构的应用特点

1.高副机构易磨损,结构简单、紧凑,传动力较小。 2.能严格实现从动件的运动要求,从动件的运动规律可任意拟定。 3.可高速起动,但高速凸轮精确设计困难。 4.加工方便容易,广泛用于自动化机械中。 三、凸轮机构的分类(见表) 四、凸轮机构从动件的常用运动规律及工作特点、应用场合(见表) 五、凸轮机构有关参数对工作的影响(见表) 为使运动不“失真”r T<ρmin一般 取r T<0.8ρmin ,加工中被切去,运动“失真”

Proe弧面分度凸轮建模实例(附详细程序)

弧面分度凸轮三维建模 已知设计条件:凸轮转速n=300r/min,连续旋转,从动转盘有8 工位,中心距C=180mm,载荷中等。选择改进正弦运动规律为所设计弧面分度凸轮机构的运动规律。 参数如下: 项目实例计算 凸轮角速度ω1=πX 300=101T/s 凸轮分度期转角β1=120°=2/3π 凸轮停歇期转角θd=360°-120°=4/3π 凸轮角位移θ 凸轮和转盘的分度期时间∥s 0=(2"rr/3)/10-rr=1/15s 凸轮和转盘停歇时间幻/s td=(2ar/10"rr)一1/15=2/15s 凸轮分度廓线旋向及旋向系数P 选取左旋L,P=+1 凸轮分度廓线头数日选取H=1 转盘分度数,按设计要求的工位数,选定,=8 转盘滚子数Z=1×8=8 转盘分度期运动规律抛物线一直线一抛物线 转盘分度期转位角盼/(。) 妒,=360。/8=45。 中心距C=180mm 凸轮转速n=300r/min 旋向系数P=+1 分度数I=8 凸轮头数H=1 转盘滚子数Z=1*8=8 凸轮宽度B=90 分度期转角θf = 120° 停歇期转角θd = 240° 凸轮节圆半径rp1=96mm 滚子宽度b=30mm 滚子半径Rr=22mm 凸轮顶弧半径rc=75.29mm 我们将分别作出与滚子左面接触的一系列凸轮轮廓曲线,分度期1L、2R、2L、3R ,停歇期与滚子左右接触的轮廓曲线,然后将这些线生成曲面,最后生成实体。 1 凸轮定位环面内圆直径Di为直径的基础圆柱体 打开Pro/ENGINEER,进入Pro/ENGINEER三维造型窗口,在“基础特征”工具栏上单击“拉伸”命令,选择“FRONT”面为草绘平面,绘制φ154.69的圆,并双向拉伸90mm. 2 建立1L 轮廓曲线 1)建立推程段轮廓面曲线 ①. 新建.prt 文件打开Pro/E Wildfire 三维绘图软件,新建->零件->实体,建立文件。 ②. 绘制廓面曲线曲线->从方程->完成,此时弹出【菜单管理器】,并提示选取坐标,点取桌面上的坐标后,再在【菜单管理器】中选取【笛卡尔】,然后在弹出的记事本中输入如下绘图程序: 程序1: c=180 /*(1)

南京理工大学机械设计基础上——解析法设计凸轮的轮廓曲线

§4—4 用解析法设计凸轮的轮廓曲线 一、滚子从动件盘形凸轮 1.理论轮廓曲线方程 (1)直动从动件盘形凸轮机构 图示偏置直动滚子从动件盘形凸轮机构。求凸轮理论廓线的方程,反转法给整个机构一个绕凸轮轴心O 的公共角速度-ω,这时凸轮将固定不动,而从动件将沿-ω方向转过角度ϕ,滚子中心将位于B 点。B 点的坐标,亦即理论廓线的方程为: ⎭ ⎬⎫++=-+=ϕϕϕϕsin )(cos sin cos )(00s s e y e s s x (4-15) 220e r s a -=,r a 为理论廓线的基圆半径,对于对心从动件凸轮机构,因e=0,所以s 0=r a ⎭ ⎬⎫+=+=ϕϕs i n )(c o s )(s r y s r x a a (4-16) (2)摆动从动件盘形凸轮机构 图所示为摆动滚子从动件盘形凸轮机构。仍用反转法使凸轮固定不动,而从动件沿-ω方向转过角度ϕ,滚子中心将位于B 点。B 点的坐标,亦即理论廓线的方程为: ⎭ ⎬⎫-+-=-+-=)sin(sin )cos(cos 00ϕψψϕϕψψϕl a y l a x (4-17) ψ0为从动件的起始位置与轴心连线OA 0之间的夹角。 al r r l a T 2)(arccos 2 0220+-+=ψ (4-18) 在设计凸轮廓线时,通常e 、r 0、r T 、a 、l 等是已知的尺寸,而s 和ψ是ϕ的函数,它们分别由已选定的位移方程s =s (ϕ)和角位移方程ψ=ψ(ϕ)确定。 2.实际廓线方程 滚子从动件盘形凸轮的实际廓线是圆心在理论廓线上的一族滚子圆的包络线。由微分几何可知,包络线的方程为: ⎪⎭ ⎪⎬⎫=∂∂=0),,(0),,(1111ϕϕϕy x f y x f (4-20) 式中x 1、y 1为凸轮实际廓线上点的直角坐标。 对于滚子从动件凸轮,由于产生包络线(即实际廓线)的曲线族是一族滚子圆,其圆心在理论廓线上,圆心的坐标由式(4-15)~(4-17)确定,所以由(4-20)有: 0)()(),,(2212111=--+-=T r y y x x y x f ϕ 0)(2)(2),,(1111=----=∂∂ϕ ϕϕϕd dy y y d dx x x y x f

凸轮设计步骤

所属标签:产品外观设计 根据使用要求确定了凸轮机构的类型、基本参数以及从动件运动规律后,即可进行凸轮轮廓曲线的设计。设计方法有几何法和解析法,两者所依据的设计原理基本相同。几何法简便、直观,但作图误差较大,难以获得凸轮轮廓曲线上各点的精确坐标,所以按几何法所得轮廓数据加工的凸轮只能应用于低速或不重要的场合。对于高速凸轮或精确度要求较高的凸轮,必须建立凸轮理论轮廓曲线、实际轮廓曲线以及加工刀具中心轨迹的坐标方程,并精确地计算出凸轮轮廓曲线或刀具运动轨迹上各点的坐标值,以适合在数控机床上加工。 圆柱凸轮的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。下面时间财富网的小编分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。 1 几何法 反转法设计原理: 以尖底偏置直动从动件盘形凸轮机构为例: 凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用如下的反转法:使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。 1). 直动从动件盘形凸轮机构 尖底偏置直动从动件盘形凸轮机构:

已知从动件位移线图,凸轮以等角速w顺时针回转,其基圆半径为r0,从动件导路偏距为e,要求绘出此凸轮的轮廓曲线。 运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下: 1) 以r0为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。 2) 将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。 3) 自OC 开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运 动角(1900)、近休止角(600),在基圆上得C 4、C 5 、C 9 诸点。将推程运动角和回程 运动角分成与从动件位移线图对应的等分,得C 1、C 2 、C 3 和C 6 、C 7 、C 8 诸点。 4) 过C1、C2、C3、...作偏距圆的一系列切线,它们便是反转后从动件导路的一系列位置。 5) 沿以上各切线自基圆开始量取从动件相应的位移量,即取线段C1B1=11' 、C2B2=22'、...,得反转后尖底的一系列位置B1、B2、...。 6) 将B0、B1、B2、...连成光滑曲线(B4和B5之间以及B9和B0之间均为以O 为圆心的圆弧),便得到所求的凸轮轮廓曲线。 滚子直动从动件盘形凸轮机构: 首先取滚子中心为参考点,把该点当作尖底从动件的尖底,按照上述方法求出一条轮廓曲线h。再以h上各点为中心画一系列滚子,最后作这些滚子的内包络线h'(对于凹槽凸轮还应作外包络线h'')。它便是滚子从动件盘形凸轮机构凸轮的实际轮廓曲线,或称为工作轮廓曲线,而h称为此凸轮的理论轮廓曲线。由作图过程可知,在滚子从动件凸轮机构设计中,r0是指理论轮廓曲线的基圆半径。 在以上两例中,当e=0时,即得对心直动从动件凸轮机构。这时,偏距圆的切线化为过点O的径向射线,其设计方法与上述相同。 平底从动件盘形凸轮机构: 凸轮实际轮廓曲线的求法也与上述相仿。首先取平底与导路的交点B0为参考点,将它看作尖底,运用尖底从动件凸轮的设计方法求出参考点反转后的一系列位置B1、B2、B3...;其次,过这些点画出一系列平底,得一直线族;最后作此直线族的包络线,便可得到凸轮实际轮廓曲线。由于平底上与实际轮廓曲线相切的点是随机构位置变化的,为了保证在所有位置平底都能与轮廓曲线相切,平底左右两侧的宽度必须分别大于导路至左右最远切点的距离b'和b''。

02 机械设计基础 拓展阅读:图解法设计凸轮机构轮廓曲线

图解法设计凸轮机构轮廓曲线 从动件的运动规律与凸轮的轮廓曲线是密切相关的。那如何通过预期的从动件运动规律来设计凸轮的轮廓曲线呢? 凸轮轮廓曲线的设计方法有图解法和解析法。图解法的特点是简便易行且直观,但精确度有限,一般适用于低速或对从动件运动规律要求不太严格的凸轮机构的设计。解析法精确度高,一般应用于高速凸轮或精度要求较高的凸轮。接下来从作图原理、作图方法、凸轮机构设计中的常见问题三个方面来认识图解法。 一、作图原理。绘制凸轮轮廓曲线采用的是“反转法”原理,如图1所示。根据相对运动原理,给整个凸轮机构加一个与凸轮角速度ω1大小相等、方向相反的角速度-ω1,于是凸轮处于相对静止状态,而从动件一方面随机架以角速度-ω1绕凸轮轴心转动,另一方面又按已知的运动规律相对机架做直线运动,此时机构中各构件之间的相对运动并未改变。由于从动件的尖顶始终与凸轮轮廓相接触,所以反转过程中从动件尖顶的运动轨迹就是凸轮轮廓。 图1 反转法原理 二、作图方法。以对心直动尖顶从动件盘形凸轮轮廓曲线的绘制为例,如图2所示,其绘制步骤有四步。(1)确定凸轮的起始位置。按照从动件位移曲线一 为半径画基圆,在基圆上任取一点A作为从动件的初始位样的长度比例尺,r min 置。(2)等分位移曲线,得各分点位移量。即将推程运动角δt分成若干等分,得1、2、3、4、5、6、7、8.由各等分点作垂线,与位移线相交,得与凸轮各转角相应的从动件的位移量11’到88’。用相同的方法将回程运动角δh等分成若干份,并得出相应的从动件的位移量。(3)作从动件尖顶运动轨迹。在基圆上,

自初始位置A开始,沿-ω 方向,依次取角度,按位移线图中相同等分,对推程 1 运动角δt、回程运动角δh分别作等分,在基圆上得分点1、2、3到14。连接基圆中心点到这些分点,则就是反转后从动件导路的位置。在这位置线上截取位移曲线11’等于凸轮位置线上11’,用同样的方法取后面的点。则1’、2’、3’一直到14’就是从动件的运动轨迹。(4)绘制凸轮轮廓。将凸轮上1’、2’、3’至14’用光滑曲线连接起来则得到了凸轮轮廓曲线。 图2 对心直动尖顶从动件盘形凸轮机构的绘制 对心直动滚子从动件盘形凸轮轮廓曲线的绘制与刚才介绍的对心直动尖顶从动件的凸轮轮廓曲线绘制类似,如图3所示。首先将滚子的中心看作顶尖从动件的顶尖,按刚才介绍凸轮轮廓曲线的绘制的方法,作出尖顶从动件的理论轮廓曲线,再以理论轮廓曲线上各点为圆心,滚子半径为半径作一系列滚子圆,最后作这些圆的包络线,则得到对心直动滚子从动件凸轮的实际轮廓。 图3 对心直动滚子从动件盘形凸轮机构的绘制

用仿真生成凸轮轮廓线的步骤

用仿真生成凸轮轮廓线的步骤 一、引言 凸轮是机械传动中常用的一种元件,用于控制机械运动。通过凸轮的运动,可以实现对其他机械元件的运动轨迹和速度的控制。为了设计和制造高效可靠的凸轮,需要对凸轮的轮廓线进行仿真和优化。本文将介绍使用仿真方法生成凸轮轮廓线的步骤。 二、建立凸轮模型 需要在计算机软件中建立凸轮的三维模型。可以使用CAD软件或者仿真软件来完成这一步骤。在建立凸轮模型时,需要考虑凸轮的形状、轴向和径向尺寸以及凸轮上的凸起部分。 三、确定凸轮运动规律 凸轮的轮廓线是根据凸轮的运动规律来确定的。凸轮运动规律可以通过数学方法建立,也可以通过运动学仿真来确定。在确定凸轮运动规律时,需要考虑凸轮的转动角度和运动速度。 四、进行凸轮仿真 在进行凸轮仿真之前,需要确定仿真软件和仿真参数。常用的凸轮仿真软件有ADAMS、CATIA、SolidWorks等。在进行凸轮仿真时,需要输入凸轮模型和凸轮运动规律,并设置仿真参数,如仿真时间、时间步长等。然后,通过仿真软件进行凸轮的运动仿真,得到凸轮的轨迹数据。

五、生成凸轮轮廓线 通过凸轮仿真得到的凸轮轨迹数据,可以用来生成凸轮的轮廓线。常用的方法有两种:一种是将凸轮轨迹数据导入CAD软件中,然后根据轨迹数据绘制凸轮轮廓线;另一种是使用数学方法,根据凸轮运动规律和凸轮轨迹数据,通过插值和拟合等方法生成凸轮轮廓线。 六、优化凸轮轮廓线 生成凸轮轮廓线后,还可以对凸轮轮廓线进行优化。通过调整凸轮轮廓线的形状和尺寸,可以改变凸轮的运动规律和运动速度,从而满足实际需求。常用的优化方法有形状优化和参数优化。形状优化是通过改变凸轮的形状来优化凸轮的运动规律;参数优化是通过改变凸轮的尺寸和凸起部分的位置来优化凸轮的运动速度。 七、验证凸轮轮廓线 在生成和优化凸轮轮廓线之后,需要对其进行验证。可以通过数学方法和实验方法进行验证。数学方法是通过计算凸轮轮廓线的数学模型来验证凸轮的运动规律和运动速度;实验方法是通过实际的凸轮测试来验证凸轮的运动轨迹和速度。 八、总结 通过仿真生成凸轮轮廓线的步骤包括建立凸轮模型、确定凸轮运动规律、进行凸轮仿真、生成凸轮轮廓线、优化凸轮轮廓线和验证凸轮轮廓线。通过这些步骤,可以设计和制造出高效可靠的凸轮,实

凸轮机构基本尺寸的确定

凸轮机构基本尺寸的确 定 Revised by Chen Zhen in 2021

教学过程设计及知识点传授: 引入: 图解法绘制凸轮轮廓是按照相对运动原理来绘制凸轮的轮廓曲线的,也就是“反转法”。用“反转法”绘制凸轮轮廓主要包含三个步骤:将凸轮的转角和从动件位移线图分成对应的若干等份;用“反转法”画出反转后从动件各导路的位置;根据所分的等份量得从动件相应的位移,从而得到凸轮的轮廓曲线。 新授内容: 一.凸轮机构压力角、基圆半径及偏距 设计凸轮机构时,不仅要使其能实现预期的运动规律,还要使其具有良好的传力性能和紧凑的结构尺寸。传力性能直接影响机构的摩擦、磨损、效率和自锁,且与机构尺寸有关。 (1)压力角与自锁 若将F力分解为沿从动件移动运动 方向的有用分力F' 和垂直从动件方向 压紧导路的有害分力F", 其关系式为: F"=F'tan a 凸轮机构的压力角与作用力的关系记住概念: 用“反转法”绘制凸轮轮廓在已知从动件位移线图和基圆半径等后,主要包含三个步骤:将凸轮的转角和从动件位移线图分成对应的若干等份;用“反转法”画出反转后从动件各导路的位置;根据所分的等份量得从动件相应的位移,从而得到凸轮的轮廓曲线

无论凸轮加给从动件作用力多大,从动件都不能运动,产生自锁。为改善受力,效率和避免自锁,压力角越小越好。若给定从动件运动规律,则压力角愈大时,基圆直径愈小,机构尺寸也愈小。 综上所述,推荐的许用压力角为:推程(工作行程): 移动从动件 [a ]=30°摆动从动件 [a ]=45°回程: 因受力较小且无自锁问题,故许用压力角可取得大些,通常 [a ]=80°(2)压力角与基圆半径及偏距 由图4-15a 、b 所示两凸轮机构可推得: 由上式可知 : α↑ r b ↓ 结构紧凑 机构传力性能不好; α↓ r b ↑ 机构尺寸↑ 机构传力性能良好。为了使机构既 有较好的传力性能,又有较紧凑的结构尺寸,设计时,通常在 ≤[ a ]前提下,尽量采用较小基圆半径。二.滚子半径的选择滚子半径对轮廓的影响 (1)凸轮理论轮廓的内凹部分由图a 可得:ρa =ρmin +ρT 实际轮廓曲率半径总大于理论轮廓曲率半径。因 而,不论选择 多大的滚子,都能做出实际 轮廓。 教学过程设计及知识点传授: 教法 s e r e d ds +-±= 22 b tan ϕ αmax α

相关主题
相关文档
最新文档