离散数学图论与系中有图题目

离散数学图论与系中有图题目
离散数学图论与系中有图题目

离散数学图论与系中有图题目

————————————————————————————————作者:————————————————————————————————日期:

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数

(1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因

为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。

(对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着

色,每个图至少需要几种颜色。 答案:(1)

()2G χ=;(2)

()3G χ=;

(3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T

要放进贮藏室保管。出于安全原因,

下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B,

4个结点、6个结点和8个结点的三次正则图

(2)

(1)

(3)

(2)(1)

P-D, S-C ,S-D ,问贮藏这8种药品至少需要多少个房间?

解 以8种药品作为结点,若两种药品不能贮在同一个室内,则它们之间有一条边,这样得右图,转化为图的正常着

色问题。(1)对各结点按度数的递减顺序排列为SRDPCTAB ;(2)对S 及不与之相邻点A ,B 着1c 色;(3)对R 及不与之

相邻点D 着2c 色;(4)对P 和C 着3c 色。故着色数()3G χ≤;又因为因S,D,P 为3K 子图,故着色数

()3G χ≥,从而

()3G χ=。因此贮藏这8种药品至少需要3个房间。贮藏方式之一为SAB, RDT, PC 。

(考试排考或老师排课让选修的学生避免冲突的问题类似处理!)

二、强连通一定单向连通,单向连通一定弱连通!

强连通图

强连通图强连通图

单向连通图

单向连通图弱连通图

弱连通图、单向连通图和强连通图

三、

均不是

哈密顿图哈密顿图

欧拉图

欧拉图同构的有向图

同构的无向图

1、设G 为无向欧拉图,求G 中一条欧拉回路的Fleury 算法如下:第1步,任取G 中的一

S

R D P C

T B A A

B T

C P D

R S K 1

K 2

K 3K 9

K 7

K 4

K 8

K 5

K 6

J 1

B 1B 3J 2B 4B 2J 3B 5

J 4

个结点0v ,令00P v =;第2步,假设0112i i i P v e v e v e =L 已选好,按下面方法从{}12,,,i E e e e -L 中选1i e +:

(1)1i e +与i e 相关联,(2)除非无别的边可供选择,否则1i e +不应该是{}12,,,i i G G e e e =-L 的断边;第3步,当第2步不能执行时,算法停止。 (有向欧拉图的欧拉回路可类似求出,可用于解决邮路问题)

邮路问题用图论的概念描述如下:在一个带权图G 中,怎样找到一条回路C ,使得C 包含G 中的每一条边至少一次,而且回路C 具有最小权。C 分以下三种情况:(1)如果G 是欧拉图,必定有欧拉回路,C 即可找到;(2)如果G 是具有从i v 到j v 的欧拉通路的半欧拉图,C 的构造如下:找到从i v 到j v 的欧拉通路及i v 到j v 的最小权通路(即最短路径)--这两条通路和并在一起就是最小权回路;(3)如果G 不是半欧拉图,一般说来,G 中包含多条边的回路,其中夫的边数与奇数结点数目有关,若奇数结点多于2,则回路中会出现更多的重复的边。问题是怎样使重复边的权综合最小。在理论上已证明:一条包括G 的所有边的回路C 具有最小权当且仅当:(1,每条边最多重复一次,(2,在G 的每个回路上,有重复边的权之和小于回路权的一半。 例:求右图所示的带权图中最优投递路线,邮局在D 点。 解 先观察奇度结点,此图中有E,F 两个。用标

号法求出其间最短路径EGF ,其权为28。然后将最短路径上的边重复一次,于是得欧拉图*

G ,

求从D 出的一条欧拉回路,如

DEGFGEBACBDCFD ,其权为281=35+8+20+20+8+40+50+30+19+6+12+10+23。

2、求接近最小权哈密顿回路的“最邻近”算法:设,,G V E W =<>是有n 个顶点的无向完全图,(1)任取0v V ∈作为始点,令L 为0v ,0k =;(2)令()(){},min ,k k w v x w v v v L =不在中,置1k v x +=。置011,1k L v v v k k +==+L ;(3)若1k n <-,转(2)

;(4)置010k L v v v v =L ,结束。(可近似解决货郎担问题) 例1 用最邻近算法求下图的最短哈密尔顿回路。

10

5

56

6148

7

14a

b

c

d e

147

6

55

e

d

c

b a

10

7

86

5

e

d

c

b

a

所得长度为14+6+5+5+7=37,与最短7+8+5+10+6=36很接近了!

10

40820

23

351261930

50

A

B C

F

E

G

D

例2 求下图的最短哈密尔顿回路。

11

12

14

10

18

14

7

1011

12

18

7

a

d c

b

a

d c

b

a

d

c

b

三条比较,最小权为47。

例3 已知A,B,C,D,E,F,G7个人中,A 会讲英语,B 会讲英语和汉语,C 会讲英语、意大利语和俄语,D 会讲日语和汉语,E 会讲意大利语和德语,F 会讲俄语,G 会讲俄语、日语和法语。能否将他们的座位安排在圆桌旁,使得每个人都能与他身边的人交谈? (按哈密尔顿回路安排就是了!)

例4 11个学生要共进晚餐,他们将坐成一个圆桌,计划要求每次晚

餐上每个学生有完全不同的邻座,这样能攻进晚餐几天?(11K 共有

()

11111552

-=条边,每条哈密尔顿回路有11条边,因而共有5条没有公共边的哈密尔顿回路,可吃5天!分别用2,3,4,5与11互素,以它们为步长能找到!) 半哈密顿图与哈密顿图补例:

补充内容:

设G 是无向完全图,若对G 的每条边指定一个方向,所得的图称为竞赛图。证明:在无又向回路(或有向圈)的竞赛图()(),D V D E D =<>中,对任意()()(),,u v V D d

u d v +

+∈≠

(用反证法,见于《离散数学习题与解析》胡辛启清华第2版)

可以证明:对于每个竞赛图D ,至多改变一条边的方向后就可以变成哈密尔顿图。

四、求最小生成树 1、破圈法过程演示

(1)令E E '=;(2)选取E '中的一条简单回路C, 设C 中权最大的边为e ,令{}E E e ''=-;(3)重复步骤(2), 直到1E V '=-为止。

1071418

12

11

b

c

d a

A B C F

G E

D 10924

6

8

1

35

7

11彼德森图

题目

10

87

6

5431119122 最后结果

29

135

6

8

86

5

3

1119

229

11135

6

810

10

87

6

53

11192291113456

7

810

2、Kruskal 算法过程演示

(1)首先将边按权值由小到大排成序列S, 令1,{[1]}i E S '==;(2)令1,i i =+选取边[]S i 与E '中的边不构成简单回路,则令{[]}E E S i ''=U ;(3)重复步骤(2), 直到1E V '=-为止。

8

2

13

5

66

5

31253

12

3

121

21

3、Prim 算法过程演示

(1)从V 中任意选取结点0v ,令0{}V v '=;(2)在V '与V V '-之间选一条权最小的边

(,)i j e v v =,其中,i j v V v V V ''∈∈-并且令{},{}j E E e V V v ''''==U U ;(3)重复步骤(2),

直到V V '=为止。

8

6

5

319

285

319

28

5

19

2

85

19

8

5

9

8

9

9

增加破圈法一例演示:

1

2

53

3

452

1

612

543

3

452

716

61

8

72

5

43

4、求下列最小生成树的权值

2

4

2

3

1

C(T)=1+2+3=6

5

6

4

1

33

12

C(T)=1+2+3+1=7

20

153

17

2328

36916

84

1

C(T)=1+3+4+8+9+23=48

9763

810

54

2

1

C(T)=1+2+3+5+7=18

716

6812

3

13

6

1717

C(T)=3+6+6+7=22

6

816

6

13

4

911

5

7

C(T)=4+5+6+7=22

67

10

8

32

3

12

11

5

49

10v 2

v 3

v 4

v 1

v 5

v 6

v 7

C(T)=2+3+4+5+6+10=30

2

3

34

7

6

510021

C(T)=2+2+3+5+6+100=118

20

15

12

10

9

8

8

74

C(T)=8+9+4+7=28

55

7

6412

331

C(T)=1+3+3+2+1=10

816

12

9

4

9

78

55558

79

4

9

12

16

8

1

2

6

6

3

3

544554453

3

6

6

2

1

C(T)=1+2+3+5+7=18

1024

5

7

8

936

1111116

398

7

5

4

210

5、在右图所示的带权图中,共有多少棵生成树,他们的权各为多少?,其中哪些是图中的最小生成树?

4

3

2

21a

d

c

b

五、求最优二叉树

对给定的实数序列12t w w w ≤≤≤L ,构造最优r 元树的递归算法:

1、求最优二元树的Huffman 算法:第一步,连接以12,w w 为权的两片树叶,得一个分支点及其所带的权12w w +;第二步,在123,,,t w w w w +L 中选出两个最小的权,连接它们对应的结点(不一定都是树叶),又得分支结点及其所带的权;重复第二步,直到形成1t -个分支点,t 片树叶为止。

2、求最优()3r r ≥元树的Huffman 算法:(1)若

1

1t r --为整数,则求法与求最优二元树的Huffman 算法类似,只是每次取r 个最小的权;(2)若1

1

t r --不为整数,得余数[1,1)s r ∈-,

将1s +个较小的权对应的树叶为兄弟放在最长的路径上,然后算法同(1)。

1、找出叶的权分别为2,3,5,7,11,13,17,19,23,29,31,37,41的最优叶加权二叉树,并求其加权路径的长度。(

()()789v V

w v L v ∈?=????∑)

3

2

5717

41

373123

14

29

13

11

2、求带权为2,3,5,7,8的最优二元树T ,并给出T 对应的二元前缀码集合。

w=7

w=7

w=8

w=6

w=9w=7w=6

w=8124

22

4

123

2

3

4

12

412

3

13

43

2

2a

d

c

b

b c d a

b

c d a

b

c d a b

c d a

b c

d

a

b

c

d

a b

c d

a

(B={00,010,011,10,11},W(T)=253233272855?+?+?+?+?=)

8

73

2

5

3、求带权为1,2,3,4,5,6,7,8的最优二元树T ,并给出T 对应的二元前缀码集合。 (B={000,001,01000,01001,0101,011,10,11},W(T)=102)

4、(1)求带权为1,1,2,3,3,4,5,6,7的最优三元树;(2)求带权为1,1,2,3,3,4,5,6,7,8的最优三元树

4

1015

32

7

6

5

4

33

21

1

2

7

20

1240

811

2

3

3

45

6

7

C(T1)=61,C(T2)=81

六、如图G

g

f

e d

c

b

a

v 2

v 1v 4

v 3

v 5

图中的边割集有123{,,},{,,},{,,},S a f d S a e b S b c f ===

12

6

5

43

8

7

5

3

28

7

65

43

2

1

4567{,,},{},{,,,},{,,,}S c e d S g S a e f c S b d e f ====

图中的点割集为14{}V v =

(有割点的连通图不能是哈密尔顿图。因而若是G 连通图且有割点v ,则G v -中至少有两个连通分支,即(){}p G v v -≥,与定理矛盾。) 七、例1 如图G

1

14

13

12

11

109

876

5

432

v 1

v 2

v 4

v 3v 5

v 6v 8

v 7

图中的一个对集为边集(5,12,3).一个最大对集为M*=(1,3,11,14),

完美对集有:(1,3,11,14),(1,3,10,12),(1,6,9,14),(1,7,8,14),(2,4,11,14),(2,4,10,12), (2,5,7,14),(1,7,10,13)

G 的全体结点是一个覆盖,一个最小覆盖为*58146(,,,,)K v v v v v =

独立集有如16(,)I v v =,最大独立集为*

716(,,)I v v v =

边覆盖有如(1,6,9,13,14)L =,最小边覆盖为*(1,7,8,14)L = 可以验证定理****358,448I K V M L V +=+==+=+== 由于该无孤立点的图中****,K M I L ≠≠,从而不是二分图。 例 2 如右彼得森图。

红点集合为一最小点覆盖集,白点集合为最大点独立集,点覆盖数06α=,点独立数04β=;

绿边组成最小边覆盖集,这里也是一个最大匹配,边覆盖数

15α=,边独立数(匹配数)15β=

(彼得森图不是平面图,因为它的顶点数10n =,边数15m =,而它的每个面至少由5条边组成,由2n m r -+=有推论()55215833

m n ≤

-?≤?矛盾) 例3 现有4名教师:张、王、李、赵,要求他们去教4门课程:数学、物理、电工和计算

机科学。已知张能教数学和计算机科学,王能教物理和电工,李能教数学、物理和电工,而赵只能教电工。如何安排才能使4位教师都能授课,而且每门课都有人教?共有几种方案?(画出二部图,满足相异性条件,因而存在完备匹配。

该题匹配也是完美的,方案只有一种)

a e d

c

b f j i h g 张数学李计算机物理王电工

八、作出下列度数列的非同构图

1、度数列d为2,2,2,3,3,4,5,5的八阶13边。可作图以下两图为例:

2、度数列d为2,3,3,3,4,4,5的七阶12边。可作图以下两图为例:

3、度数列d为1,3,3,4,6,6,7的七阶无向图。可作图以下两图为例:

4、6阶2-正则图只有两种非同构情况

5、6阶3-正则图也只有两种非同构情况

九、求最短通路的过程演示

[8]

[4]

(7)

(3)

3

2

(2)

2

(3)

(4)

[0]

[3][7][6][4]

(7)

(3)

3

2

2

2

(3)

(4)

[0]

[3][7][6][6][3][0]

(4)

(3)

2

2

2

3

(3)

7

[4]

[4]

7

(3)

32

2

23

(4)

[0]

[3][3][0]

4

3

22

2

3(3)

7

7

3

32

2

2

3

4

v

a

b

w

c

d d

c

w

b

a

v

v

a b

w

c

d

d

c

w

b

a v

v

a b

w

c

d

v

a b

w

c

d

1、Dijkstra 算法(1959年提出)是公认的好算法:第一步,给始点1v 标上P 标号()1d v =∞,给其它的点标上T 标号()

1,2j j d v w j n =≤≤(,i j v v 没有边时ij w =∞);第二步,在所有的T 标号中取最小者,设结点k v 的T 标号()k d v 最小,则将k v 的T 标号改为P 标号,并计算具有T 标号的其它各个结点的T 标号:新的()

()

(){

}

min ,j j k d v d v d v =kj 旧的+w ;第三步,若终点已具有P 标号,则此标号,即为所求最短路径的权,算法终止;否则转到第二步。

2、Warshall 算法:第一步,令()

()()

()

00ij ij W W w w ===;第二步,从()0

W 出发,依次构

n 阶矩阵()()()12,,,n W W W L 。各()()

()

k k ij

W w =个的定义为:

()()()()()

()111min ,,k k k k k ij ij ik kj ij w w w w w ---=+是从i v 到j v 中间结点仅属于{}12,,,k v v v L 的通路中

权最小的通路之权。最后得到的()

n W

的元素()

n ij w 就是是从i v 到j v 的最短路径的权。

72

2

2

7

3

335

6

6

1144

4

884441

16

6

5

33

37

2

2

2

772

2

2

7

33

35

6

6

1144

4

872

2

2

7

33

35

6611

44

4872

2

2

7

33

35

6

6

1144

4

8844

41

166

5

33

37

2

2

2

7u 0u 0u 0u 0u 0u 0

1、对右图给出的附权图G ,求出结点1v 到其余个节点的最短路径

()1d v ()2d v ()3d v ()4d v ()5d v ()6d v ()7d v

*∞ 3

9

∞ ∞

∞ ∞ *∞ *

13/v *

25/v 210/v 24/v ∞

*∞ *13/v *25/v 59/v 24/v

513/v

∞ *∞ *13/v

*25/v 59/v

*24/v 513/v

*∞

*13/v *25/v *59/v *24/v 411/v 417/v

*∞ *13/v *25/v *59/v *24/v 411*/v 615/v *∞

*13/v

*25/v *59/v

*24/v 411*/v *615/v

注:例如对3v ,新的()()(){}

{}332min ,min 5d v d v d v ===23旧的+w 9,2+3,故3v 的临时T 标号改为5。在5的右下方记上2v ,表明是因为结点2v 的标号成为固定标号P 而引起3

v 的T 标号的改变。最后回溯,由第7列*

615/v 找到6v ,再由第6列411*/v 找到4v ,再由

9

4

72

5

9

4

82

1

73

v 1

v 2

v 4

v 6

v 3

v 5v 7

第4列*59/v 找到5v ,再由第5列*

24/v 找到2v ,…, 得到最短路径125467v v v v v v 。

2、对右图所示的有向图,用Warshall 算法求任意两结点之间的最短路径的权。

()0724

134221W W ∞∞∞∞??

?∞∞

∞ ? ?

∞∞∞∞∞==

?∞∞∞∞∞ ? ?

∞∞∞∞ ? ?∞∞∞

∞∞?? ()1

724

134292

4

1W ∞∞∞∞??

?∞∞∞

∞ ? ?∞∞∞∞∞=

?∞∞∞∞∞ ? ?

∞∞ ? ?∞∞∞∞∞?

?,()271128

413485292410152W ∞∞??

?

∞∞∞∞ ? ?

∞∞∞∞∞= ?∞

∞∞ ? ?

∞ ?

?∞∞∞??

()3

71128144

17348511292410

51528W ∞??

?∞∞∞ ? ?∞∞∞∞∞=

?∞∞ ? ?

? ?∞∞?

?,()461027134173485112824951528W ∞??

?

∞∞∞ ? ?

∞∞∞∞∞= ?∞

∞ ? ?

?

?∞∞??

()5

9692712393

5

1

637479510282495414

6

2

7W ??

? ? ?∞∞∞∞∞=

? ? ?

? ??

?,()696927123735167479537

479510262475414627W ??

?

? ?

= ? ? ?

?

??

?

注:因为所给图是强连通的,所以()

6W

中不出现∞。例如()

052w =∞,而()

1529w =,因为

()()()()

{}

{}100052525112min ,min ,279w w w w =+=∞+=,这对应通路512v v v ,通路中间结点属于{}1,1v k =;再如()()()()

{}{}433352525442min ,min 9,448w w w w =+=+=,这对应通路5142v v v v ,

这时通路中间结点属于{}1234,,,,4v v v v k =。

十、求关键通路示例

1

42

2

314

7

2

v 1

v 4

v 2

v 3

v 6

v 5

TE=8=max{6+2,3+2,5+2}TL=8=TE

TE=6,TL=6TE=3TL=4TE=5,TL=5=min{8-2,6-1}

TE=1,TL=3

TE=0TL=0

35

2

2

2

21

1

1

1

u 1

u 2

u 5

u 6

u 3

u 4

十一、作关系的哈斯图、简化关系图的简化过程 例1、设{1,2,3,4,5,6},A =“|”是A 上的整除关系。

哈斯图

第二步化简

第一步化简

a:关系图

1

32

4

6

6

4

2

316

4

2

31

1

243

6

例2、设{2,4,5,10,12,20,25},,|A A =<>的哈斯图如右所示, 由图看出该偏序集没有最大元和最小元,12、20、25都是极大元,

2和5都是极小元。考虑{2,4,10}B =,则B 没有最大元,有最小元2,有极大元4和10,有极小元2。在这个偏序集中:2是B 的一个下界也是下确界,20是B 的一个上界也是上确界;C={4,10,25}既没有上界,也没有下界;D={2,4}的一个下界是2也是下确界,4、12和20都是D 的上界,4也是D 的上确界。 例3、设{1,2,3,4,5,8,12,24},,|A A =<>的哈斯图如右所示,

由图看出该偏序集没有最大元,最小元为1;5,24是极大元,1是极小元。 例4、设{2,3,4,8,9,10,11},,|A A =<>的哈斯图如右所示,

由图看出该偏序集没有最大元和最小元;8,9,10,11是极大元,2,3,11是极小元。 例4、3个偏序集的哈斯图如右所示,

则(1)h 是极大也是最大元,,,a b c 为极小元,无最小元;(2),,,o p q r 为极大元,无最大元,j 为极小元,且是最小元;(3)z 为极大最大元,u 为极小最小元; 满足条件e x ≤的元素有

{}

,,,e f g h ,

{}{}{}{}lub ,,lub ,,lub ,,,glb ,d c f p m p w y v z a g ===不存在

24125

1020

25

244

1

53

1282

48103

911h f d a b e g

c

o

m p k

j n q r

z

w v

u

y

x

离散数学图论与系中有图题目

离散数学图论与系中有图题目

————————————————————————————————作者:————————————————————————————————日期:

图论中有图题目 一、 没有一个简单的办法能确定图的色数以及用尽可能少的颜色给图的节点着色。Welch-Powell 给出了一个使颜色数尽可能少(不一定最少)的结点着色方法,在实际使用中比较有效: 第1步、 将图的结点按度数的非增顺序排列;第2步、用第1种颜色给第1个结点着色,并按照结点排列顺序,用同一种颜色给每个与前面已着色的结点不邻接的结点着色;第3步、换一种颜色对尚未着色的结点按上述方法着色,如此下去,直到所有结点全部着色为止。 例1 分别求右面两图的色数 (1)由于(1)中图G 中无奇数长的基本回路,由定理可知()2G χ=。 (2)由于(2)中图G 含子图轮图4W ,由于()44W χ=,故()4G χ≥。又因 为此图的最大度()4G ?=,G 不是完全图,也不是奇数长的基本回路,由定理可知()()4G G χ≤?=,因而()4G χ=。 (对n 阶轮图n W ,n 为奇数时有()3n W χ=,n 为偶数时有()4n W χ=;对n 阶零图n N ,有()1n N χ=;完全图n K ,有()n K n χ=;对于二部图12,,,G V V E E =<>=Φ时即()1n N χ=,E ≠Φ时即()2G χ=;在彼得森图G 中,存在奇数长的基本回路,因而()3G χ≥,又彼得森图既不是完全图也不是长度为奇数的基本回路,且()3G ?=,由定理()3G χ≤,故()3G χ=) 例 2 给右边三个图的顶点正常着 色,每个图至少需要几种颜色。 答案:(1) ()2G χ=;(2) ()3G χ=; (3)()4G χ= 例3 有8种化学品A,B,C,D,P,R,S,T 要放进贮藏室保管。出于安全原因, 下列各组药品不能贮在同一个室内:A-R, A-C, A-T, R-P, P-S, S-T, T-B, B-D, D-C, R-S, R-B, 4个结点、6个结点和8个结点的三次正则图 (2) (1) (3) (2)(1)

离散数学期末试题及答案完整版

离散数学期末试题及答 案 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

326《离散数学》期末考试题(B ) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ), )(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二.1. 若n B m A ==||,||,则=?||B A ( ),A 到B 的2元关系共有( )个,A 上的2元关系共有( )个. 2. 设A = {1, 2, 3}, f = {(1,1), (2,1), (3, 1)}, g = {(1, 1), (2, 3), (3, 2)}和h = {(1, 3), (2, 1), (3, 1)},则( )是单射,( )是满射,( )是双射. 3. 下列5个命题公式中,是永真式的有( )(选择正确答案的番号). (1)q q p p →→∧)(; (2))(q p p ∨→; (3))(q p p ∧→; (4)q q p p →∨∧?)(; (5)q q p →→)(. 4. 设D 24是24的所有正因数组成的集合,“|”是其上的整除关系,则3的补元( ),4的补元( ),6的补元( ).

离散数学测验题--图论部分(优选.)

离散数学图论单元测验题 一、单项选择题(本大题共10小题,每小题2分,共20分) 1、在图G =中,结点总度数与边数的关系是( ) (A) deg(v i )=2∣E ∣ (B) deg(v i )=∣E ∣ (C)∑∈=V v E v 2)deg( (D) ∑∈=V v E v )deg( 2、设D 是n 个结点的无向简单完全图,则图D 的边数为( ) (A) n (n -1) (B) n (n +1) (C) n (n -1)/2 (D) n (n +1)/2 3、 设G =为无向简单图,∣V ∣=n ,?(G )为G 的最大度数,则有 (A) ?(G )n (D) ?(G )≥n 4、图G 与G '的结点和边分别存在一一对应关系,是G ≌G '(同构)的( ) (A) 充分条件 (B) 必要条件 (C)充分必要条件 (D)既非充分也非必要条件 5、设},,,{d c b a V =,则与V 能构成强连通图的边集合是( ) (A) },,,,,,,,,{><><><><><=c d b c d b a b d a E (B) },,,,,,,,,{><><><><><=c d d b c b a b d a E (C) },,,,,,,,,{><><><><><=c d a d c b a b c a E 6、有向图的邻接矩阵中,行元素之和是对应结点的( ),列元素之和是对应结点的( ) (A)度数 (B) 出度 (C)最大度数 (D) 入度 7、设图G 的邻接矩阵为 ?? ?? ?? ? ? ????????0101010010000011100000100 则G 的边数为( ). A .5 B .6 C .3 D .4 8、设m E n V E V G ==>=<,,,为连通平面图且有r 个面,则r =( ) (A) m -n +2 (B) n -m -2 (C) n +m -2 (D) m +n +2 9、在5个结点的二元完全树中,若有4条边,则有 ( )片树叶。 (A) 2 (B) 3 (C) 5 (D) 4 10、图2是( ) (A) 完全图 (B)欧拉图 (C) 平面图 (D) 哈密顿图

离散数学 ( 第1次 )

第1次作业 一、单项选择题(本大题共30分,共 15 小题,每小题 2 分) 1. 图G所示平面图deg(R3)为 A. 4 B. 5 C. 6 D. 3 2. 在完全m叉树中,若树叶数为t,分枝点数为i,则有()。 A. (m-1)it-1

C. (m-1)i=t-1 D. (m-1)i≤t-1 3. 命题a):如果天下雨,我不去。写出命题a)的逆换式。 A. 如果我不去,天下雨。 B. 如果我去,天下雨。 C. 如果天下雨,我去。 D. 如果天不下雨,我去。 4. 设无向图中有6条边,3度与5度顶点各1个,其余顶点都是2度点,问该图有多少个顶点() A. 5 B. 4

C. 2 D. 6 5. 假设A={a,b,c,d},考虑子集S={{a,b},{b,c},{d}},则下列选项正确的是()。 A. S是A的覆盖 B. S是A的划分 C. S既不是划分也不是覆盖 D. 以上选项都不正确 6. 没有不犯错误的人。M(x):x为人。F(x):x犯错误。则命题可表示为()。 A. (?x)(M(x)→F(x) B. (?x)(M(x)?F(x) C.

(?x)(M(x)?F(x)) D. (?x)(M(x)→F(x) 7. 命题逻辑演绎的CP规则为() A. 在推演过程中可随便使用前提 B. 在推演过程中可随便使用前面演绎出的某些公式的逻辑结果 C. 如果要演绎出的公式为B→C形式,那么将B作为前提,演绎出C D. 设?(A)是含公式A的命题公式,B<=>A,则可以用B替换?(A)中的A 8. 设G是有6个结点的完全图,从G中删去()条边,则得到树。 A. 6 B. 9 C. 10 D.

【浙江工商大学】《离散数学》期末考试题(B)

《离散数学》期末考试题(B) 一、填空题(每小题3分,共15分) 1.设,,},,{{b a b a A =?},则-A ? = ( ),-A {?} = ( ),)(A P 中的元素个数=|)(|A P ( ). 2.设集合A 中有3个元素,则A 上的二元关系有( )个,其中有( )个是A 到A 的函数. 3.谓词公式))()(())()((y P y Q y x Q x P x ?∧?∧→?中量词x ?的辖域为 ( ), 量词y ?的辖域为( ). 4.设}24,12,8,6,4,3,2,1{24=D ,对于其上的整除关系“|”,元素( )不存在补元. 5.当n ( )时,n 阶完全无向图n K 是平面图,当当n 为( )时,n K 是欧拉图. 二、单选题(每小题3分,共15分) 1.设R 是集合A 上的偏序关系,1-R 是R 的逆关系,则1 -?R R 是A 上的 (A)偏序关系 (B)等价关系 (C)相容关系 (D)以上结论都不成立 2.由2个命题变元p 和q 组成的不等值的命题公式的个数有 (A)2 (B)4 (C)8 (D)16 3.设p 是素数且n 是正整数,则任意有限域的元素个数为 (A)n p + (B)pn (C)n p (D)p n 4.设R 是实数集合,≤是其上的小于等于关系,则(R, ≤)是 (A)有界格 (B)分配格 (C)有补格 (D)布尔格 5.3阶完全无向图3K 的不同构的生成子图有 (A)2 (B)3 (C)4 (D)5 三、判断题(每小题3分,共15分): 正确打“√”,错误打“×”. 1.若一个元素a 既存在左逆元l a ,又存在右逆元r a ,则r l a a =. ( ) 2.命题联结词→不满足结合律. ( ) 3.在Z 8 = {0,1,2,3,4,5,6,7}中,2关于“?8”的逆元为 4. ( ) 4.整环不一定是域. ( )

离散数学的基础知识点总结

离散数学的基础知识点总结 第一章命题逻辑 1.前键为真,后键为假才为假;<—>,相同为真,不同为假;2?主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有2n个极小项或极大项,这2n为(0~2n-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第二章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系; 2.全称量词用蕴含T,存在量词用合取“; 3.既有存在又有全称量词时,先消存在量词,再消全称量词;

第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幕集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幕集P(A)有2°个元素,|P(A)|= 2|A|= 2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔AXB的基数为mn , A到B上可以定义2mn种不同的关系; 2.若集合A有n个元素,则|A X\|= n2, A上有2n个不同的关系; 3.全关系的性质:自反性,对称性,传递性; 空关系的性质:反自反性,反对称性,传递性; 全圭寸闭环的性质:自反性,对称性,反对称性,传递性; 4.前域(domR):所有元素x组成的集合;

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(P∧(Q∧R))∨(Q∧R)∨(P∧R)R 证明: 左端(P∧Q∧R)∨((Q∨P)∧R) ((P∧Q)∧R))∨((Q∨P)∧R) ((P∨Q)∧R)∨((Q∨P)∧R) ((P∨Q)∨(Q∨P))∧R ((P∨Q)∨(P∨Q))∧R T∧R(置换)R 2) x (A(x)B(x))xA(x)xB(x) 证明:x(A(x)B(x))x(A(x)∨B(x)) x A(x)∨xB(x) xA(x)∨xB(x) xA(x)xB(x) 二、求命题公式(P∨(Q∧R))(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))(P∧Q∧R)(P∨(Q∧R))∨(P∧Q∧R)) (P∧(Q∨R))∨(P∧Q∧R) (P∧Q)∨(P∧R))∨(P∧Q∧R) (P∧Q∧R)∨(P∧Q∧R)∨(P∧Q∧R))∨(P∧Q∧R))∨(P∧Q∧R) m0∨m1∨m2∨m7 M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D,(C∨D)E, E(A∧B),(A∧B)(R∨S)R∨S证明:(1) (C∨D) E ?P (2) E(A∧B) ??P (3) (C∨D)(A∧B) T(1)(2),I (4) (A∧B)(R∨S)??P (5) (C∨D)(R∨S) ? T(3)(4),I (6) C∨D P (7) R∨S T(5),I 2) x(P(x)Q(y)∧R(x)),xP(x)Q(y)∧x(P(x)∧R(x)) 证明(1)xP(x) P

(2)P(a) T(1),ES (3)x(P(x)Q(y)∧R(x)) P (4)P(a)Q(y)∧R(a) T(3),US (5)Q(y)∧R(a) T(2)(4),I (6)Q(y) T(5),I (7)R(a) T(5),I (8)P(a)∧R(a) T(2)(7),I (9)x(P(x)∧R(x)) T(8),EG (10)Q(y)∧x(P(x)∧R(x)) T(6)(9),I 四、某班有25名学生,其中14人会打篮球,12人会打排球,6人会打篮球和排球,5人会打篮球和网球,还有2人会打这三种球。而6个会打网球的人都会打另外一种球,求不会打这三种球的人数(10分)。 解:A,B,C分别表示会打排球、网球和篮球的学生集合。则|A|=12,|B|=6,|C|=14,|A∩C|=6,|B∩C|=5,|A∩B∩C|=2。 先求|A∩B|。 ∵6=|(A∪C)∩B|=|(A∩B)∪(B∩C)|=|(A∩B)|+|(B∩C)|-|A∩B∩C|=|(A∩B)|+5-2,∴|(A∩B)|=3。 于是|A∪B∪C|=12+6+14-6-5-3+2=20。不会打这三种球的人数25-20=5。五、已知A、B、C是三个集合,证明A-(B∪C)=(A-B)∩(A-C)(10分)。 证明:∵x A-(B∪C) x A∧x(B∪C) xA∧(xB∧x C) (x A∧x B)∧(x A∧xC) x(A-B)∧x(A-C) x(A-B)∩(A-C) ∴A-(B∪C)=(A-B)∩(A-C) 六、已知R、S是N上的关系,其定义如下:R={| x,yN∧y=x2} R*S={| x,y N∧y=x2+1} S*R={<x,y>| x,yN∧y=(x+1)2},R{1,2}={<1,1>,<2,4>},S[{1,2}]={1,4}。 七、设R={<a,b>,,<c,a>},求r(R)、s(R)和t(R) (15分)。 解:r(R)={,,,<b,b>,

离散数学期末考试试题及答案

离散数学试题(B卷答案1) 一、证明题(10分) 1)(?P∧(?Q∧R))∨(Q∧R)∨(P∧R)?R 证明: 左端?(?P∧?Q∧R)∨((Q∨P)∧R) ?((?P∧?Q)∧R))∨((Q∨P)∧R) ?(?(P∨Q)∧R)∨((Q∨P)∧R) ?(?(P∨Q)∨(Q∨P))∧R ?(?(P∨Q)∨(P∨Q))∧R ?T∧R(置换)?R 2) ?x (A(x)→B(x))??xA(x)→?xB(x) 证明:?x(A(x)→B(x))??x(?A(x)∨B(x)) ??x?A(x)∨?xB(x) ???xA(x)∨?xB(x) ??xA(x)→?xB(x) 二、求命题公式(P∨(Q∧R))→(P∧Q∧R)的主析取范式和主合取范式(10分)。 证明:(P∨(Q∧R))→(P∧Q∧R)??(P∨(Q∧R))∨(P∧Q∧R)) ?(?P∧(?Q∨?R))∨(P∧Q∧R) ?(?P∧?Q)∨(?P∧?R))∨(P∧Q∧R) ?(?P∧?Q∧R)∨(?P∧?Q∧?R)∨(?P∧Q∧?R))∨(?P∧?Q∧?R))∨(P∧Q∧R) ?m0∨m1∨m2∨m7 ?M3∨M4∨M5∨M6 三、推理证明题(10分) 1)C∨D, (C∨D)→?E,?E→(A∧?B), (A∧?B)→(R∨S)?R∨S 证明:(1) (C∨D)→?E P (2) ?E→(A∧?B) P (3) (C∨D)→(A∧?B) T(1)(2),I (4) (A∧?B)→(R∨S) P (5) (C∨D)→(R∨S) T(3)(4), I (6) C∨D P (7) R∨S T(5),I 2) ?x(P(x)→Q(y)∧R(x)),?xP(x)?Q(y)∧?x(P(x)∧R(x)) 证明(1)?xP(x) P

离散数学知识点总结

总结离散数学知识点 第二章命题逻辑 1.→,前键为真,后键为假才为假;<—>,相同为真,不同为假; 2.主析取范式:极小项(m)之和;主合取范式:极大项(M)之积; 3.求极小项时,命题变元的肯定为1,否定为0,求极大项时相反; 4.求极大极小项时,每个变元或变元的否定只能出现一次,求极小项时变元不够合取真,求极大项时变元不够析取假; 5.求范式时,为保证编码不错,命题变元最好按P,Q,R的顺序依次写; 6.真值表中值为1的项为极小项,值为0的项为极大项; 7.n个变元共有n2个极小项或极大项,这n2为(0~n2-1)刚好为化简完后的主析取加主合取; 8.永真式没有主合取范式,永假式没有主析取范式; 9.推证蕴含式的方法(=>):真值表法;分析法(假定前键为真推出后键为真,假定前键为假推出后键也为假) 10.命题逻辑的推理演算方法:P规则,T规则 ①真值表法;②直接证法;③归谬法;④附加前提法; 第三章谓词逻辑 1.一元谓词:谓词只有一个个体,一元谓词描述命题的性质; 多元谓词:谓词有n个个体,多元谓词描述个体之间的关系;

2.全称量词用蕴含→,存在量词用合取^; 3.既有存在又有全称量词时,先消存在量词,再消全称量词; 第四章集合 1.N,表示自然数集,1,2,3……,不包括0; 2.基:集合A中不同元素的个数,|A|; 3.幂集:给定集合A,以集合A的所有子集为元素组成的集合,P(A); 4.若集合A有n个元素,幂集P(A)有n2个元素,|P(A)|=||2A=n2; 5.集合的分划:(等价关系) ①每一个分划都是由集合A的几个子集构成的集合; ②这几个子集相交为空,相并为全(A); 6.集合的分划与覆盖的比较: 分划:每个元素均应出现且仅出现一次在子集中; 覆盖:只要求每个元素都出现,没有要求只出现一次; 第五章关系 1.若集合A有m个元素,集合B有n个元素,则笛卡尔A×B的基 2种不同的关系; 数为mn,A到B上可以定义mn 2.若集合A有n个元素,则|A×A|=2n,A上有22n个不同的关系;

《离散数学》期末考试试题

《离散数学》期末考试试题 一、 填空题(每空2分,合计20分) 1. 设个体域为{2,3,6}D =-, ():3F x x ≤,():0G x x >。则在此解释下公式 ()(()())x F x G x ?∧的真值为______。 2. 设:p 我是大学生,:q 我喜欢数学。命题“我是喜欢数学的大学生”为可符合化 为 。 3. 设{1,2,3,4}A =,{2,4,6}B =,则A B -=________,A B ⊕=________。 4. 合式公式()Q P P ?→∧是永______式。 5. 给定集合{1,2,3,4,5}A =,在集合A 上定义两种关系: {1,3,3,4,2,2}R =<><><>, {4,2,3,1,2,3}S =<><><>, 则_______________S R =ο,_______________R S =ο。 6. 设e 是群G 上的幺元,若a G ∈且2a e =,则1a -=____ , 2a -=__________。 7. 公式))(()(S Q P Q P ?∧?∨∧∨?的对偶公式为 。 8. 设{2,3,6,12}A =, p 是A 上的整除关系,则偏序集,A <>p 的最大元是________,极小元是_ _。 9. 一棵有6个叶结点的完全二叉树,有_____个内点;而若一棵树有2个结点度数为2,一 个结点度数为3,3个结点度数为4,其余是叶结点,则该树有_____个叶结点。 10. 设图,G V E =<>, 1234{v ,v ,v ,v }V =,若G 的邻接矩阵????????????=0001001111011010A ,则1()deg v -=________, 4()deg v +=____________。 二、选择题(每题2分,合计20分) 1.下列各式中哪个不成立( )。 A 、)()())()((x xQ x xP x Q x P x ?∨??∨? ; B 、)()())()((x xQ x xP x Q x P x ?∨??∨?; C 、)()())()((x xQ x xP x Q x P x ?∧??∧?; D 、Q x xP Q x P x ∧??∧?)())((。

数学建模入门基本知识

数学建模知识 ——之新手上路一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图像、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析

离散数学图论练习题

图论练习题 一.选择题 1、设G是一个哈密尔顿图,则G一定是( )。 (1) 欧拉图(2) 树(3) 平面图(4)连通图 2、下面给出的集合中,哪一个是前缀码?() (1) {0,10,110,101111}(2) {01,001,000,1} (3) {b,c,aa,ab,aba}(4) {1,11,101,001,0011} 3、一个图的哈密尔顿路是一条通过图中()的路。 4、设G是一棵树,则G 的生成树有( )棵。 (1) 0(2) 1(3) 2(4) 不能确定 5、n阶无向完全图Kn 的边数是( ),每个结点的度数是( )。 6、一棵无向树的顶点数n与边数m关系是()。 7、一个图的欧拉回路是一条通过图中( )的回路。 8、有n个结点的树,其结点度数之和是()。 9、下面给出的集合中,哪一个不是前缀码( )。 (1) {a,ab,110,a1b11} (2) {01,001,000,1} (3) {1,2,00,01,0210} (4) {12,11,101,002,0011} 10、n个结点的有向完全图边数是( ),每个结点的度数是( )。 11、一个无向图有生成树的充分必要条件是( )。 12、设G是一棵树,n,m分别表示顶点数和边数,则 (1) n=m (2) m=n+1 (3) n=m+1 (4) 不能确定。 13、设T=〈V,E〉是一棵树,若|V|>1,则T中至少存在( )片树叶。 14、任何连通无向图G至少有( )棵生成树,当且仅当G 是( ),G的生成树只有一棵。 15、设G是有n个结点m条边的连通平面图,且有k个面,则k等于: (1) m-n+2 (2) n-m-2 (3) n+m-2 (4) m+n+2。 16、设T是一棵树,则T是一个连通且( )图。 17、设无向图G有16条边且每个顶点的度数都是2,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 16 18、设无向图G有18条边且每个顶点的度数都是3,则图G有( )个顶点。 (1) 10 (2) 4 (3) 8 (4) 12

离散数学-期末考试卷-A卷

离散数学-期末考试卷-A卷

东莞理工学院城市学院(本科)试卷(A卷) 2013-2014学年第一学期 开课单位:计算机与信息科学系,考试形式:闭卷,允许带入场 科目:离散数学,班级:软工本2012-1、2、3 姓名:学号: 题序一二三四总分 得分 A评 卷人 一、单项选择题(每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,错选、多选或未选均无分。 1. 下述不是命题的是( ) A. 做人真难啊! B. 后天是阴天。 C. 2是偶数。 D. 地球是方的。 2. 命题公式P→(P∨Q∨R)是( ) A. 永假的 B. 永真的 C. 可满足的

D. 析取范式 3. 命题公式﹁B→﹁A等价于( ) A. ﹁A∨﹁ B B. ﹁(A∨B) C. ﹁A∧﹁ B D. A→B 4.设P:他聪明,Q:他用功,命题“他虽聪明但不用功”的符号化正确的是()A.?P∧Q B.P∧?Q C.P→?Q D.P∨?Q 5.设A(x):x是人,B(x):x犯错误,命题“没有不犯错误的人”符号化为()A.?x(A(x))∧B(x) B.??x( A(x)→?B(x) ) C.??x( A(x)∧B(X)) D.??x( A(x)∧?B(x) ) 6. 设有A={a,b,c}上的关系R={,,,},则R具有( ) A. 自反性 B. 反自反性 C. 传递性 D. 反对称性

7. 设A={1,2,3,4,5,6},B={a,b,c,d,e},以下哪一个关系是从A到B的满射函数( ) A. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>} B. f={<1,e>,<2,d>,<3,c>,<4,b>,<5,a>,<6,e>} C. f={<1,a>,<2,b>,<3,c>,<4,a>,<5,b>,<6,c>} D. f={<1,a>,<2,b>,<3,c>,<4,d>,<5,e>,<1,b>} 8.设简单图G所有结点的度数之和为10,则G一定有() A.3条边B.4条边C.5条边 D.6条边 9.下列不.一定是树的是() A.每对结点之间都有通路的图 B.有n个结点,n-1条边的连通图 C.无回路的连通图D.连通但删去一条边则不连通的图 10.下列各图中既是欧拉图,又是哈密顿图的是()

离散数学期末考试题

《离散数学》复习题 一、单项选择题(每小题2分,共20分) 1、下列命题中是命题的是( ) A 、 7>+y x B 、雪是黑色的 C 、严禁吸烟 D 、我正在说谎 2下列命题联结词集合中,哪个不是极小全功能集( )。 A 、{,}刭 B 、{,}刳 C 、{}- D 、{,}佼 3、下列公式中哪个不是简单析取式( )。 A 、p B 、p q ∨ C 、()p q ?∨ D 、p q ?∨? 4、设个体域{,}A c d =,公式()()x P x x S x ?∧?在A 中消去量词后应为( ) A ()()P x S x ∧ B (()())(()( P c P d S c S d ∧∧∨ C ()()P c S d ∧ D ()() () (P c P d S c S d ∧ ∧∨ 5、下列是命题公式p ∧(q ∨┓r)的成真指派的是( ) A.110,111,100 B.110,101,011 C.所有指派 D.无 6、下列命题中( )是正确的。 A. 若图G 有n 个顶点,则G 的各顶点的度和为2n; B. 无向树中任意两点之间均相互可达; C. 若有向图G 是弱连通的,则它必定也是单向连通; D. 若无向带权图G 是连通的,则其最小生成树存在且唯一。

7、正整数集合Z +的以下四个划分中,划分块最多的是( ) A .1π={{x }︱x ∈Z + } B .2π= {Z + } C. 3π={12,S S },1S 为素数集,21S Z S + =- D .3π={12,S S ,3S },i S 为Z +中元素除以3的余数 8、给定下列各图: ⑴G 1=,其中V 1=(a ,b ,c ,d ,e), E 1={(a 、b ),(b 、c ),(c 、d ),(a 、e )} ⑵G 2=,其中V 2=V 1, E 2={(a 、b ),(b 、e ),(e 、b ),(d 、e )} ⑶G 3=,其中V 3=V 1, E 3={(a 、b ),(b 、e ),(e 、d ),(c 、c ), (e 、d )} ⑷D 4=,其中V 4=V 1, E 4={} 在以上4个图中A ( )为简单图,B ( )为多重图。 供选答案:A : a: ⑴⑶ b :⑶⑷ c :⑴⑷ B : a :⑵⑶ b :⑴⑵ c :⑴⑷ 9、设X={1, 2, 3, 4},Y={a, b, c, d},则下列关系中为函数的是( )。 A 、{<1, a><1, b><2, c>} B 、{<1, a><2, d><3, c><4, b>} C 、 {<1, a><2, a><3, b>} D 、{<1, a><1, b><2, b><4, b>} 10、设,G V E =<>为无向图,u,v ?V ,u ≠v ,若u,v 连通,则( )。 A 、(,)0d u v > B 、(,)0d u v = C 、(,)0d u v < D 、(,)0d u v 3 二、填空题(每空3分,共30分) 1、设P :我有钱,Q :我去看电影。命题“虽然我有钱,但我不去看电影”符号化为 。

离散数学第七章图的基本概念知识点总结docx

图论部分 第七章、图的基本概念 7.1 无向图及有向图 无向图与有向图 多重集合: 元素可以重复出现的集合 无序积: A&B={(x,y) | x∈A∧y∈B} 定义无向图G=, 其中 (1) 顶点集V≠?,元素称为顶点 (2) 边集E为V&V的多重子集,其元素称为无向边,简称边. 例如, G=如图所示, 其中V={v1, v2, …,v5}, E={(v1,v1), (v1,v2), (v2,v3), (v2,v3), (v2,v5), (v1,v5), (v4,v5)} , 定义有向图D=, 其中 (1) V同无向图的顶点集, 元素也称为顶点 (2) 边集E为V?V的多重子集,其元素称为有向边,简称边. 用无向边代替D的所有有向边所得到的无向图称作D的基图,右图是有向图,试写出它的V和E 注意:图的数学定义与图形表示,在同构(待叙)的意义下是一一对应的

通常用G表示无向图, D表示有向图, 也常用G泛指 无向图和有向图, 用e k表示无向边或有向边. V(G), E(G), V(D), E(D): G和D的顶点集, 边集. n 阶图: n个顶点的图 有限图: V, E都是有穷集合的图 零图: E=? 平凡图: 1 阶零图 空图: V=? 顶点和边的关联与相邻:定义设e k=(v i,v j)是无向图G=的一条边, 称v i,v j 为e k的端点, e k与v i (v j)关联. 若v i ≠v j, 则称e k与v i (v j)的关联次数为1;若v i = v j, 则称e k为环, 此时称e k与v i 的关联次数为2; 若v i不是e k端点, 则称e k与v i 的关联次数为0. 无边关联的顶点称作孤立点. 定义设无向图G=, v i,v j∈V, e k,e l∈E,若(v i,v j) ∈E, 则称v i,v j相邻; 若e k,e l 至少有一个公共端点, 则称e k,e l相邻. 对有向图有类似定义. 设e k=?v i,v j?是有向图的一条边,又称v i是e k的始点, v j是e k的终点, v i邻接到v j, v j邻接于v i.

离散数学图论部分经典试题及答案

离散数学图论部分综合练习 一、单项选择题 1.设图G 的邻接矩阵为 ??? ???? ? ????? ???0101 010******* 11100100110 则G 的边数为( ). A .6 B .5 C .4 D .3 2.已知图G 的邻接矩阵为 , 则G 有( ). A .5点,8边 B .6点,7边 C .6点,8边 D .5点,7边 3.设图G =,则下列结论成立的是 ( ). A .deg(V )=2?E ? B .deg(V )=?E ? C .E v V v 2)deg(=∑∈ D .E v V v =∑∈)deg( 4.图G 如图一所示,以下说法正确的是 ( ) . A .{(a , d )}是割边 B .{(a , d )}是边割集 C .{(d , e )}是边割集 D .{(a, d ) ,(a, c )}是边割集 5.如图二所示,以下说法正确的是 ( ). A .e 是割点 B .{a, e }是点割集 C .{b , e }是点割集 D .{d }是点割集 6.如图三所示,以下说法正确的是 ( ) . A .{(a, e )}是割边 B .{(a, e )}是边割集 C .{(a, e ) ,(b, c )}是边割集 D .{(d , e )}是边割集 ? ? ? ? ? c a b e d ? f 图一 图二

图三 7.设有向图(a )、(b )、(c )与(d )如图四所示,则下列结论成立的是 ( ). 图四 A .(a )是强连通的 B .(b )是强连通的 C .(c )是强连通的 D .(d )是强连通的 应该填写:D 8.设完全图K n 有n 个结点(n ≥2),m 条边,当( )时,K n 中存在欧拉回路. A .m 为奇数 B .n 为偶数 C .n 为奇数 D .m 为偶数 9.设G 是连通平面图,有v 个结点,e 条边,r 个面,则r = ( ). A .e -v +2 B .v +e -2 C .e -v -2 D .e +v +2 10.无向图G 存在欧拉通路,当且仅当( ). A .G 中所有结点的度数全为偶数 B .G 中至多有两个奇数度结点 C .G 连通且所有结点的度数全为偶数 D .G 连通且至多有两个奇数度结点 11.设G 是有n 个结点,m 条边的连通图,必须删去G 的( )条边,才能确定G 的一棵生成树. A .1m n -+ B .m n - C .1m n ++ D .1n m -+ 12.无向简单图G 是棵树,当且仅当( ). A .G 连通且边数比结点数少1 B .G 连通且结点数比边数少1 C .G 的边数比结点数少1 D .G 中没有回路. 二、填空题 1.已知图G 中有1个1度结点,2个2度结点,3个3度结点,4个4度结 点,则G 的边数是 . 2.设给定图G (如图四所示),则图G 的点割 ? ? ? ? ? c a b e d ? f 图四

离散数学期末考试试题(配答案)

广东技术师范学院 模拟试题 科 目:离散数学 考试形式:闭卷 考试时间: 120 分钟 系别、班级: 姓名: 学号: 一.填空题(每小题2分,共10分) 1. 谓词公式)()(x xQ x xP ?→?的前束范式是__ ?x ?y?P(x)∨Q(y) __________。 2. 设全集{}{}{},5,2,3,2,1,5,4,3,2,1===B A E 则A ∩B =__{2}__,=A _{4,5}____, =B A __ {1,3,4,5} _____ 3. 设{}{}b a B c b a A ,,,,==,则=-)()(B A ρρ__ {{c},{a,c},{b,c},{a,b,c}} __________, =-)()(A B ρρ_____Φ_______。 4. 在代数系统(N ,+)中,其单位元是0,仅有 _1___ 有逆元。 5.如果连通平面图G 有n 个顶点,e 条边,则G 有___e+2-n ____个面。 二.选择题(每小题2分,共10分) 1. 与命题公式)(R Q P →→等价的公式是( ) (A )R Q P →∨)( (B )R Q P →∧)( (C ))(R Q P ∧→ (D ))(R Q P ∨→ 2. 设集合{}c b a A ,,=,A 上的二元关系{}><><=b b a a R ,,,不具备关系( )性质 (A ) (A)传递性 (B)反对称性 (C)对称性 (D)自反性 3. 在图>=

图论基础知识

图论基本知识 对于网络的研究,最早是从数学家开始的,其基本的理论就是图 论,它也是目前组合数学领域最活跃的分支。我们在复杂网络的研究中将要遇到的各种类型的网络,无向的、有向的、加权的……这些都可以用图论的语言和符号精确简洁地描述。图论不仅为物理学家提供了描述网络的语言和研究的平台,而且其结论和技巧已经被广泛地移植到复杂网络的研究中。图论,尤其是随机图论已经与统计物理并驾齐驱地成为研究复杂网络的两大解析方法之一。考虑到物理学家对于图论这一领域比较陌生,我在此专辟一章介绍图论的基本知识,同时将在后面的章节中不加说明地使用本章定义过的符号。进一步研究所需要的更深入的图论知识,请参考相关文献[1-5]。 本章只给出非平凡的定理的证明,过于简单直观的定理的证明将 留给读者。个别定理涉及到非常深入的数学知识和繁复的证明,我们将列出相关参考文献并略去证明过程。对于图论知识比较熟悉的读者可以直接跳过此章,不影响整体阅读。 图的基本概念 图G 是指两个集合(V ,E),其中集合E 是集合V×V 的一个子集。 集合V 称为图的顶点集,往往被用来代表实际系统中的个体,集合E 被称为图的边集,多用于表示实际系统中个体之间的关系或相互作用。若{,}x y E ,就称图G 中有一条从x 到y 的弧(有向边),记为x→

y ,其中顶点x 叫做弧的起点,顶点y 叫做弧的终点。根据定义,从任意顶点x 到y 至多只有一条弧,这是因为如果两个顶点有多种需要区分的关系或相互作用,我们总是乐意在多个图中分别表示,从而不至于因为这种复杂的关系而给解析分析带来困难。如果再假设图G 中不含自己到自己的弧,我们就称图G 为简单图,或者更精确地叫做有向简单图。以后如果没有特殊的说明,所有出现的图都是简单图。记G 中顶点数为()||G V ν=,边数为()||G E ε=,分别叫做图G 的阶和规模,显然有()()(()1)G G G ενν≤-。图2.1a 给出了一个计算机分级网络的示意图,及其表示为顶点集和边集的形式。 图2.1:网络拓扑结构示意图。图a 是10阶有向图,顶点集为 {1,2,3,4,5,6,7,8,9,10},边集为{1→2,1→3,1→4,2→5,2→6,2→7,3→6,4→7,4→8,6→9,7→9,8→10};图b 是6阶无向图,顶点集为{1,2,3,4,5,6},边集为{13,14,15,23,24,26,36,56}。 从定义中可以看到,从任意顶点x 到y 不能连接两条或以上 边,本文所讨论的图,均符合上述要求,既均为不含多重边的图。如

大学《离散数学》期末考试试卷及答案-(1)

安徽大学2006-2007学年第1学期 《离散数学》期末考试试卷(A卷) (时间120分钟) 开课院(系、部)姓名学号. 一、选择题(每小题2分,共20分)1.下列语句中,哪个是真命题()A、 4 2= + x; B、我们要努力学习; C、如果ab为奇数,那么a是奇数,或b是偶数; D、如果时间流逝不止,你就可以长生不老。 2.下列命题公式中,永真式的是() A、P Q P→ →) (; B、P P Q∧ → ?) (; C、Q P P? ? ∧) (; D、) (Q P P∨ →。3.在谓词逻辑中,令) (x F表示x是火车;) (y G表示y是汽车;) , (y x L表示x比y快。 命题“并不是所有的火车比所有的汽车快”的符号表示中哪些是正确的()

I.)),()()((y x L y G x F y x →∧??? II.)),()()((y x L y G x F y x ?∧∧?? III. )),()()((y x L y G x F y x ?→∧?? A 、仅I ; B 、仅III ; C 、I 和II ; D 、都不对。 4.下列结论正确的是:( ) A 、若C A B A =,则 C B =; B 、若B A B A ?,则B A =; C 、若C A B A =,则C B =; D 、若B A ?且D C ?,则D B C A ?。 5.设φ=1A ,}{2φ=A ,})({3φρ=A ,)(4φρ=A ,以下命题为假的是( ) A 、42A A ∈; B 、31A A ?; C 、24A A ?; D 、34A A ∈。 6.设R 是集合},,,{d c b a A =上的二元关系, },,,,,,,,,,,{><><><><><><=b d d b a c c a a d d a R 。下列哪些命题为真( ) I.R R ?是对称的 II. R R ?是自反的 III. R R ?不是传递的 A 、仅I ; B 、仅II ; C 、I 和II ; D 、全真。

相关文档
最新文档