微波仿真理论基础

微波仿真理论基础
微波仿真理论基础

Basic BJT Circuit

Figure 1 below shows the simplied ‘Pi’ model of a BJT.

c

Vin

Vout

Zin

Vout

B

C

Β.ib ib

Figure 1 Transistor symbol and simplified ‘Pi’ model

We can see that output consists of a current source –gm.Vbe to get the output voltage we multiply by the load resistance Rce ie Vout = -gm.Vbe.Rce (the negative sign denotes signal inversion).

The input resistance of the circuit is given by:

e temperatur room at (23.5mV)0.0235V ely approximat is and voltage thermal the as known is V (mS)

ctance Transcondu gm Kelvin in e Temperatur T 1.6022x10 charge Electron q 1.3807x10 constant Boltzmans

k where q k.T V ; V I gm where gm

β

R T 19-123-T T CQ IN =========?C

JK

The output resistance is given by:

ge(V)EarlyVolta V Where I V

rce R A CQ

A OUT ===

The voltage gain (Av) is given by:

T

A CQ A T CQ be be IN OUT V V V

I V .V I rce . V rce .V . V V A ==?=?==

gm gm

The current gain (Ai) is given by:

β- i β.i - I I A b

b

IN OUT i ===

The MOS Transistor

These devices are known as FET’s (Field effect transistors), which consist of three regions source, drain and gate. The resistance path between the drain and source is, controlled by applying a voltage to the gate. This varies the depletion layer under the gate and thus

reduces or increases the conductance path. The FET input impedance (unlike the BJT which is a few K ?) is very high (~M ?’s) and as a result the gate current can be considered as zero.

As per the BJT the FET is best described by it’s Output I-V DC characteristics (N-type

enhancement characteristics shown below), however things are complicated by the fact there are two types of FET depletion and enhancement that are both available as N-type or P-type devices. For low frequencies the enhancement devices is more commonly used (Depletion mode types will be described when discussing microwave devices).

0 = 0V

1

2

3

Triode Region Or Linear Region

GS

T GS DS V V V ?=

(1) Cut-Off Region – In this region the gate voltage is less than the pinch-off voltage Vp and therefore very little current flows.

(2) Triode Region – In this mode the device is operating below pinch-off and is effectively a variable resistor. R OUT is ~ linear but only over a small range of V DS .

(3) Saturation Region – This is the main operating region for the device. The drain voltage has to be greater than the gate voltage less the pinch-off voltage – this sets the minimum

supply voltage. The curves in the saturation region can be extrapolated to a point 1/λ, where λ is known as the ‘Channel length modulation parameter, (units V -1), - this is analogous to the BJT Early voltage.

Referring to the saturation region we can assume the response is approximately linear such that the:-

resistance high e,conductanc small ie λ.I G λ

1I λ1V I V 1

if then

0.01 to 0.001 region the in typically is λλ1V I G therefore 1I .G

1

- VDS then c mx - y form the of line straight a assume we If G e conductanc output Device curve of slope R resistance output Device curve

of slope 1

D O D

DS D DS DS D O D O

O

O

≈??

=?

????

?

??

>>??

???

??

?=+????????=+===λ

λ

To complete the model for the FET we need to add the term for the linear region which, is dependant on the device mobility and gate dimensions.

I ()

DS DS DS DS DS DS

O DQ DQ D λ.V 1.I .V λ.I I .V G I I I +=++?

+=

DS DS T GS OX O V .2-V -V .L .C .?????

????μ

()()parameter

modulation length Channel voltage

threshold Device VT ratio aspect the as Known W/L length channel Effective L width

channel Effective W oxide

gate of area unit per e capacitanc t

C device of mobility Surface Where only

region /linear saturation -non .V 1V .2V -V -V .L W .C . ID OX

OX OX O DS DS DS T GS OX O ========+??????

??????=λεμλμ

For saturation region ie V DS > (V GS -V T )

[]()

[]()parameter

ctance transcondu Intrinsic the as Known .C μ K Where λ.V 1V -V 2

L W .K

I as

written -re Sometimes parameter ctance transcondu the as Known 2L W .C μ

β Where λ.V 1V -V β I OX O P DS 2T GS P D OX O DS 2

T GS D =+?

????=?

?

?

???=+=

Usually λ.V DS << 1 so

[]

2

T GS D V -V β I ≈

The following page shows some typical values of the above parameters for use with a level 1 MOS model. The ADS version of this model is also shown

Typical MOS Spice Parameters

n-Well CMOS Level 1 SPICE Model parameters

Level 1 SPICE Parameter n-channel

MOSFET

p-channel

MOSFET

Units

Gate oxide thickness

TOX

150 150 Angstrom Transconductance

Parameter KP

50 x 10-625 x 10-6Amp/V2 Threshold Voltage VT0 1.0 -1.0 Volts

Channel-length modulation parameter LAMBDA 0.1/L

L in micron

0.1/L

L in micron

V-1

Bulk Threshold

Parameter GAMMA

0.6 0.6 V1/2

Surface Potential PHI 0.8 0.8 V

Gate-drain overlap

capacitance CGDO

5 x 10-10 5 x 10-10F/m

Gate-source overlap

capacitance CGSO

5 x 10-10 5 x 10-10F/m

Zero-bias planar bulk

depeletion

capacitance CJ

10-4 3 x 10-4F/m2

Zero-bias sidewall bulk

depletion capacitance

CJSW

5 x 10-10 3.5 x 10-10 F/m

Bulk junction potential

PB

0.95 0.95 V Planar bulk junction

grading coefficient MJ

0.5 0.5 None Sidewall bulk junction

grading coefficient

MJSW

0.33 0.33 None

VAR VAR2LAMBDA=0.1/L

L=0.5

W=100

MOSFET_NMOS MOSFET1

Mode=nonlinear

Temp=

Region=Mult=Nrs=Nrd=Ps=Pd=As=Ad=Width=W um Length=L um Model=MOSFETM1LEVEL1_Model MOSFETM1AllParams=

Imax=

Ffe=Tt=N=Tnom=Rds=Rg=Fc=Af=Kf=Gdsnoi=1

Nlev=Uo=Ld=Tpg=Nss=Nsub=Tox=150e-10Js=

Mjsw=0.33Cjsw=5e-10Mj=0.5

Cj=1e-4Rsh=Cgbo=Cgdo=5e-10

Cgso=5e-10Pb=0.95Is=

Cbs=Cbd=Rs=

Rd=Lambda=LAMBDA Phi=0.8

Gamma=0.6Kp=50e-6

Vto=1PMOS=no NMOS=yes

As with the BJT it is possible to simulate a device under ADS to produce the device Output I-V curve trace for a typical N-type MOS 3.3V 0.25um process enhancement device. The Spice data for the MOSFET model is called up from the spice file ‘tsmc_https://www.360docs.net/doc/094202092.html,’.

spiceInclude SPICE1

File="tsmc_https://www.360docs.net/doc/094202092.html,"NetlistDebugMode=0

VAR VAR1VDS=0

VGS=0

DC1

SweepVar="VDS"Start=0Stop=3.3Step=.1

Other=OutVar="MOSFET1.Gm"

Sweep1

SweepVar="VGS"

SimInstanceName[1]="DC1"SimInstanceName[2]=SimInstanceName[3]=SimInstanceName[4]=SimInstanceName[5]=SimInstanceName[6]=Start=0Stop=2Step=0.2

The resulting plot

0.0

0.5

1.0

1.5

2.0 2.5

3.0 3.5

-5

5 10

15 20 25 30 35 40 45 Vgs

VDS

IDS.i, mA

The device will also have a transconductance Curve ie V GS vs I DS . The ADS simulation below sweeps the gate voltage and measures the resulting drain current.

DC1

Other=OutVar="MOSFET1.Gm"

Step=.1

Stop=3Start=0

SweepVar="VGS"

VAR VAR1VDS=3.3

VGS=0spiceInclude SPICE1

File="tsmc_https://www.360docs.net/doc/094202092.html,"

NetlistDebugMode=0

Resulting transconductance curve, slope is the G M of the device.

0.0

0.2

0.4

0.6

0.8

1.0 1.2 1.4 1.6 1.8

2.0 2.2 2.4 2.6

2.8

3.0

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

0.055

0.060

0.065

0.070

0.075

0.080

0.085

VGS

IDS.i

Slope of curve = gm

IDS (A)

Pinch-off voltage = 0.6V

And for the P-type device

Input transconductance trace

MOSFET_PMOS MOSFET1

Mode=nonlinear

Temp=

Region=Mult=2Nrs=Nrd=Ps=Pd=As=Ad=Width=100 um Length=0.5 um Model=MODpch3_1

DC1

Other=OutVar="MOSFET1.Gm"

Step=-.1

Stop=-5Start=0SweepVar="VGS"

VAR VAR1VDS=-3.3

VGS=0spiceInclude SPICE1

File="tsmc_https://www.360docs.net/doc/094202092.html,"NetlistDebugMode=0

Resulting trace

-5

-4

-3

-2

-1

-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0.00

VGS

IDS.i

spiceInclude SPICE1

File="tsmc_https://www.360docs.net/doc/094202092.html,"NetlistDebugMode=0

MM9_NMOS MOSFET1

Mode=nonlinear

Mult=2

Temp=Lg=Ls=Ab=Width=100 um Length=0.5 um Model=MODnch3_1

ParamSweep Sweep1

Step=1

Stop=5Start=0SimInstanceName[6]=SimInstanceName[5]=SimInstanceName[4]=SimInstanceName[3]=SimInstanceName[2]=SimInstanceName[1]="DC1"SweepVar="VGS"

DC1

Other=OutVar="MOSFET1.Gm"

Step=.1

Stop=3Start=0SweepVar="VDS"VAR VAR1VDS=3.3

VGS=0

Output characteristic trace

-5

-4

-3

-2

-1

-0.07

-0.06 -0.05 -0.04 -0.03 -0.02

-0.01 0.00 0.01 VDS

IDS.i

Body Effect

The FET body or ‘Bulk’ is known either as the substrate, back gate or more commonly the Body. It is normally connected to the lowest voltage potential of the circuit (usually the

source). However if is left unconnected its effect on the DC characteristics of the device must be taken into account. If we include the bulk effect the value of the threshold voltage V T will increase with increasing bulk voltage.

()

source) the to connected bulk (ie 0 V for V V normally Therefore,(Volts)

potential source Bulk V (Volts) potential level Fermi .F (Volts)parameter hold Bulk thres γ.F 2..F 2.V -γ V V BS T TO BS BS TO T ====Φ=Φ?Φ++=

If the device was biased without the bulk node connected then a change in operating point could take the device out of its saturation region and significantly change the circuit

performance. The bulk voltage is thus a very important parameter in circuit applications and therefore it is best to connect the bulk to the device source connection.

The circuit is drawn as follows:-

The simulation below shows how varying the bulk voltage will vary the pinch-off voltage of the device.

VAR VAR1VBS=0

VGS=0Sweep1

Step=0.1

Stop=1Start=0SimInstanceName[6]=SimInstanceName[5]=SimInstanceName[4]=SimInstanceName[3]=SimInstanceName[2]=SimInstanceName[1]="DC1"SweepVar="VGS"

DC1

Other=OutVar="MOSFET1.Gm"

Step=0.5

Stop=3Start=0SweepVar="VBS"V_DC SRC4Vdc=VBS

spiceInclude SPICE1

File="tsmc_https://www.360docs.net/doc/094202092.html,"NetlistDebugMode=0

Resulting plot showing that the pinch-off voltage increases with increasing bulk voltage

0.0

0.2

0.4

0.60.8 1.0

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

IDS.i

Increasing pinch-off voltage

From the last section we found that the drain current in the saturation region =

[]2

T GS D V -V β I ≈

Transconductance

[][][][][]D 5

.0D 0.50.5-5.0D 1D D

T GS 2

T GS D T GS GS

T GS D GS 2

T GS D GS

D M I .β2 I .2β βI .2β β

I 2β

GM (1) into sub β

I

V -V then V -V β I rearrange we If

(1) - V -V 2β GM V .V -V 2β I V wrt ate differenti therefore V -V β I curve

transfer of slope ie V I

G =======?=?=??=

Output Conductance

()()()()λ.I G V I V λ..I I (2)

into sub V -V βI above From (2) - V λ..V -V β I V wrt ate Differenti λ.V 1V -V βI stic

characteri output of slope ie ?V ?I G D O DS

D

DS D D 2

T GS D DS 2

T GS D S D DS 2

T GS D DS

D

O ==??=?=?=?=?+==

Voltage Gain A

L .W K .I 2.λ1 .I .L .2.W .K .λ2 I 1.2L .W K .λ2 2L .W K β and I β.

λ2 A .λI .2.β .λ.I I .2.β λ.I β.I 2 G G e Conductanc Output ctance transcondu

A P D 0.5

-D 0.5-0.5-0.50.5P 1-1D P P D

1

0.5-D 0.511

D 0.5D 0.5D

D O M ==========???

Common-Base/Gate Circuits

Common-Base BJT circuit

The figure below shows the simplied ‘Pi’ model of a common-base BJT.

r ce

Vin

Zin

V I e wher gm 1

r 1)(βi 1).r (βi I V R T

CQ be b be b IN IN IN ===++==

gm

)r gm

1

(as V V I V .V I r r 1)r (βr .β 1)r (βi r .i .β V V A ce T A CQ A T CQ be ce be ce be b ce b IN OUT V ===≈+=+==

()

1 1ββ

)1βi β.i I I A b b IN OUT i ≈+=+==

r ce

To determine the Output impedance of the circuit we can connect a voltage source (V s + R s ) to the base and ground the input ie the emitter. We then have to resistances in parallel connected to the current source β.i b .

()equation

above into sub R r R i i Also r .i r i .i V i V

R s

be s

T b be b ce b T OUT T

OUT

OUT +=++==β

s

be be s s be s ce ce T OUT OUT be s ce s

T ce s be s T T

OUT R r r

.R R r R r .r i V R r .R r R i r R r R i .i V ++++==++????????++=ββ

()ce ce ce OUT s ce

OUT s r .1 1r .r R then large R If r R then 0 R If +=++====ββ

Common-Gate MOSFET Circuit

g

r ds

Vout

Vin

I IN

Voltage Gain A v

()

R r .R r gm A //R r gmVsg V Vsg V V V

A L dg

L dg V L dg O IN IN

O

V ?

???

????+====

Input Resistance

λI gm

1 gmVgs Vgs I V

R D IN IN IN ====

Output Resistance

As the source is low impedance ie close to ground for R OUT – r ds appears to be connected across r ds to ground.

ds dg O

O OUT //r r I V

R ==

Current Gain A i

A i = 1

Common-Emitter/Source Circuits

Common-emitter BJT circuit

The figure below shows the simplied ‘Pi’ model of a common-emitter BJT.

Vout

E

B

C

Β.ib ib

Vin

Vout

Zin

(mS)

ctance Transcondu Kelvin

in e Temperatur T 1.6022x10

charge Electron q 1.3807x10 constant Boltzmans k where

q k.T V ; V I where R 19

-123

-T T

CQ IN =========

?gm C JK gm gm β

ge(V)EarlyVolta V Where I V

rce R A CQ

A OUT ===

T

A CQ A T CQ be be IN OUT V V V

I V .V I rce . V rce .V . V V A ==?=?==

gm gm

ββ- i .i - I I A b b

IN OUT i ===

Common-Source MOS FET Circuit

drain

Vout

s

d Io

Voltage Gain A v

()

R r .R r gm - A //R r gmV - V V V

A L ds

L ds L ds IN O IN

O V ????

????+=== Input Resistance

R IN = ∞

Output Resistance

L ds O

O

OUT //R r I V

R ==

Current Gain A i

A i = ∞

微波仿真论坛_贴片天线研究

贴片天线研究 第一部分天线的基本知识 (2) 第二部分贴片天线设计 (11) 第三部分贴片天线的应用 (24) 第四部分贴片天线的性能 以及SAR的分布 (31) 附录 (38) 小组成员:李黎轩冷继男 钟颐华刘同 2004年1月2日

第一部分 天线的基本知识 总括 天线是我们在设计射频系统时所需考虑得最后一部分内容。然而可不能小视天线的重要作用,轻敌将导致设计前功尽弃。天线作为无线传输的一部分,它的作用概括起来说是传送与接受电磁场能量。在第一部分中,我们将介绍天线的最基本知识,以指导接下来贴片天线的设计。 定义 天线是一个具备传输与发送电磁能量的导电元件。天线能够将电磁能量转化为电磁场传播出去,同时又能够通过将空间中的电磁场转化为电磁能量来接收电磁波。如何在同一天线上实现电磁能量的接收(receive )与传播(transmit)是天线的一个重要属性 . 天线的主要特征参数有: 天线的中心频率(center frequency )、带宽(bandwidth)、天线的极化(polarization)、天线增益gain 、辐射模型(radiation pattern)、阻抗(impedance)。 传输线的特征参数 λ Lambda Wavelength (单位:米) 在自由空间中传播的电磁场,速度为光速。即8 3.0010/c m s =?. VSWR Voltage Standing Wave Ratio ,电压驻波系数 dB Decibel 分贝的引入为在使用中表示方便 dBm dBm 表示功率,相对于1 mw 为基准定义 dBi 天线增益,以等方向天线为参考

微波电路课程设计报告(DOC)

重庆大学本科学生课程设计指导教师评定成绩表 说明:1、学院、专业、年级均填全称。 2、本表除评语、成绩和签名外均可采用计算机打印。 重庆大学本科学生课程设计任务书

2、本表除签名外均可采用计算机打印。本表不够,可另附页,但应在页脚添加页码。 摘要 本次主要涉及了低通滤波器,功分器,带通滤波器和放大器,用到了AWR,MATHCAD和ADS 软件。

在低通滤波器的设计中,采用了两种方法:第一种是根据设计要求,选择了合适的低通原型,利用了RICHARDS法则用传输线替代电感和电容,然后用Kuroda规则进行微带线串并联互换,反归一化得出各段微带线的特性阻抗,组后在AWR软件中用Txline算出微带线的长宽,画出原理图并仿真,其中包括S参数仿真,Smith圆图仿真和EM板仿真。第二种是利用低通原型,设计了高低阻抗低通滤波器,高低阻抗的长度均由公式算得出。 在功分器的设计中,首先根据要求的工作频率和功率分配比K,利用公式求得各段微带线的特性阻抗1,2,3端口所接电阻的阻抗值,再用AWR软件确定各段微带线的长度和宽度,设计出原理图,然后仿真,为了节省材料,又在原来的基础上设计了弯曲的功分器。同时通过对老师所给论文的学习,掌握到一种大功率比的分配器的设计,其较书上的简单威尔金森功分器有着优越的性能。 对于带通滤波器,首先根据要求选定低通原型,算出耦合传输线的奇模,偶模阻抗,再选定基板,用ADS的LineCalc计算耦合微带线的长和宽,组图后画出原理图并进行仿真。 设计放大器时,一是根据要求,选择合适的管子,需在选定的频率点满足增益,噪声放大系数等要求。二是设计匹配网络,采用了单项化射界和双边放大器设计两种方法。具体是用ADS中的Smith圆图工具SmitChaitUtility来辅助设计,得到了微带显得电长度,再选定基板,用ADS中的LineCalc计算微带线的长和宽。最后在ADS中画出原理图并进行仿真,主要是对S参数的仿真。为了达到所要求的增益,采用两级放大。其中第一级放大为低噪声放大,第二级放大为双共轭匹配放大。 由于在微波领域,很多时候要用经验值,而不是理论值,来达到所要求的元件特性,因此在算出理论值之后,常常需要进行一些调整来达到设计要求。 关键词:低通原型Kuroda规则功率分配比匹配网络微带线 课程设计正文 1.切比雪夫低通滤波器的设计 1.1 设计要求: 五阶微带低通滤波器: 截止频率2.5GHZ 止带频率:5GHZ 通带波纹:0.5dB 止带衰减大于42dB

各大仿真软件介绍

各大仿真软件介绍(包括算法,原理) 随着无线和有线设计向更高频率的发展和电路复杂性的增加,对于高频电磁场的仿真,由于忽略了高阶传播模式而引起仿真的误差。另外,传统模式等效电路分析方法的限制,与频率相关电容、电感元件等效模型而引起的误差。例如,在分析微带线时,许多易于出错的无源模式是由于微带线或带状线的交叉、阶梯、弯曲、开路、缝隙等等,在这种情况下是多模传输。为此,通常采用全波电磁仿真技术去分析电路结构,通过电路仿真得到准确的非连续模式S参数。这些EDA仿真软件与电磁场的数值解法密切相关的,不同的仿真软件是根据不同的数值分析方法来进行仿真的。通常,数值解法分为显示和隐示算法,隐示算法(包括所有的频域方法)随着问题的增加,表现出强烈的非线性。显示算法(例如FDTD、FIT方法在处理问题时表现出合理的存储容量和时间。本文根据电磁仿真工具所采用的数值解法进行分类,对常用的微波EDA仿真软件进行论述。2.基于矩量法仿真的微波EDA仿真软件基于矩量法仿真的EDA 软件主要包括A D S(Advanced Design System)、Sonnet电磁仿真软件、IE3D和Microwave office。 2.1ADS仿真软件Agilent ADS(Advanced Design System)软件是在HP EESOF系列EDA软件基础上发展完善起来的大型综合设计软件,是美国安捷伦公司开发的大型综合设计软件,是为系统和电路工程师提供的可开发各种形式的射频设计,对于通信和航天/防御的应用,从最简单到最复杂,从离散射频/微波模块到集成MMIC。从电路元件的仿真,模式识别的提取,新的仿真技术提供了高性能的仿真特性。该软件可以在微机上运行,其前身是工作站运行的版本MDS(Microwave Design System)。该软件还提供了一种新的滤波器的设计引导,可以使用智能化的设计规范的用户界面来分析和综合射频/微波回路集总元滤波器,并可提供对平面电路进行场分析和优化功能。它允许工程师定义频率范围,材料特性,参数的数量和根据用户的需要自动产生关键的无源器件模式。该软件范围涵盖了小至元器件,大到系统级的设计和分析。尤其是其强大的仿真设计手段可在时域或频域内实现对数字或模拟、线性或非线性电路的综合仿真分析与优化,并可对设计结果进行成品率分析与优化,从而大大提高了复杂电路的设计效率,使之成为设计人员的有效工具[6-7]。2.2Sonnet仿真软件Sonnet是一种基于矩量法的电磁仿真软件,提供面

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

hfss中文教程 390-413 微波端口

rf 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值 ---- 专业微波工程师社区: https://www.360docs.net/doc/094202092.html, HFSS FULL BOOK v10中文翻译版568页(原801页) (分节 水印 免费 发布版) 微波仿真论坛 --组织翻译 有史以来最全最强的 HFSS 中文教程 感谢所有参与翻译,校对,整理的会员 版权申明: 此翻译稿版权为微波仿真论坛(https://www.360docs.net/doc/094202092.html,)所有. 分节版可以转载. 严禁转载568页完整版. 推荐: EDA问题集合(收藏版) 之HFSS问题收藏集合 https://www.360docs.net/doc/094202092.html,/hfss.html Q: 分节版内容有删减吗? A:没有,只是把完整版分开按章节发布,免费下载.带水印但不影响基本阅读. Q: 完整版有什么优势? A:完整版会不断更新,修正,并加上心得注解.无水印.阅读更方便. Q: 本书结构? A: 前200页为使用介绍.接下来为实例(天线,器件,EMC,SI等).最后100页为基础综述 Q: 完整版在哪里下载? A: 微波仿真论坛( https://www.360docs.net/doc/094202092.html,/read.php?tid=5454 ) Q: 有纸质版吗? A:有.与完整版一样,喜欢纸质版的请联系站长邮寄rfeda@https://www.360docs.net/doc/094202092.html, 无特别需求请用电子版 Q: 还有其它翻译吗?A:有专门协助团队之翻译小组.除HFSS外,还组织了ADS,FEKO的翻译.还有正在筹划中的任务! Q: 翻译工程量有多大?A:论坛40位热心会员,120天初译,60天校对.30天整理成稿.感谢他们的付出! Q: https://www.360docs.net/doc/094202092.html,只讨论仿真吗? A:以仿真为主.微波综合社区. 论坛正在高速发展.涉及面会越来越广! 现涉及 微波|射频|仿真|通信|电子|EMC|天线|雷达|数值|高校|求职|招聘 Q: https://www.360docs.net/doc/094202092.html,特色? A: 以技术交流为主,注重贴子质量,严禁灌水; 资料注重原创; 各个版块有专门协助团队快速解决会员问题; https://www.360docs.net/doc/094202092.html, --- 等待你的加入 RF https://www.360docs.net/doc/094202092.html, rf---射频(Radio Frequency)

微波电路设计基础知识

微波电路及设计的基础知识
1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith 圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的 CAD 软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例
1
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/094202092.html,

第1章
概述
所谓微波电路,通常是指工作频段的波长在 10m~1cm(即 30MHz~30GHz)之 间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz) 等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频 (RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以 及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多 独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工 艺、元器件、以及设计 技术等方面,都已经发展得非常成熟,并且应用领域越来 越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过 了 1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路 的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电 路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。
第2章
微波电路的基本常识
2.1 电路分类
2.1.1 按照传输线分类
微波电路可以按照传输线的性质分类,如:
图 1 微带线
图 2 带状线
2
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.360docs.net/doc/094202092.html,

用微波仿真软件设计一个集总(或分布)参数 滤波器

绪论 微波(Microwave)是电磁波谱中介于超短波与红外线之间的波段,它属于无线电波中波长最短(即频率最高)的波段,其频率范围从300MHz(波长1m)至3000GHz(波长0.1mm)。通常又将微波段划分为分米波、厘米波、毫米波和亚毫米波四个分波阶段,在通信和雷达工程上还使用拉丁字母来表示微波更细的分波段。表1给出了常用微波分波段的划分。 表1 常用微波分波段的划分 波段符号频率/GHz 波段符号频率/GHz UHF 0.3--1.12 Ka 26.5--40.0 L 1.12--1.7 Q 33.0--50.0 LS 1.7--2.6 U 40.0--60.0 S 2.6--3.95 M 50.0--75.0 C 3.95--5.85 E 60.0--90.0 XC 5.85--8.2 F 90.0--140.0 X 8.2--12.4 G 140.0--220.0 Ku 12.4--18.0 R 220.0--325.0 K 18.0--26.5 对于低于微波频率的无线电波,其波长远大于电系统的实际尺寸,可用集总参数电路的理论进行分析,即为电路分析法;频率高于微波波段的光波、X射线、γ射线等,其波长远小于电系统的实际尺寸,甚至与分子、原子的尺寸相比拟,因此可用光学理论进行分析,即为光学分析法;而微波则由于其波长与电系统的实际尺寸相当,不能用普通电子学中电路的方法研究或用光学的方法直接去研究,而必须用场的观点去研究,即由麦克斯韦尔方程组出发,结合边界条件来研究系统内部的结构,这就是场分析法。 正因为微波波长的特殊性,所以它具有以下特点。 (1)似光性 微波具有类似光一样的特性,主要表现在反射性、直接传播性及集束性等几方面,即:由于微波的波长与地球上的一般物体(如飞机、轮船、汽车等)的尺寸相比要小得多,或在同一量级,因此当微波照射到这些物体上时会产生强烈的反射,基于此特性人们发明了雷达系统;微波如同光一样在空间直线传播,如同光可聚焦成光束一样,微波也可通过天线装置形成定向辐射,从而可以定向传输或接收由空间传来的微弱信号以实现微波通信或探测。 (2)穿透性 微波照射到介质时具有穿透性,主要表现在云、雾、雪等对微波传播的影响较小,这为全天候微波通信和遥感打下了基础,同时微波能穿透生物体的特点也为微波生物医学打下了基础;另一方面,微波具有穿越电离层的透射性,实验证明:微波波段的几个分波段,如1--10GHz、20--30GHz及91GHz附近受电离层的影响较小,可以较为容易的由地面向外层空间传播,从而成为人类探索外层空间的“无线电窗口”,它为空间通信、卫星通信、卫星遥感和射电天文学的研究提供了难得的无线电通道。 (3)宽频带特性 我们知道,任何通信系统为了传递一定的信息必须占有一定的频带,为传输某信息所需的频

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告实验名称:微波仿真实验

姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。

三、实验过程及结果 第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线 宽度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数

(b)根据实验要求设置相应参数 实验二 1、实验内容 了解ADS Schematic的使用和设置2、相关截图:

打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。 3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。

实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

微波仿真论坛_电磁场的远场和近场划分

电磁辐射的测量基础知识 电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为远区场(辐射场)和近区场(感应场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。近区场通常具有如下特点: 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E=377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。 在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到1米。 2、远区场的测量 在远区场(辐射场区),可引入功率密度矢量(波印廷矢量),电场矢量、磁场矢量、波印廷矢量三者方向互相垂直,波印廷矢量的方向为电磁波传播方向。 在数值上,E=377H,S=EH=E2/377。其中电场强度E的单位是(V/m),磁场强度H的单位是(A/m),功率密度的单位是(W/m2),全部是国际单位制(SI)。 由公式可看出,在远场区,电场与磁场不是独立的,可以只测电场强度,磁场强度及功率密度中的一个项目,其他两个项目均可由此换算出来。 一般情况,关于远场和近场的测量问题可以简化为: 国标规定,当电磁辐射体的工作频率低于300MHz时,应对工作场所的电场强度和磁场强度分别测量。当电磁辐射体的工作频率大于300MHz时,可以只测电场强度。 300MHz频率相应的波长为1米,λ/6为16cm,16cm之外辐射场占优势。如按3λ的划分界限,距辐射源3米之外可认为是远场区。 一般电磁环境是指在较大范围内由各种电磁辐射源,通过各种传播途径造成的电磁辐射背景值,因而属于远区场,辐射的频谱非常宽,电磁场强度均较小。 1GHz以下远区辐射场的测量,可用远区场强仪,也可用干扰场强仪。

微波电路及其pcb设计

微波电路及其PCB设计 一.关于CAD辅助设计软件与网络分析仪对于高频电路设计,当前已经有了很好的CAD类软件,其强大的功能足以克服人们在设计经验方面的不足及繁琐的参数 检索与计算,再配合功能强大的网络分析仪,按理应该是稍具经验者便能完成质量较好的射频部件。但是,实际中却不是这回事。 CAD设计软件依靠的是强大的库函数,包含了世界上绝大部分无线电器件生产商提供的元器件参数与基本性能指标。不少射频工程师错误地认为:只要利用该工具软件进行设计,就不会有多大问题。但实际结果却总是与愿望相反,原因是他们在错误认识下放弃高频电路设计基本概念的灵活应用及基本设计原则 的应用经验积累,结果在软件工具的应用中常犯下基本应用错误。射频电路设计CAD软件属于透明可视化软件,利用其各类高频基本组态模型库来完成对实际电路工作状态的模拟。至此,我们已经可以明白其中的关键环节棗高频基本组态模型有两类,一类属于集中参数形态之元器件模型,另一类属于常规设计中的局部功能模型。于是存在如下方面问题: (1)元器件模型与CAD软件长期互动发展,日趋完善,实

际中可以基本相信模型的*真度。但元器件模型所考虑的应用环境(尤其是元器件应用的电环境)均为典型值。多数情况下,必须利用经验确定系列应用参数,否则其实际结果有时甚至比不借助CAD软件的设计结果相差更远。 (2)CAD软件中建立的常规高频基本组态模型,通常限于目前应用条件下可预知的方面,而且只能局限于基本功能模型(否则产品研发无须用人,仅靠CAD一手包办而诞生各类产品)。 (3)特别值得注意的是:典型功能模型的建立,是以典型方式应用元器件并以典型完善的工艺方式构造(包括PCB构造)下完成的,其性能也达到“典型”的较高水平。但在实际中,就是完全模仿,也与模型状态相差甚远。原因是:尽管选用的元器件及其参数一致,但它们的组合电环境却无法一致。在低频电路或数字电路中,这种相差毫厘的情况妨碍不大,但在射频电路中,往往发生致命的错误。 (4)在利用CAD软件进行设计中,软件的容错设计并不理睬是否发生与实际情况相违背的错误参数设置,于是,按照其软件运行路径给出一理想的结果,实际中却是问题百出的结果。可以知道其关键错误环节在于没有利用射频电路设计的基本原则

微波仿真实验报告(北邮)

北京邮电大学 微波仿真实验报告

实验名称:微波仿真实验 姓名:刘梦颉 班级:2011211203 学号:2011210960 班内序号:11 日期:2012年12月20日 一、实验目的 1、熟悉支节匹配的匹配原理。 2、了解微带线的工作原理和实际应用。 3、掌握Smith图解法设计微带线匹配网络。 4、掌握ADS,通过SmithChart和Momentum设计电路并仿真出结果。 二、实验要求 1、使用软件:ADS 2、实验通用参数: FR4基片:介电常数为4.4,厚度为1.6mm,损耗角正切为0.02 特性阻抗:50欧姆 3、根据题目要求完成仿真,每题截取1~3张截图。 三、实验过程及结果

第一、二次实验 实验一: 1、实验内容 Linecal的使用(工作频率1GHz) a)计算FR4基片的50欧姆微带线的宽度 b)计算FR4基片的50欧姆共面波导(CPW)的横截面尺寸(中心信号线宽 度与接地板之间的距离) 2、相关截图 (a)根据实验要求设置相应参数 (b)根据实验要求设置相应参数

实验二 1、实验内容 了解ADS Schematic的使用和设置 2、相关截图: 打开ADS软件,新建工程,新建Schematic窗口。 在Schematic中的tools中打开lineCalc,可以计算微带线的参数。

3、实验分析 通过在不同的库中可以找到想要的器件,比如理想传输线和微带线器件。在完成电路图后需要先保存电路图,然后仿真。在仿真弹出的图形窗口中,可以绘制Smith图和S参数曲线图。 实验三 1、实验内容 分别用理想传输线和微带传输线在FR4基片上,仿真一段特性阻抗为50欧姆四分之波长开路线的性能参数,工作频率为1GHz。观察Smith圆图变化。 2、相关截图 (1)理想传输线

射频 微波工程师经典参考书[精华]

射频微波工程师经典参考书[精华] 射频微波工程师经典参考书 1.《射频电路设计--理论与应用》『美』 Reinhold Ludwig 著电子工业出版社 个人书评:射频经典著作,建议做RF的人手一本,里面内容比较全面,这本书要反复的看,每读一次都会更深一层理解. 随便提一下,关于看射频书籍看不懂的地方怎么办,我提议先看枝干或结论有个大概印象,实在弄不明白就跳过(当然可问身边同事同学或GOOGLE一下),跳过不是不管它了,而是尽量先看完自己能看懂的,看第二遍的时候再重点抓第一次没有看懂的地方,人的思维是不断升华的,知识的也是一个系统体系,有关联的,当你把每一块砖弄明白了,就自然而然推测出金字塔塔顶是怎么架设出来的。 2. 《射频通信电路设计》『中』刘长军著科学技术出版社 个人书评:有拼凑之嫌(大量引用书1和《微波晶体管放大电路分析与设计》内容),但还是有可取之处,加上作者的理解,比看外文书(或者翻译本)看起来要通俗易懂,毕竟是中国人口韵。值得一看,书上有很多归纳性的经验. 3(《高频电路设计与制作》『日』市川欲一著科学技术出版社 个人书评:本人说实话比较喜欢日本人写书的风格和语言,及其通俗,配上图示,极其深奥的理论看起来明明朗朗,比那些从头到尾只会搬抄公式的某些教授强们多了,本书作者的实践之作,里面都是一些作者的设计作品和设计方法,推荐一看. 4. 《LC滤波器设计与制作》『日』森荣二著科学技术出版社 个人书评:语言及其通俗易懂,完全没有深奥的理论在里面,入门者

看看不错,但是设计方法感觉有点落后,完全手工计算.也感觉内容的太细致,此书一般. 5. 《振荡电路设计与应用》『日』稻叶宝著科学技术出版社 个人书评:这边书还不错,除了学到振荡电路设计,还学到了很多模拟电路的基础应用,唯一缺点书中的内容涉及频率的都不够高(k级,几M,几十,几百M的振荡器),做有源电路的可以看一下,整体感觉还行. 6. 《锁相环电路设计与应用》『日』远坂俊昭著科学技术出版社 个人书评:对PLL原理总是搞不太明白的同学可以参考此书,图形图片很多,让人很直观明白,比起其他PLL书只会千篇一律写公式强千倍。好书,值得收藏~ 7. 《信号完整性分析》『美』 Eric Bogatin 著电子工业出版社 个人书评:前几章用物理的方法看电子,感觉不好理解,写的感觉很拗口,翻译好像也有些不到位,但后面几章写的确实好,尤其是关于传输线的,对你理解信号的传输的实际过程,能建立一个很好的模型,推荐大家看一下,此书还是不错的.(看多了RF的,换换胃口) 8. 《高速数字设计》『美』 Howard Johnson著电子工业出版社 个人书评:刚刚卓越买回来,还没有动“她”呢,随便翻了下目录,做高速电路和PCB Layout的工程师一看要看下,这本书也是经典书喔~ 9.《蓝牙技术原理开发与应用》『中』钱志鸿著北京航空航天大 学出版社 个人书评:当时自己做蓝牙产品买的书,前2年仅有的几本,上面讲了一下蓝牙的基本理论(恰当的说翻译了蓝牙标准),软件,程序的东西占大部分内容. 10.《EMC电磁兼容设计与测试案例分析》『中』郑军奇著电子工业出版社 个人书评:实战性和很强的一本书,本人做产品经常要送去信息产业部电子研究5所做EMC测试,认证.产品认证是产品成功的临门一脚,把这脚球踢好,老板

微波电路及设计的基础知识

微波电路及设计的基础知识 1. 微波电路的基本常识 2. 微波网络及网络参数 3. Smith圆图 4. 简单的匹配电路设计 5. 微波电路的计算机辅助设计技术及常用的CAD软件 6. 常用的微波部件及其主要技术指标 7. 微波信道分系统的设计、计算和指标分配 8. 测试及测试仪器 9. 应用电路举例

微波电路及其设计 1.概述 所谓微波电路,通常是指工作频段的波长在10m~1cm(即30MHz~30GHz)之间的电路。此外,还有毫米波(30~300GHz)及亚毫米波(150GHz~3000GHz)等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。 2.微波电路的基本常识 2.1 电路分类 2.1.1 按照传输线分类 微波电路可以按照传输线的性质分类,如:

图1 微带线 图2 带状线 图3 同轴线 图4 波导

图5 共面波导 2.1.2 按照工艺分类 微波混合集成电路:采用分离元件及分布参数电路混合集成。 微波集成电路(MIC):采用管芯及陶瓷基片。 微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。 图6微波混合集成电路示例 图7 微波集成电路(MIC)示例

5.8GHz微波接收机电路设计

5.8GHz微波接收机电路设计 蓝庆华姜福广邓洪波1 时间:2008年09月04日 字体: 大中小关键词:动态范围噪声系数带通滤波器混频器本振 摘要:提出了一种5.8GHz微波接收机电路设计方案,针对系统标准给定的要求,提出了接收机系统设计的原理和方法,介绍了具体电路设计,给出了实验结果和分析。 关键词: DSRC 噪声系数灵敏度动态范围混频器 DSRC作为一种专用的无线短距通信协议,主要针对固定于车道或路侧的路侧单元(RSU)与转载于移动车辆上的车载单元(OBU)之间的通信接口规范。本文采用广泛使用的被动式欧洲DSRC 标准,其主要技术指标如下:工作频率为5.8GHz,下行数据为FM0编码,速率为500kbps,调制方式为幅度(AM)调制;上行数据为NRZI编码,速率为250kbps,调制方式为2MHz或1.5MHz副载波的二进制相移键控(BPSK)调制,数据误码率为10-6。图1为DSRC通信系统工作模式。它采用半双工的通信模式,主要有两种工作方式:下行和上行方式。当在下行方式时,RSU为发射模式,而OBU为接收模式,RSU发射以AM调制方式把调制信号F_AM加到5.8GHz的载波频率F0上。当在上行方式时,RSU为接收模式,而OBU为发射模式,RSU发射连续的5.8GHz载波F0给OBU,并与OBU中的2MHz 或1.5MHz的副载波BPSK调制信号Fm混频后,再通过天线反射回RSU上的接收机进行同步解调。 本文针对DSRC通信系统给定的要求,提出了一套含OBU和RSU的频率为5.8GHz的微波接收电路,具有灵敏度高、动态范围大等特点,并在最后介绍了系统的实验情况。 1 设计原理 1.1 接收系统的作用距离和灵敏度估算

微波实验报告_微带短截线低通滤波器的设计、仿真与测试

综合课程设计实验报告 课程名称:微波方向综合课程设计 实验名称:微带短截线低通滤波器的设计、仿真与测试院(系):信息科学与工程学院 专业班级: 姓名: 学号: 指导教师: 2011年12月22日

一、实验目的和要求 1、目的: 通过这次课程设计,进一步理解微波工程的相关内容,熟练运用Microwave Office和Protel等软件,通过这学期学习、练习的积累,选择一个微波器件,依据MWO的仿真结果,使用protel99se将其绘制成电路版图(PCB)。最后在老师的帮助下制成实物并与仿真结果对比分析,在实践中加强自己对微波工程的体会与理解。 2、要求: 从以下题目中选择一个微波器件,依据MWO的仿真结果,使用protel99se 将其绘制成电路版图(PCB)。(器件的工作频率和学号相关) 1)3dB微带功率分配器; 2)微带短截线滤波器 3)3dB微带定向耦合器 PCB板采用介电常数为4.5,厚度为1mm的FR4基片; 电路尺寸必须按照自己相应的MWO设计结果绘制; 电路外轮廓为矩形,尺寸必须为:50mm*40mm或40mm*20mm; 每个电路端口必须在电路板的侧面,并使用至少5mm长度的50ohm微带线连接。 二、实验内容和原理 1、内容: 在介电常数为4.5,厚度为1mm的FR4基片上(T取0.036mm,Loss tangent取0.02),设计一个3阶、最大平坦型微带短截线低通滤波器,其截止频率为f(2.2GHz),阻抗是50欧姆。 2、原理:

(1)Richards 变换: 集总元件构成的滤波器通常工作频率较低,在微波频段,我们常常采用微带结构实现较好的滤波性能。在设计得到滤波器原型之后,为了实现电路设计从集总参数到分布参数的变换,Richards 提出了一种变换方法,这种变换可以将集总元件变换成传输线段。如图1所示,电感L 可等效为长为λ/8,特性阻抗为L 的短路线;电容C 可等效为长为λ/8,特性阻抗为1/C 的开路线。 图1 (2)Kuroda 规则: 采用Richards 变换后,串联元件将变换为串联微带短截线,并联元件将变换为并联短截线。由于串联微带短截线是不可实现的,所以需要将其转变为其它可实现的形式。为了方便各种传输线结构之间的相互变换,Kuroda 提出了四个规则,如图2所示。其中,2211/n Z Z =+;U.E.是单位元件,即电长度为λ/8、特性阻抗为UE Z 的传输线。选用合适的Kuroda 规则,可以将串联短截线变换为容易实现的并联短截线。

微波仿真论坛附录COMSOLMultiphysics的MATLAB矢量计算基础18页

附录 COMSOL Multiphysics 的MATLAB 矢量计算基础 W. B. J. ZIMMERMAN 1,J. M. REES 2 1 Department of Chemical and Process Engineering, University of Sheffield, Newcastle Street, Sheffield S1 3JD United Kingdom 2 Department of Applied Mathematics, University of Sheffield, Hicks Building, Sheffield 矢量计算支撑了偏微分方程和它们的数值近似求解。为了很好的使用有限元方法,建模人员应该掌握矢量计算基础知识。本科毕业的工程师可能学过矢量计算的数学课程,但是由于没有碰到过矢量计算的实际应用,这时在工程建模中使用矢量计算就受到限制。本附录介绍了所有COMSOL MULTIPHYSICS WITH MATLAB 中用到的矢量计算基础知识。所以也可以将该附录当作是COMSOL MULTIPHYSICS WITH MATLAB 多变量微分计算的入门读本。当我们写该附录时曾经争论过是否将这部分内容直接加入到第一章(数值分析基础)中,因为导数的数值近似是偏微分方程求解的基础,而偏微分方程是COMSOL MULTIPHYSICS 的基本运算单元。确实,在学习波谱法求解偏微分方程时,基本理论就是“导数理论”——如何使用波变换方法来近似导数。所以通过对比发现,有限元方法的基础就是数值微分。所以争论就不存在了,第一章主要是关于COMSOL MULTIPHYSICS 直接计算的基本问题的。但是不管多有用,近似导数仍然只是建模的一个中间步骤,不是目标本身。 我们这里只考虑用于矢量计算的MATLAB 基础,本附录的重点在于特征值分析和逻辑表达式。这些在整本书中都有体现。应当注意到我们这里介绍的每个功能都可以在COMSOL Script 中实现。本书中唯一不能在COMSOL Script 中实现的Matlab 命令就是fminsearch 。 1.矢量回顾 1.1 矢量表达 FEMLAB 可以处理标量、矢量和矩阵数据,这里简单介绍一下矢量的表达(作为MATLAB 矩阵数据类型的一个特例)。标量可以作为一个单独的数,但是矢量是具有大小和方向的。在如图1所示的右手坐标系系统中,向量a 用以下形式表达: 123123(,,) a a a a a a =++=a i j k a (1) 这里i ,j 和k 是坐标方向的单位矢量,1a ,2a ,3a 是向量a 在各轴方向上的分量。它们是a 对各单位矢量i ,j 和k 的投影。对于坐标系中的P 点(x ,y ,z ),矢量P 对于初始坐标系统O 的位置为: (,,) x y z x y z =++=r i j k (2) MATLAB 用分量的形式描述列矢量或行矢量: >> a = [1; 2; 3]; % column vector

微波电路及设计的基础知识

微波电路及设计的基础知识 1.微波电路的基本常识 2.微波网络及网络参数 3.Smith 圆图 4.简单的匹配电路设计 5.微波电路的计算机辅助设计技术及常用的CAD 软件 6.常用的微波部件及其主要技术指标 7.微波信道分系统的设计、计算和指标分配 8.测试及测试仪器 9.应用电路举例

微波电路及其设计 1. 概述 所谓微波电路,通常是指工作频段的波长在10m?1cm(即 30MHz?30GHz)之间的电路。此外,还有毫米波(30?300GHz )及亚毫米波(150GHz ?3000GHz )等。 实际上,对于工作频率较高的电路,人们也经常称为“高频电路”或“射频(RF)电路”等等。 由于微波电路的工作频率较高,因此在材料、结构、电路的形式、元器件以及设计方法等方面,与一般的低频电路和数字电路相比,有很多不同之处和许多独特的地方。 作为一个独立的专业领域,微波电路技术无论是在理论上,还是在材料、工艺、元器件、以及设计技术等方面,都已经发展得非常成熟,并且应用领域越来越广泛。 另外,随着大规模集成电路技术的飞速发展,目前芯片的工作速度已经超过了1GHz 。在这些高速电路的芯片、封装以及应用电路的设计中,一些微波电路的设计技术也已得到了充分的应用。以往传统的低频电路和数字电路,与微波电路之间的界限将越来越模糊,相互间的借鉴和综合的技术应用也会越来越多。 2. 微波电路的基本常识 2.1电路分类 2.1.1按照传输线分类 微波电路可以按照传输线的性质分类,如:

J ER E I B 3 Di Er 图3同轴线 图1微带线 图2带状线

图4波导 DIELECTRIC ER 图5共面波导 2.1.2按照工艺分类 微波混合集成电路:采用分离组件及分布参数电路混合集成。 微波集成电路(MIC):采用管芯及陶瓷基片。 微波单片集成电路(MMIC):采用半导体工艺的微波集成电路。 图6微波混合集成电路示例

电磁场仿真软件简介

电磁场仿真软件简介 随着电磁场和微波电路领域数值计算方法的发展,在最近几年出现了大量的电磁场和微波电路仿真软件。在这些软件中,多数软件都属于准3维或称为2.5维电磁仿真软件。例如,Agilent公司的ADS(Advanced Design System)、AWR公司的Microwave Office、Ansoft公司的Esemble、Serenade和CST公司的CST Design Studio等。目前,真正意义上的三维电磁场仿真软件只有Ansoft公司的HFSS、CST公司的Mafia、CST Microwave Studio、Zeland公司的Fidelity和IMST GmbH公司的EMPIRE。从理论上讲,这些软件都能仿真任意三维结构的电磁性能。其中,HFSS(HFSS是英文高频结构仿真器(High Frequency Structure Simulator)的缩写)是一种最早出现在商业市场的电磁场三维仿真软件。因此,这一软件在全世界有比较大的用户群体。由于HFSS进入中国市场较早,所以目前国内的电磁场仿真方面HFSS的使用者众多,特别是在各大通信技术研究单位、公司、高校非常普及。 德国CST公司的MicroWave Studio(微波工作室)是最近几年该公司在Mafia软件基础上推出的三维高频电磁场仿真软件。它吸收了Mafia软件计算速度快的优点,同时又对软件的人机界面和前、后处理做了根本性的改变。就目前发行的版本而言,CST 的MWS的前后处理界面及操作界面比HFSS好。Ansoft也意识到了自己的缺点,在刚刚推出的新版本HFSS(定名为Ansoft HFSS V9.0)中,人机界面及操作都得到了极大的改善。在这方面完全可以和CST媲美。在性能方面,两个软件各有所长。在速度和计算的精度方面CST和ANSOFT成绩相差不多。值得注意的是,MWS采用的理论基础是FIT(有限积分技术)。与FDTD(时域有限差分法)类似,它是直接从Maxwell 方程导出解。因此,MWS可以计算时域解。对于诸如滤波器,耦合器等主要关心带内参数的问题设计就非常适合;而HFSS采用的理论基础是有限元方法(FEM),这是一种微分方程法,其解是频域的。所以,HFSS如果想获得频域的解,它必须通过频域转换到时域。由于,HFSS是用的是微分方法,所以它对复杂结构的计算具有一定的优势。 另外,在高频微波波段的电磁场仿真方面也应当提及另一个软件:ANSYS 。ANSYS是一个基于有限元法(FEM)的多功能软件。该软件可以计算工程力学、材料力学、热力学和电磁场等方面的问题。它也可以用于高频电磁场分析(应用例如:微波辐射和散射分析、电磁兼容、电磁场干扰仿真等)。其功能与HFSS和CST MWS类似。但由于该软件在建模和网格划分过程中需要对该软件的使用规则有详细的了解,因此,对一般的工程技术人员来讲使用该软件有一定困难。对于高频微波波段通信、天线、器件封装、电磁干扰及光电子设计中涉及的任意形状三维电磁场仿真方面不如HFSS更专业、更理想。实际上,ANSYS软件的优势并不在电磁场仿真方面,而是结构静力/动力分析、热分析以及流体动力学等。但是,就其电磁场部分而言,它也能对任意三维结构的电磁特性进行仿真。 虽然,Zeland公司的Fidelity和IMST GmbH公司的EMPIRE也可以仿真三维结构。

相关文档
最新文档