汽车气弹簧设计指导

汽车气弹簧设计指导
汽车气弹簧设计指导

汽车气弹簧设计指导

1.简要说明

1.1

基本的原理

在密闭的缸筒内充入和外界大气压有一定压差的惰性气体或者油气混合物,进而利用作用在活塞上的压力差完成气弹簧的自由运动。

该件为标准件,可以从产品系列目录中查询缸筒、活塞杆等匹配参数。

1.2

气弹簧和一般机械弹簧的最大区别:

一般性的机械弹簧,其弹簧弹力随着弹簧的运动有着非常大的变化,而气弹簧在整个运动行程中力值变化相对较小。1.3

其主要零部件及名字(如图所示)。

1.4零部件材料及工艺

序号零件名常见材料外观要求/表面处理

1

球头销45#渗氮、镀锌、达克罗(耐腐蚀强)处理

2弹簧卡片65Mn

3活塞杆

35#

镀铬(银色)或渗氮(黑色)〈出口欧洲

的车必须渗氮处理,以满足其环保要求〉

4缸筒精轧钢管20

喷漆处理5导向环Q2356

密封件

NBR(丁晴橡胶)

球头

球头销

支架

缸筒

活塞杆

弹簧卡片

7活塞Q235

8球头PA66+30%GF

1.5机构原理

1.5.1同样尺寸的气弹簧可以根据缸筒内部存储的气体压力大小来调整举力的大小。

1.5.2气弹簧举升速度的大小可以根据活塞上的过油孔的大小来调整,一般分为¢0.3mm¢

0.5mm¢0.6mm等,过油孔越大,举升速度越快,造成的冲击越大,比如:举升速

度过大可采用¢0.3mm。(阻尼油在气弹簧运动到阻尼区时才通过过油孔,此前只有

气体流过,该特性由油的运动特性:高压区低压区决定)。

1.5.3阻尼油、举力、密封圈材料影响气弹簧低温性能,例如:出口俄罗斯的气弹簧所用

阻尼油型号HS32,凝固点-50℃;密封圈材料丁晴橡胶的低温脆性温度由原来的

-40℃改为-50℃。

1.5.4如有支架,建议料厚为3mm,可以根据力的大小对支架进行工艺处理如:冲压出凹

槽来增加强度。

1.6安装方式

1.6.1气弹簧整车布置位置分为:前机盖支撑和后备门支撑两种。前机盖支撑有B11、T11

等车型,后备门支撑有A15、S11、B14等车型。

1.6.2气弹簧支撑方式的布置可分为:直立支撑和旋转支撑,目前我公司采用直立支撑的

有:S21S22旋转支撑的有:S11S12A11A18B11。支撑方式的布置是由后备门

铰链轴所处的位置来决定的。

1.6.3尼龙球头可根据与气弹簧联接的两个钣金平面进行设计:分为普通直式和斜倾式

(下图),当球窝转动角度小于20°时,选用直球窝;当球窝转动角度大于等于20°

小于35°时,选用斜球窝;当球窝转动角度大于等于35°时,选用支架。一般尽

量不用支架,支架容易出现晃动,定位麻烦,且增加价格。

1.6.4气弹簧分:普通式、变阻尼、助力气弹簧。当机盖的运动角度大于等于90时,需要

用四连杆机构与车身连接,气弹簧应为变阻尼式。变阻尼气弹簧的缸筒上有一个半

径变化的过油槽,缸筒为非圆筒状,以此实现变阻尼运动。该气弹簧的价格较高,

比普通状态高8-9元。阻力气弹簧是在钢筒内加一弹簧,在气弹簧起作用前,人手

可以用较小的力打开机盖,机盖关闭时,由于惯性,不影响关闭机盖。

2.设计构想

2.1气弹簧布置

2.1.1位置定义

根据参考车型或者近似车型初步安排安装点,根据经验,机盖上安装点与铰链轴之间的距离不宜小于200mm,否则直接影响铰链的强度和寿命,同时要满足气弹簧生产条件。

布置设计时尽量保证在车门关闭状态下气弹簧缸筒在上方,活塞杆在下方,因为机盖处于关闭状态的时间长,缸筒在上活塞杆在下,使阻尼油对缸筒内气体有很好的密封作用,从而延长气弹簧寿命。(我公司S11和A11、B11没有按照此种结构设计)

变阻尼气弹簧必须采用上述布置方式,尽量减小气体泄漏。(参看下图)

机盖关闭时尽量经过死点线,如果不能经过死点线,关门状态与死点线之间的角度要少于10度,此时气弹簧的力矩F*L2为负或很小,门锁承受的力矩较小,延长寿命,且减小行车噪音。(死点线:铰链点和气弹簧两安装点的连线)

1 旋转支撑

侧围支撑点

备门支撑点

死点线

2.1.2长度定义

根据定义的安装位置和机盖打开角度(机盖打开角度由总布置定义),即可确认气弹簧的最大长度和最小长度,气弹簧长度应满足如下公式:

气弹簧最小长度-(气弹簧最大长度-气弹簧最小长度)>90mm

(该数值的定义主要考虑活塞的尺寸及预留出油气混合物的空间,不同的气弹簧供应商要求可能会有所区别,在设计的时候需要跟供应商确认该数据。)

气弹簧的长度须根据机盖开启及关闭布置图确定,但是必须保证以下生产尺寸。

2.1.3举力定义

1)机盖运动过程中的力学变化

F

5000

100001500020000

10

30

50

尾门

气体减振器

如上图:

机盖开启过程中,初始状态F*L2<G*L1*a(安全系数a=1.1),需要人给机盖作用力,机盖处于水平位置前:L1、L2的值逐渐增大,G值始终保持不变,F值逐渐减小;此后,L1、L2的值逐渐减小,G值始终保持不变,F值继续减小。其中有一点F*L2=G*L1*a,此后F*L2>G*L1*a,气弹簧自动将机盖打开。

2)根据经验,F*L2=G*L1*a时,机盖把手离地面的高度应为0.85m~1.15m,初步定义为1m,此位置时G*L1、L2已知,根据公式F*L2=G*L1*a即可算出气弹簧举力F和该状态的机盖打开角度α。

3)下图为对于长度及力值选取的经验值,(根据经验:长度尽量<600mm,举力尽量<600N)供参考:

气弹簧长度变化量气弹簧最

大长度

推荐力值气弹簧长度

变化量

气弹簧最大

长度

推荐力值

60.0205.0500140.0365.0400

600500 205.5700600

800365.5700 80.0245.0500800

245.5600160.0405.0100

700150

800200 100.0285.0500250

600300 285.5700350

800400 120.0325.0500500

600600 325.5700405.5700

800800

如下为S21气弹簧举力的计算相关资料:

(考虑人开启门时的力在5-10N为适宜)

5000

100001500020000

开度

10

30

50

尾门

气体减振器

0.0

100.0200.0300.0400.0500.0600.0700.00

102030405060

L(m m )#REF!f(kg)l(m m )

2.2气弹簧校核

2.2.1机盖打开角度校核

2.2.1.1如下图所示,验证机盖完全打开时的角度是否与总布置定义角度一致。

2.2.1.2验证机盖完全打开状态的把手离地高度。

后机盖离地高度为1850mm~1950mm

前机盖离地高度为1500mm~1700mm

2.2.1.3验证当F*L2=G*L1*a时,机盖把手离地高度是否满足0.85m~1.15m 。

2.2.1.4机盖开启后男人模型校核

1)50%男人模型伸手可以轻松关闭后备门;

2)80%男人模型站在后备门处弯腰不会碰头;

汽车气弹簧设计指导

汽车气弹簧设计指导 1.简要说明 1.1 基本的原理 在密闭的缸筒内充入和外界大气压有一定压差的惰性气体或者油气混合物,进而利用作用在活塞上的压力差完成气弹簧的自由运动。 该件为标准件,可以从产品系列目录中查询缸筒、活塞杆等匹配参数。 1.2 气弹簧和一般机械弹簧的最大区别: 一般性的机械弹簧,其弹簧弹力随着弹簧的运动有着非常大的变化,而气弹簧在整个运动行程中力值变化相对较小。1.3 其主要零部件及名字(如图所示)。 1.4零部件材料及工艺 序号零件名常见材料外观要求/表面处理 1 球头销45#渗氮、镀锌、达克罗(耐腐蚀强)处理 2弹簧卡片65Mn 3活塞杆 35# 镀铬(银色)或渗氮(黑色)〈出口欧洲 的车必须渗氮处理,以满足其环保要求〉 4缸筒精轧钢管20 喷漆处理5导向环Q2356 密封件 NBR(丁晴橡胶) 球头 球头销 支架 缸筒 活塞杆 弹簧卡片

7活塞Q235 8球头PA66+30%GF 1.5机构原理 1.5.1同样尺寸的气弹簧可以根据缸筒内部存储的气体压力大小来调整举力的大小。 1.5.2气弹簧举升速度的大小可以根据活塞上的过油孔的大小来调整,一般分为¢0.3mm¢ 0.5mm¢0.6mm等,过油孔越大,举升速度越快,造成的冲击越大,比如:举升速 度过大可采用¢0.3mm。(阻尼油在气弹簧运动到阻尼区时才通过过油孔,此前只有 气体流过,该特性由油的运动特性:高压区低压区决定)。 1.5.3阻尼油、举力、密封圈材料影响气弹簧低温性能,例如:出口俄罗斯的气弹簧所用 阻尼油型号HS32,凝固点-50℃;密封圈材料丁晴橡胶的低温脆性温度由原来的 -40℃改为-50℃。 1.5.4如有支架,建议料厚为3mm,可以根据力的大小对支架进行工艺处理如:冲压出凹 槽来增加强度。 1.6安装方式 1.6.1气弹簧整车布置位置分为:前机盖支撑和后备门支撑两种。前机盖支撑有B11、T11 等车型,后备门支撑有A15、S11、B14等车型。 1.6.2气弹簧支撑方式的布置可分为:直立支撑和旋转支撑,目前我公司采用直立支撑的 有:S21S22旋转支撑的有:S11S12A11A18B11。支撑方式的布置是由后备门 铰链轴所处的位置来决定的。 1.6.3尼龙球头可根据与气弹簧联接的两个钣金平面进行设计:分为普通直式和斜倾式 (下图),当球窝转动角度小于20°时,选用直球窝;当球窝转动角度大于等于20° 小于35°时,选用斜球窝;当球窝转动角度大于等于35°时,选用支架。一般尽 量不用支架,支架容易出现晃动,定位麻烦,且增加价格。

汽车设计课程设计

3 表1-2良好路面上常用轮胎滚动阻力系数

u a max + e e C D ——空 气 阻 力 系 数 , 取 C D =0.9; 一 般 中 重 型 货 车 可 取 0.8~1.0; 轻 型 货 车 或 大 客 车 0.6~0.8;中小型客车 0.4~0.6;轿车 0.3~0.5;赛车 0.2~0.4。 A ——迎风面积, m 2 ,取前轮距 B 1 ×总高 H , A =2.465 ? 3.53 m 2 u a max ——该载货汽车的最高车速, u a max =90km /h 。 将各值带入式 1-1 得: 也可以利用比功率的统计值来确定发动机的功率值: 比功率 = 1000P max m a = fg C D A 3.600ηT 76.14m a ηT u a max 3 (1-2) 求得比功率为 6.311kw 。 因此,通过比功率计算得,该汽车选用发动机的功率 kw 参考日本五十铃、德国奔驰等同类型车型,同时由于该载货汽车要求的最高车速相对较高,因此应 使其比功率相对较大,所选发动机功率应不小于 195.61KW ,初步选择发动机的最大功率为 200 kW ;发 动机最大功率时的转速 n p ,初取 n p =2200r/min 。 1.1.2 发动机最大转矩及其转速的确定 当发动机最大功率和其相应转速确定后,可用下式确定发动机的最大扭矩。 (1-3) 式中 T e max ——发动机最大转矩,N.m ; α ——转矩适应性系数, α = T e max T p T p ——最大功率时的转矩,N.m ; α 的大小标志着当行驶阻力增加时,发动机外特性曲线自动增加转矩的能力, α 可参考同类发动机数值 选取,初取 α =1.05; P max ——发动机最大功率,kW ; n p ——最大功率时的转速,r/min 。

汽车设计课程设计指导 09车辆

汽车设计课程设计任务书 一、课程设计的目的 汽车设计课程设计是汽车设计课的重要组成部分,也是获得工程师基本训练的一个教学环节。其目的在于: 1 通过汽车部件(总成)的设计,培养学生综合运用所学过的基本理论、基本知识和基本技能分析和解决汽车工程技术实际问题的能力; 2掌握资料查询、文献检索的方法及获取新知识的方法,书面表达能力。 进一步培养学生运用现代设计方法和计算机辅助设计手段进行汽车零部件设计的能力。 3 培养和树立学生正确的设计思想,严肃认真的科学态度,理论联系实际的工作作风。 二、课程设计要求完成的工作内容 1 各总成装配图及零件图,采用二维设计和三维设计; 2 设计计算说明书1 份,A4 纸,18页左右。 设计计算说明书内容包括以下部分: 1)封面; 2)目录(标题及页次); 3)设计任务(即:设计依据和条件); 4)方案分析及选择; 7)主要零件设计及校核计算; 9)参考文献(编号,作者、书名,出版单位,出版年月)。 三、《汽车设计课程设计》题目 设计题目1:轿车膜片弹簧离合器的设计 课程设计的内容为:掌握轿车离合器的构造、工作原理。了解从动盘总成的结构,掌握从动盘总成的设计方法,了解压盘和膜片弹簧的结构,掌握压盘和膜片弹簧的设计方法。根据所给的车型及整车技术参数,进行轿车膜片弹簧离合器的设计,选择合适的结构类型,计算确定其相关参数与尺寸,详见设计任务书。 :轿车自动变速器锁止离合器设计2设计题目 课程设计的内容为:在丰田轿车自动变速器的液力变矩器中设计一锁止离合器,以提高自动变速器稳定工况下的传动效率,详细要求见课程设计任务书。 四、课程设计的步骤和方法 在课程设计开始时,由指导教师向学生布置设计任务。设计任务的内容包括:设计题目、设计要求、设计手段、提供原始数据和主要相关资料、应完成图纸份量及设计计算说明书内容和要求。 学生根据设计任务和设计要求,在分析有关资料的基础上拟定各种设计方案,通过对比与分析确定采用的设计方案,然后进行精心设计,应按时、按质、按量地独立完成设计任务。 设计步骤如下:

汽车尺寸参数

汽车尺寸参数 1、外形尺寸 外形尺寸包括车长、车宽和车高三方面尺寸。车长即沿汽车长度方向前后两极端之间的距离(mm);车宽即沿汽车宽度方向两侧极端之间的距离(mm);车高是指汽车最高点至地面间的距离(mm),如图中的b、g、h所示。 汽车尺寸参数示意图 a-轴距;b-车长;c-前悬;d-后悬;e-前轮距; f-后轮距;g-车宽;h-车高;j-离地间隙。 2、轴距 轴距是指汽车两轴中心线之间的距离(mm),如上图中的a。对多轴汽车,轴距应从前至后分别注明相邻两轴间距离,总轴距为各轴距之和。 3、轮距 轮距是指汽车同一轴上左右两轮中心面之间的距离(mm),如上图中的e、f。若为双轮胎时,则为同一轴左右双轮中心面之间的距离。 4、前后悬 前悬是指汽车最前端至通过前轴轴线的垂面间的距离(mm),如上图中c;后悬是指汽车最后端至通过后轴轴线的垂面间的距离(mm),如上图中d。 5、最小离地间隙 最小离地间隙是指汽车满载时,汽车最低点至地面的距离(mm),如上图中j。 轴距:前后桥中心线间的水平距离。 轮距:同一桥左右车轮与地面接触面中心的距离。多个车轮的轮距按中心点处测定。

汽车的载重量与轴距和轮距有密切的关系,基本上载重量越大,轴距和轮距就越大,可见,测量时的误差要小些! 1、水平对置的发动机有什么优缺点? 2、汽车轮距有的是前轮距大于后轮距,有的是后轮距大于前轮距,请问它们各有什么优缺点? 答复: 1、水平对置发动机的优点是能将发动机的重心降低,也就是说,普通发动机是立着的,而水平发动机是躺着的。还有就是水平四缸的发动机震动较小,而且还不需要平衡轴。另外就是水平发动机还可尽量把很多部件布置在车子的中央的直线上,有利于平衡左右的重量,但水平对置发动机比较宽,发动机舱不容易布置。缺点就是成本较高。 2、汽车的轮距有三种情况,一是前轮距大于后轮距,二是前后轮距相同,三是后轮距大于前轮距。增加轮距可以减少转弯时车子倾侧(ROLL)的量,简单地说就是减少“重量转移的幅度”,轮距越大,转移到外侧车轮上的重量就越小,因此在转弯时也就越能平衡左右两边轮胎上的负荷。所以,前轮距大于后轮距和前后轮距相同时,行驶更平稳,转向更可靠,但操控性不强,一般适合普通的前驱家庭轿车。后轮距大于前轮距时,可以得到较好的抗侧倾能力和灵活的转向能力,适合运动车型。 你是不是指前后轮距(轮距是指两个车轮之间的距离),一般后轮距比前轮距都宽,这是为了车子高速运行时稳定,再就是转弯时车子能正常稳定转弯 汽车术语 2011-01-05 23:36:55| 分类:资料| 标签:轮距汽车平面术语车轮|字号大中小订阅 轮距 车轮在车辆支承平面(一般就是地面)上留下的轨迹的中心线之间的距离。如果车轴的两端是双车轮时,轮距是双车轮两个中心平面之间的距离。 汽车的轮距有前轮距和后轮距之分,前轮距是前面两个轮中心平面之间的距离,后轮距是后面两个轮中心平面之间的距离,两者可以相同,也可以有所差别. 一般来说,轮距越宽,驾驶舒适性越高,但是有些国产轿车没有方向助力的,如果前轮距过宽其方向盘就会很“重”,影响驾驶的舒适性。 此外,轮距还对汽车的总宽、总重、横向稳定性和安全性有影响。 一般说来,轮距越大,对操纵平稳性越有利,同时对车身造型和车厢的宽敞程度也有利,横向稳定性越好。但轮距宽了,汽车的总宽和总重一般也加大,而且容易产生向车身侧面甩泥的问题。如果轮距过宽还会影响汽车的安全性,因此,轮距应与车身宽度相适应。 轮距通俗的说就是左侧轮子到右侧轮子之间的距离,具体的计算标准是左

两厢车后背门支撑杆的布置及运动分析

两厢车后背门支撑杆的布置及运动分析 【摘要】气动支撑杆开启机构是目前轿车上经常采用的一种结构。由于气动支撑杆生产技术成熟、性能优良等原因,在本次两厢车开发中,后背门的开启机构采用气动支撑杆。工作中借助三维设计软件CATIA和计算和分析优化工具MATLAB,对支撑杆进行了布置,并且从运动学和动力学角度分析了上掀式后背门开启和关闭过程中力和力矩的关系,进而对其进行优化,最后对后背门开启的速度和加速度进行了仿真分析,满足后背门的平稳开启/关闭平稳、助力轻松、使用安全等功能要求。 【关键词】CATIA,后背门,气动支撑杆 Abstract: The opening mechanism of gas damper is a kind of structure which is often used in cars. This time when developing the hatchback, use the gas damper。With work on CATIA and MATLAB, from kinematics and dynamics,I analysis the relationship of forces and moments during the opening and closing of hatch back’s backdoor,and optimize the layout of the installation point。As result, the performance of hatchback’s backdoor meets functional requirements which is the steady of backdoor when open or close, and assist, safety. Keywords: CATIA; Backdoor; Gas damper; 1 轿车用气动支撑杆介绍 1.1 构造及支撑力 气动支撑杆由活塞、气筒、导杆等构成。如图1所示。 图1 气动支撑杆结构简图 Fig.1 Structure diagram of gas damper 气动支撑杆的支撑力:气动支撑杆运动中提供的总支撑力包括两部分:压力差产生的支撑力和相对运动部件之间的摩擦力。由波义耳定律可知,一定质量的气体,其压强与体积的乘积为定数,即体积减小,压强增大,反之,体积变大,压强减小。当施加外力时,导杆在气室内体积增大,致使压缩气体的有效容积变

汽车设计课程设计

XX大学 汽车设计课程设计说明书设计题目:轿车转向系设计 学院:X X 学号:XXXXXXXX 姓名:XXX 指导老师:XXX 日期:201X年XX月XX日

汽车设计课程设计任务书 题目:轿车转向系设计 内容: 1.零件图1张 2.课程设计说明书1份 原始资料: 1.整车性能参数 驱动形式4 2前轮 轴距2471mm 轮距前/后1429/1422mm 整备质量1060kg 空载时前轴分配负荷60% 最高车速180km/h 最大爬坡度35% 制动距离(初速30km/h) 5.6m 最小转向直径11m 最大功率/转速74/5800kW/rpm 最大转矩/转速150/4000N·m/rpm 2.对转向系的基本要求 1)汽车转弯行驶时,全部车轮应绕顺时转向中心旋转; 2)操纵轻便,作用于转向盘上的转向力小于200N; 3)转向系的角传动比在15~20之间,正效率在60%以上,逆效率在50%以上;4)转向灵敏; 5)转向器和转向传动机构中应有间隙调整机构; 6)转向系应有能使驾驶员免遭或减轻伤害的防伤装置。

目录 序言 (4) 第一节转向系方案的选择 (4) 一、转向盘 (4) 二、转向轴 (5) 三、转向器 (6) 四、转向梯形 (6) 第二节齿轮齿条转向器的基本设计 (7) 一、齿轮齿条转向器的结构选择 (7) 二、齿轮齿条转向器的布置形式 (9) 三、设计目标参数及对应转向轮偏角计算 (9) 四、转向器参数选取与计算 (10) 五、齿轮轴结构设计 (12) 六、转向器材料 (13) 第三节齿轮齿条转向器数据校核 (13) 一、齿条强度校核 (13) 二、小齿轮强度校核 (15) 三、齿轮轴的强度校核 (18) 第四节转向梯形机构的设计 (21) 一、转向梯形机构尺寸的初步确定 (21) 二、断开式转向梯形机构横拉杆上断开点的确定 (24) 三、转向传动机构结构元件 (24) 第五节参考文献 (25)

气弹簧工作原理

气弹簧 弹簧不受外力时,自然伸长为最小行程(指压缩行程)处,即最大伸长处; 活塞两边气压相等,由于受力面积不同,产生压力差提供气弹簧的支撑力; 气弹簧运动中瞬时提供的总支撑力包括两部分:压力差产生的支撑力和摩擦力。 外力压缩气弹簧,由于撑杆在气室内体积增大,压缩气体的有效容积变小,气室气压变大,压力差产生的支撑力变大; 摩擦力变化: 气室压力越大,摩擦力越大, 撑杆运动越快,摩擦力越大, 离自然伸长处越远,摩擦力越大; 气温影响气弹簧支撑力:气温越低,气室压力越低,气弹簧提供的支撑力越小。 气弹簧是以气体和液体为工作介质的一种弹性元件,由压力管,活塞,活塞杆及若干联接件组成,其内部充有高压氮气,由于在活塞内部设有通孔,活塞两端气体压力相等,而活塞两侧的截面积不同,一端接有活塞杆而另一端没有,在气体压力作用下,产生向截面积小的一侧的压力,即气弹簧的弹力,弹力的大小可以通过设置不同的氮气压力或者不同直径的活塞杆而设定。与机械弹簧不同的是,气弹簧

具有近乎线性的弹性曲线。标准气弹簧的弹性系数X介于1.2和1.4之间,其他参数可根据要求及工况灵活定义 气弹簧(gas spring)是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。目前,该产品在医疗设备、汽车、家具、纺织设备、加工行业等领域都得到了广泛地应用。根据不同的特点及应用领域,气弹簧又被称为支撑杆、调角器、气压棒、阻尼器等. 气弹簧的基本原理是在密闭的腔体内压入惰性气体和油、或则油气混合物。根据气弹簧的结构和功能,气弹簧主要有自由型气弹簧、自锁型气弹簧、随意停气弹簧、牵引式气弹簧、阻尼器几种。 产品展示 气弹簧介绍 一、自由型气弹簧(支撑杆)是应用最为广泛的气弹簧。它主要起支撑作用,只有最短、最长两个位置,在行程中无法自行停止。在汽车、纺织机械、印刷设备、办公设备、工程机械等行业应用最广。 二、自锁型气弹簧(调角器、气压棒)在医疗设备、座椅等产品上应用的最多。该种气弹簧借助一些释放机构可以在行程中的任意位置停止,并且停止以后有很大的锁紧力(可以达到10000N以上)。 三、随意停气弹簧(摩擦式气弹簧)主要应用在厨房家具、医疗器械等领域。它的特点介于自由型气弹簧和自锁型气弹簧之间:不需要任何的外部结构而能停在行程中的任意位置,但没有额外的锁紧力。(选型参数基本可以参考自由型气弹簧)

汽车尺寸参数

1、外形尺寸 外形尺寸包括车长、车宽和车高三方面尺寸。车长即沿汽车长度方向前后两极端之间的距离(mm);车宽即沿汽车宽度方向两侧极端之间的距离(mm);车高是指汽车最高点至地面间的距离(mm),如图中的b、g、h所示。 汽车尺寸参数示意图 a-轴距;b-车长;c-前悬;d-后悬;e-前轮距; f-后轮距;g-车宽;h-车高;j-离地间隙。 2、轴距 轴距是指汽车两轴中心线之间的距离(mm),如上图中的a。对多轴汽车,轴距应从前至后分别注明相邻两轴间距离,总轴距为各轴距之和。 3、轮距 轮距是指汽车同一轴上左右两轮中心面之间的距离(mm),如上图中的e、f。若为双轮胎时,则为同一轴左右双轮中心面之间的距离。 4、前后悬

前悬是指汽车最前端至通过前轴轴线的垂面间的距离(mm),如上图中c;后悬是指汽车最后端至通过后轴轴线的垂面间的距离(mm),如上图中d。 5、最小离地间隙 最小离地间隙是指汽车满载时,汽车最低点至地面的距离(mm),如上图中j 。 汽车主要技术参数反映汽车的技术性能以及适用范围,主要有以下几项: 1、整车参数 1) 外形尺寸:长×高×宽 2) 重量参数:整车自重(千克)、总质量(千克)、载质量(千克)、空载轴荷分配等。 3) 通过性及机动性参数:最小离地间隙(一般为驱动桥壳最底点与地面之间的距离)、前悬、后悬、接近角、离去角、轴距、轮距、最小转弯半径。 4) 容量参数:载质量、座位数、货厢容积、行李厢容积、燃油箱容积等。 5) 性能参数:有最高转速、最大爬坡度、起步加速时间、各挡加速时间、百公里油耗量、制动距离等。 2、发动机参数 1) 发动机型号与生产厂家。 2) 发动机形式:包括冲程数、缸数、汽缸排列方式(直列用"l"表示,v型排列用"v"表示)、汽油机还是柴油机等。 3) 冷却方式:是风冷还是水冷。 4) 性能参数:包括最大功率、最大扭矩以及最低燃料消耗率等。还给出最大功率和最大扭矩时对应发动机转速。 5) 尺寸参数:包括发动机排量、压缩比、缸径×行程、外形尺寸与重量等。 6) 燃油供给方式:是化油器式还是燃油喷射方式。 7) 废气排放控制装置。 3、底盘参数 1) 传动系

气弹簧安装方式

气弹簧的安装方式怎么计算? 气弹簧气动支撑杆的安装方法 1 气弹簧的特点 气弹簧是一根举力(本文用F表示)近似不变的伸缩杆,在汽车,飞机,医疗器械,宇航器材,纺织机械等领域都有广泛的应用。它的内部构造是一条可在密闭筒腔内作直线运动的活塞杆。密闭筒腔内充满由高压气体和可溶解部分高压气体的液体所构成的液2气两相混合体。气弹簧的举力由高压气体推动活塞杆产生。推动力决定于高压气体的压强。高压气体在液体中的溶解量随气体压缩增加(此过程对应气弹簧工作于压缩阶段),随气体膨胀而减少(此过程对应气弹簧工作于伸长阶段),使得密闭筒腔内的高压气体的密度始终维持一个近似恒值,也就是气压近似不变(即举力近似不变)。 2 气弹簧的安装研究 表面上看,将气弹簧安装到客车舱门上非常简单,实际上安装设计所要解决的问题远非所想象的简单。气弹簧在舱门上的一般安装状态已知安装信息只有门体(几何形状,质量,重心,材料等),铰链和开度α要求,未知安装信息却多达6个(X1,X2,Y1,Y2,Z,F)。而由数学理论知道,要解出6个未知数,必须要解出由这6个未知数构成的6个方程式组成的方程组。由此可见,要求设计人员从纯理论形态入手解决气弹簧的安装几乎是不可能的。因此,从工程角度切入,深挖安装信息,简化未知数,是解决气弹簧安装设计问题的关键所在。 2-11 力学分析 门体,铰链(门体作开关运动的中心)和气弹簧构成一个杠杆系统。由于气弹簧对铰心的力臂远小于门重对铰心的力臂,所以这是一个费力杠杆系统。即是说,气弹簧举力必须远大于门重才可以将门体支撑起来。这是一个很重要的隐蔽条件。有了这个条件,才可以初选多大举力的气弹簧。气弹簧的举力可以确定为门重的3倍左右。当然也可以确定为门重的2倍,4倍,5倍,6倍左右。对同一个门体来说,相对于气弹簧举力取3倍门重,当气弹簧举力取2倍门重时,气弹簧力臂要增大,工作行程要增大,总长度要增加,安装空间增大;反之,当气弹簧举力取4倍以上门重时,气弹簧力臂要减小,工作行程要减小,总长度要减小,安装空间减小。这可根据实际安装空间选取气弹簧举力。笔者在实际设计中常用3倍数。 2-12 确定气弹簧的上下安装点 气弹簧的总长度,工作行程是在确定上下安装点过程中确定的。确定气弹簧上下安装点是整个气弹簧安装设计的最难点。下面以单轴铰链门体为例来说明"两圆法"在进行气弹簧安装设计的应用。安装示意图及有关参数如图2所示。下面的计算是以门体为规则,匀质的理想模型(重心=几何中心)为基础进行的。门体在开门过程中对铰心O的力矩不断变化(小→大→小),有两个峰值,一个是最大值,位于门体处于水平位置(α=90°)时;一个是固定值,位于门体处于开尽位置(α=最大值)时。根据物理学杠杆平衡原理可知,门体要在气弹簧的作用下自动打开和开尽以后长时间不掉下来,气弹簧在门体处于这两个特殊位置时对铰心O的瞬时力矩必须大于等于门体在这两个特殊位置时门重对铰心O的瞬时力矩。由此可以确定气弹簧所需的最大力臂(R),最小力臂(r)分别为(列式,计算过程略): 最大力臂R=G (H/2-h)2F≈G H4F,(当Hmh时)最小力臂r=G (H/2-h) cos(α-90°)2F≈G H cos(α-90°)4F,(当Hmh时)式中G为门重,N;F为气弹簧举力,N;H为门高,mm;h为门顶到铰心的垂距,mm;α为门体最大开度,°;2为每个门使用两支气弹簧作支撑。以铰心O为圆心,以最力臂R,最小力臂r为半径分别作大小两个圆。作小圆的一条切线的延长线交大圆于A点,则A 点为气弹簧的上安装点。气弹簧的下安装点B则必然在此切线下方的某一点上。AB两点的距离L为气弹簧的总长度。需要说明的是:A点必须落在门体内侧并离门面板竖直距离20mm

汽车设计课程设计

西安交通大学 汽车设计课程设计说明书 载货汽车汽车动力总成匹配与总体设计 姓名: 班级: 学号: 专业名称: 指导老师: 日期:2104/12/1

题目: 设计一辆用于长途运输固体物料,载重质量20t 的重型货运汽车。 整车尺寸:11980mm×2465mm×3530mm 轴数:4;驱动型式:8×4;轴距:1950mm+4550mm+1350mm 额定载质量:20000kg 整备质量:11000kg 公路最高行驶速度:90km/h 最大爬坡度:大于30% 设计任务: 1) 查阅相关资料,根据题目特点,进行发动机、离合器、变速箱传动轴、 驱动桥、车轮匹配和选型; 2) 进行汽车动力性、经济性估算,实现整车的优化匹配; 3) 绘制车辆总体布置说明图; 4) 编写设计说明书。 本说明书将从整车主要目标参数的初步确定、传动系各总成的选型、整车性能计算、发动机与传动系部件的确定四部分来介绍本课程设计的设计过程。

1.整车主要目标参数的初步确定 1.1发动机的选择 1.1.1发动机的最大功率及转速的确定 汽车的动力性能在很大程度上取决于发动机的最大功率。设计要求该载货汽车的最高车速是90km/h ,那么发动机的最大功率应该大于等于以该车速行驶时的行驶阻力功率之和,即: )76140 3600(13max max max a D a a T e u A C u f g m P ?+??≥ η (1-1) 式中 max e P ——发动机最大功率,kW ; T η——传动系效率(包括变速器、传动轴万向节、主减速器的传动效率),参考传动部件传动效 率计算得:95%95%98%96%84.9%T η=???=,各传动部件的传动效率见表1-1; 表1-1传动系统各部件的传动效率 部 件 名 称 传动效率(%) 4-6档变速器 95 辅助变速器(副变速器或分动器) 95 单级减速主减速器 96 传动轴万向节 98 a m ——汽车总质量,a m =31 000kg (整备质量11 000kg,载重20 000kg ); g ——重力加速度,g =9.81m /s 2 ; f ——滚动阻力系数,由试验测得,在车速不大于100km/h 的情况下可认为是常数。轮胎结构、 充气压力对滚动阻力系数有较大影响,良好路面上常用轮胎滚动阻力系数见表1-2。取0.012f =。 表1-2良好路面上常用轮胎滚动阻力系数 轮胎种类 滚动阻力系数 中重型载货车用子午线轮胎 0.007-0.008 中重型载货车用斜交轮胎 0.010-0.012 轻型载货车用子午线轮胎 0.008-0.009 轻型载货车用斜交轮胎 0.010-0.012 轿车用子午线轮胎 0.012-0.017 轿车用斜交轮胎 0.015-0.025 D C ——空气阻力系数,取D C =0.9;一般中重型货车可取0.8~1.0;轻型货车或大客车0.6~0.8;

停车位尺寸

4坡道式汽车库 4.1 一般规定 4.1.1 公用汽车库中汽车设计车型的外廓尺寸可按表 4.1.1 的规定采用。 汽车设计车型外廓尺寸表4.1.1 注:专用汽车库可按所停放的汽车外廓尺寸进行设计。括号内尺寸用于中型货车。 4.1.2 汽车库内停车方式应排列紧凑、通道短捷、出入迅速、保证安全和与柱网相协调,并应满足一次 进出停车位要求。 4.1.3 汽车库内停车方式可采用平行式、斜列式(有倾角30 °、45 °、60 °)和垂直式(图 4.1.3 ),

或混合采用此三种停车方式。 4.1.4 汽车库内汽车与汽车、墙、柱、护栏之间的最小净距应符合表 4.1.4 的规定。 图4.1.3 汽车停车方式 注:图中Wu——停车带宽度Lg——汽车长度 We——垂直于通车道的停车位尺寸Si——汽车间净距

Wd——通车道宽度Qt——汽车倾斜角度 Lt——平行于通车道的停车位尺寸 汽车与汽车、墙、柱、护栏之间最小净距表4.1.4 注:纵向指汽车长度方向、横向指汽车宽度方向,净距是指最近距离,当墙、柱外有突出物时,应从其凸出部分外缘算起 规划停车位尺寸的时候,可以参考以下尺寸标准: 1、大车停车位:大车停车位宽 4 米,长度7 米到10 米,视车型定。 2、小车停车位:小车停车车位,宽度 2.2 米到 2.5 米,长度 5 米。 3、旁边道路小车:单面停车 5 米宽,双面 6 米,大车8 米。

一般的车位面积为16 平方米左右,在建筑技术规则中,对室内停车位的法定尺寸标准是:平

面车位的标准长宽应为 6 米、2.5 米,但也可以设置小车位, 长宽为 5.5 米、2.5 米;而机械式车位的尺寸最小不能小于长宽高各为 5.5 米、2.2 米及 1.8 米(机栻车位的标准尺寸是以外 缘为准),所以实际使用时必须扣掉机械的宽度,尺寸相对缩小一些,但是高度不得低于 1.8 米。

后背门布置及结构设计指南

后背门布置及结构设计指南

目 次 1 范围 (1) 2 规范性引用文件 (1) 3 后背门简介 (1) 4 后背门设计输入条件 (1) 5 后背门设计流程 (2) 5.1 市场调研 (3) 5.2 造型确定 (3) 5.3 法规校核 (3) 5.4 零部件设计 (3) 5.5 工程分析 (3) 6 后背门结构设计 (3) 7 设计检查 (15) 8 设计检查 (15) 9 失效模式及相应措施 (16)

前 言 为保证本公司后背门布置及结构设计指南设计开发质量,特制定本规范。 本规范参照国内外汽车设计公司及汽车生产企业的先进经验编制而成。

后背门布置及结构设计指南 1 范围 本指南介绍了后背门设计的输入条件、设计思路和步骤、结构设计。 本指南适用于本公司M1类车型的后背门设计。 2 规范性引用文件 GB 15086—2013 汽车门锁及车门保持件的性能要求和试验方法 GB 15741—1995 汽车和挂车号牌板(架)及其位置 ECE R26.03 关于就外部突出物方面批准车辆的统一规定 1003/2010/EU 机动车辆及其挂车后牌照板安装空间和固定型式批准 SAE J686 Motor Vehicle License Plates 3 后背门简介 根据目前市场主流的SUV后背门结构分类,后背门可分为:侧开式后背门、侧对开式后背门、上下对开式后背门和上翻式后背门,因市场主流结构为上翻是后背门,所以本设计指南只对此类结构的后背门结构设计和布置展开详细的阐述。 4 后背门设计输入条件 后背门设计输入条件包括: a)造型输入:后背门3D CAS数模 b)边界输入:后围3D数模、顶盖3D数模、后保险杠3D数模、扰流板3D数模、后大灯3D数模、后背门亮饰条3D数模。 c)其它文件:性能描述书、设计FMEA和失效案例、参考样品信息(包含样件、图片、拆解工艺)等与设计相关资料文件

原车汽车音响喇叭尺寸对照表

1. 帕萨特前门6.5寸后门6.5寸多数喇叭需要垫喇叭圈原车1DIN可 安装2DIN 2.马自达6前门5*7后门5*7需要垫喇叭圈主机为非规则面板, 和空调共用显示部分 3.广本2.4前门6.5后台板6*9部分喇叭安装时,前门需垫喇叭圈 主机为非规则面板 4.普桑前门4*6后门5拆前喇叭只需翘下喇叭面盖主机1DIN 5.林宝坚尼MURCIELAGO前门 6.5后面6.5主机1DIN 6.保时捷911前门5*7后5*7主机1DIN面板 7.长安之星面包车前仪表台4寸后没有主机1DIN卡带 8.宝马Z4前门5后?主机非标准面板(横向狭长外型) 9.尼桑天籁JK版前6.5后6.5主机非标准 10别克君威:前门5寸套装,后门6×9机头2DIN 11.奥迪,前门6.5分体后门6.5分体 12.宝来前6。5中6。5一D 13.富康、爱丽舍前门:5"同轴后门:5"同轴(简装车型没有)主机:不规则 14.风神蓝鸟前门:6.5"同轴后门:6.5"同轴主机:1DIN(可装2DIN) 15.中华前门5.5代高音后门5.5或没主机1DIN可装2DIN 16.千里马前面5寸后面6.5寸主机1DIN 17.依蓝特前门6.5寸后面6X9 2DIN主机 18.捷达仪表3寸或高音前门没有或6.5寸后台5寸主机1DIN

19.两厢广本飞度前后门6.5寸部分喇叭需要加垫圈增高主机1DIN、2DIN均可 20.风度-2.0前门6寸后门6寸后窗台8寸低音主机2DIN 21.哈飞路宝,前5.25。后4 22.北斗星前5.25。后无 23.qq前4,后4*6 24.2000,仪表台4,前门可改6.5。后6.5但是喇叭罩是方型,最好改6*9 25.五菱之光前4后4 26.三菱帕杰罗v63000老款仪表台4后6*9 27.风神蓝鸟老款前门5*7后台6.5注意喇叭深度,小心碰到尾箱盖的钢簧 28.赛欧前门加垫4*6后台5.25 29.哈飞赛马前门6寸半后门6寸半 30.北斗星前门5寸后门5寸 31.新马自达6前门6寸半后门6寸半 32.凌志400前门4寸(带音箱)后台6X9 33.派里奥前门6寸半后台4X6 34.奇瑞(奇云)前门6寸半后台4X6 35.奇瑞QQ前门4寸后台4X6 36.307前门6寸分体,后门5寸分体头枕后6×9 1DIN可装2DIN 37.长城SAFE 04款前门四寸后侧车壁4寸同轴带小喇叭箱。主机双DIN换后厢喇叭时非常费劲,要把整个门板扒开。还容易断卡笋。

周子遂《汽车设计》课程设计指导书(变速器)

目录 (一)变速器结构方案的确定 (1) 1、档数 (1) 2、传动机构方案 (1) 3、换挡机构形式 (1) 4、齿轮型式 (2) 5、轴承选用 (2) 6、密封与润滑 (2) 7、操纵机构与倒档型式选择 (3) 8、变速器传动简图 (4) (二)主要参数的确定 (5) 1、中心距 (5) 2、轴向尺寸 (5) 3、齿轮参数的选择 (5) 4、各档传动比分配及齿数确定 (8) 5、齿轮变位系数的选择 (10) 6、齿轮参数 (10) (三)结构设计及强度校核 (12) 1、齿轮材料的选择 (12) 2、常啮合齿轮尺寸计算 (12)

3、齿轮强度校核 (21) (四)心得体会 (22)

(一)变速器结构方案的确定 1、档数; 变速器的挡数可在3-20个挡位范围内变化,增加变速器的挡数能够改善汽车的动力性和燃油经济型以及平均车速。挡数越多,变速器的结构越复杂,并且使轮廓尺寸和质量变大,同时操纵机构负责,同事在使用时换挡频率增加并增加了换挡难度。 本设计中的变速器为货车变速器。跟具要求,确定挡数为五挡变速器。 2、传动机构方案; 变速器的设计方案必需满足使用性能、制造条件、维护方便及三化等要求。方案a,b在满足使用性的条件下,结构更为简单,轴向尺寸更小,更有利于使变速器轻量化,维修也更为方便,更有利于润滑。再比较a和b,a方案的由于一挡和倒挡转速低,使用频率也低,只有在起步时才用到。故采用直齿滑动齿轮换挡,直齿滑动齿轮换档的优点是结构简单、紧凑,造价也比较低,经济性好。斜齿轮布置为中间轴采用右旋,第二轴和第一轴取为左旋。 3、换挡机构形式; 在选择了如图a的传动方案后,分析得出:由于1挡和倒挡转速低,齿轮直接啮合不会造成很大的冲击,故一挡和倒挡采用的时直

各品牌汽车尺寸大全模板

汽车型号尺寸汇总 车型长/宽/高(mm) 照片备注 奥迪A6L 2.0-2.4T 5035/1855/148 5 奥迪A4L 1.8-3.2T 4763/1826/142 6 进口奥迪A4L 1.8-3.0T 4573/1777/139 1 奥迪Q5 2.0 4629/1880/165 3 奥迪A8L 2.8-4.0T 5192/1894/145 5 奥迪R8 4.2 4431/1904/124 9 奥迪S5 4635/1854/136 9 奥迪S8 5.2 5062/1894/144 4

车型长/宽/高(mm) 照片备注 奥迪S4 4.2V8 MT 4575/1781/141 5 奥迪TTS Coupe 2.0 4198/1842/134 5 奥迪TTS Roadster 2.0 4198/1842/135 奥迪TT Roadster 2.0 4178/1842/135 8 奥迪TT Coupe 2.0 4178/1842/135 2 奥迪A5 2.0-3.2 4625/1854/137 2 奥迪Q7 3.6-4.2 5089/1983/173 7 讴歌MDX 4880/1990/173 3 讴歌RL 4985/1847/145

车型长/宽/高(mm) 照片备注 讴歌TL 3.5 5015/1880/145 5 阿斯顿-马丁DB9 4710/1875/127 阿斯顿-马丁DBS 4721/1905/128 阿斯顿-马丁Rapide 5019/2140/136 阿斯顿-马丁V12 Vantage 4380/1865/124 1 阿斯顿-马丁V8 4380/1865/125 5 阿尔法-罗米欧156 4720/1815/141 6 梅赛德斯C63 4726/1795/143 8 梅赛德斯CLS63 4917/1873/141 5

举升门气弹簧布置与支撑力计算

举升门气弹簧布置与支撑力计算 单位:上海同捷科技股份有限公司姓名:许晓晖 拟晋级别:中级

举升门气弹簧布置与支撑力计算 许晓晖 摘要:气弹簧助力式开启机构是目前乘用车上经常采用的一种结构。目前国内汽车车身设计中,对于气弹簧布置、选用采用逆向方法较多。即以标杆样车为参照,来布置设计车,以标杆车使用的气弹簧为基础样件,然后通过CAE运动分析来进行校核。本文从正向设计出发,以举升门为例,详细介绍了举升门气弹簧的布置与支撑力计算的设计过程,为新车设计正向布置气弹簧提供借鉴。 关键词:举升门气弹簧布置 气弹簧是一种可以起支撑、缓冲、制动、高度调节及角度调节等功能的配件。气弹簧与其它弹簧相比具有尺寸小、容易布置、可靠性高及弹力随行程的变化小等特点,可在-40℃——80℃范围内工作,温度对其弹力的影响不到4%。气弹簧在专业生产厂家均按标准化和系列化设计,使用和维修也更加方便。本文就汽车设计中经常应用的气弹簧布置,以举升门气弹簧的应用设计进行分析。 一、确认举升门铰链转轴中心位置 在举升门气弹簧应用设计之前必须确认:举升门两个铰链是否同轴;举升门在沿着铰链轴转动过程中与车身部件有无干涉(一般要求间隙应大于3mm);是否有气弹簧安装空间。铰链转轴中心是后续设计的基准。 二、确定举升门的开启角度 根据人机工程学分析来确定举升门的开度,目前对举升门开到最大位置车门下边沿的离地高度法规没有规定。依据整车总布置状态,确定该车型的举升门开启最大角度为94°,举升门最高点离地高度为2002mm。这样定义既考虑到人的头部不易碰到举升门下部最低点,也照顾到关门操纵时手部能很容易接触到拉手。 三、计算气弹簧上、下安装点的位置及有效行程 气弹簧和安装座通过带有螺纹段的轴销连接。气弹簧的安装点理论上是指气弹簧两端轴销上球头转动中心。有效行程是指气弹簧在车门关闭到车门完全开启长度变化的尺寸。 首先根据车身状态确定上安装点,具体要求: ●安装面应满足气弹簧运动不引起干涉的要求,必要时调整安装面; ●安装面内部设计适合强度要求的螺母加强板。

汽车设计-车门外手柄设计规范模板

I 汽车设计- 车门把手设计规范模板XXXX发布

汽车车门把手设计规范 1.范围 本规范适用于XX公司汽车侧开式车门塑料外开把手(以下简称“外把手”),其他车门外把手(如:后背门把手)也可以参考使用。 2.术语 外开把手:装在汽车车门外侧,用来开启车门的装置。 3.规范性引用文件 下列文件对于本文件的应用是必不可少的,凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修订版)适用于本文件。 GB/ T 10125 人造气氛腐蚀试验盐雾试验 GB/T 12600 金属覆盖层、塑料上镍+铬电镀层 QC/T 625 汽车用涂镀层和化学处理层 4.外把手分类和结构 4.1 从外观看,外把手大致可以分为以下两种形式:翻转式和外拉式,如图1所示。 外把手的外观形式完全取决于造型,工程设计需满足造型。 因人的审美要求提高,近年来新开发了“隐藏锁芯”式把手。即取消左前门把手端盖锁芯圆孔,更改为可反复拆卸式端盖,需要用锁芯时候用机械钥匙片撬掉端盖即可(见图2) 翻转式外拉式 图1 外把手结构形式 4.2 从外把手与锁的连接方式看,可分为压杆连接和拉线连接,具体形式取决于锁体外开摇臂的要求以及锁体布置时摇臂与外把手摇臂旋转轴线的夹角。 4.3 外开把手组成部分 外拉式外把手包括:手柄外部,端盖,底座,大垫片,小垫片,摇臂及配重块和弹簧等,如图2所示:

图2 翻转式外把手包括:底座、掀盖、摇臂、垫片、销轴和弹簧等,如图3所示: 图3 以上为外把手的主要组成部分,具体到各车型会有所不同,但都是在这些结构上扩展而形成的,例如:外手柄扩展为上盖、下盖两部分,底座上设计有侧碰安全机构。 5.外把手人机要求

车辆工程课程设计报告书

本科专业课程设计 题目新能源汽车动力与驱动系统总体的设计 学院: 汽车与交通工程学院 专业: 车辆工程 学号: 6 学生: 曼华 指导教师: 安文 日期: 2016.01

摘要 日益严重的环境污染和能源危机对汽车工业的发展提出了极为严峻的挑战。为了汽车工业的可持续发展,以使用电能的电动机作为驱动设备的电动汽车能真正实现“零污染”,现已成为各国汽车研发的一个重点。 纯电动汽车是指利用动力电池作为储能动力源,通过电池向电机提供电能,驱动电机运转,从而推动车辆前进。而在电动汽车研究的众多技术选型中,依靠轮边驱动的电动汽车逐渐成为一种新颖的电动汽车选型方向。 本文设计了一种新型双电机独立驱动桥,该方案采用锂离子动力电池作为动力源,两台永磁直流无刷电机作为驱动装置,依靠两套减速齿轮组分别进行减速,用短半轴带动车轮旋转。在系统构型设计的基础上,进行了包括电动机、电池在的动力系统参数匹配。 关键词:纯电动汽车;锂离子;双电机系统

Abstract Increasingly serious environmental pollution and energy crisis put forward on the development of the auto industry is extremely severe challenges. In order to the sustainable development of automobile industry, to use the power of the motor as driving device of the electric car can truly realize "zero pollution", has become a national automobile research and development of a key. So-called pure electric vehicles is the use of power battery as energy storage power source, through the battery power to the motor, drive motor running, pushing forward vehicle. In the electric car research, technology selection, depending on the round edge drive electric cars gradually become a new direction of the electric car type selection. This paper designs a new type of double motor drive axle independently, the scheme adopts the lithium ion power battery as a power source, two permanent magnet brushless dc motor as drive device, rely on two sets of gear group respectively for slowing down, with a short half shaft drives the wheels. On the basis of the system configuration design, the power system parameters, including electric motors, batteries, matching. Key words:Electric vehicles;Li+;Dual motor system

相关文档
最新文档