2第二讲2009-匹配滤波器

通信原理课程项目报告 匹配滤波器

上海大学2012~2013学年春季学期本科生 课程项目报告 课程名称:《通信原理B(2)》课程编号: 07275129 题目: 匹配滤波器分析 学生姓名: 王子驰(组长)学号: 10124021 学生姓名: 蒋子昂学号: 10124022 学生姓名: 徐璐学号: 10124040 学生姓名: 陈张婳学号: 10123773 学生姓名: 张晨学号: 10123743 评语: 成绩: 任课教师: 评阅日期:

匹配滤波器分析 日期(2013年5月1日) 摘要:在最佳线性滤波器的设计中有一种是使滤波器输出信噪比在某一特定时刻达到最大,由此而导 出的最佳线性滤波器称为匹配滤波器。匹配滤波器对信号做的两种处理:1、去掉信号相频函数中的任 何非线性部分;2、按照信号的幅频特性对输入波形进行加权,即当信号与噪声同时进入滤波器时,它 使信号成分在某一瞬间出现尖峰值,而噪声成分受到抑制。本文介绍了匹配滤波器的原理,利用MATLAB 软件,设计了一种匹配滤波器,并对其在二进制确知信号最佳接收中的应用进行了分析。 1.引言 在数字通信系统中,信道的传输特性和传输过程中噪声的存在是影响通信性能的两个主要因素。人们总是希望在一定的传输条件下,达到最好的传输性能,最佳接收就是在噪声干扰中如何有效地检测出信号。所谓最佳是在某种标准下系统性能达到最佳,最佳接收是个相对的概念,在某种准则下的最佳系统,在另外一种准则下就不一定是最佳的。在某些特定条件下,几种最佳准则也可能是等价的。在数字通信中,最常采用的是输出信噪比最大准则和差错概率最小准则。 在数字信号接收中,滤波器的作用有两个方面,第一是使滤波器输出有用信号成分尽可能强; 第二是抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减小噪声对信号判决的影响。 通常对最佳线性滤波器的设计有两种准则:一种是使滤波器输出的信号波形与发送信号波形之 间的均方误差最小,由此而导出的最佳线性滤波器称为维纳滤波器;另一种是使滤波器输出信噪比 在某一特定时刻达到最大,由此而导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤 波器具有更广泛的应用。 2.课程项目的目的 (1)掌握匹配滤波器的基本概念、基本原理和基本设计方法; (2)具备对简单通信系统进行建立模型、定性分析、定量计算的能力; (3)对实验过程中存在的问题能够进行分析和排除; (4)对规定任务有一定的创新能力。 3.基本原理介绍 由数字信号的判决原理我们知道,抽样判决器输出数据正确与否,与滤波器输出信号波形和发 送信号波形之间的相似程度无关,也即与滤波器输出信号波形的失真程度无关,而只取决于抽样时 刻信号的瞬时功率与噪声平均功率之比,即信噪比。信噪比越大,错误判决的概率就越小;反之,Array 信噪比越小,错误判决概率就越大。

巴特沃斯数字低通滤波器

目录 1.题目.......................................................................................... .2 2.要求 (2) 3.设计原理 (2) 3.1 数字滤波器基本概念 (2) 3.2 数字滤波器工作原理 (2) 3.3 巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法 (4) 3.5实验所用MA TLAB函数说明 (5) 4.设计思路 (6) 5、实验内容 (6) 5.1实验程序 (6) 5.2实验结果分析 (10) 6.心得体会 (10) 7.参考文献 (10)

一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ ,通带最大衰减为0.5HZ ,阻带最小衰减为10HZ ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ 。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤波功能。如果要处理的是模拟信号,可通过A\DC 和D\AC,在信号形式上进行匹配转换,同样可以使用数字滤波器对模拟信号进行滤波。 2、数字滤波器的工作原理 数字滤波器是一个离散时间系统,输入x(n)是一个时间序列,输出y(n)也是一个时间序列。如数字滤波器的系统函数为H(Z),其脉冲响应为h(n),则在时间域内存在下列关系 y(n)=x(n) h(n) 在Z 域内,输入输出存在下列关系 Y(Z)=H(Z)X(Z) 式中,X(Z),Y(Z)分别为输入x(n)和输出y(n)的Z 变换。 同样在频率域内,输入和输出存在下列关系 Y(jw)=X(jw)H(jw) 式中,H(jw)为数字滤波器的频率特性,X(jw)和Y(jw)分别为x(n)和y(n)的频谱。w 为数字角频率,单位rad 。通常设计H(jw)在某些频段的响应值为1,在某些频段的响应为0.X(jw)和H(jw)的乘积在频率响应为1的那些频段的值仍为X(jw),即在这些频段的振幅可以无阻碍地通过滤波器,这些频带为通带。X(jw)和H(jw)的乘积在频段响应为0的那些频段的值不管X(jw)大小如何均为零,即在这些频段里的振幅不能通过滤波器,这些频带称为阻带。 一个合适的数字滤波器系统函数H(Z)可以根据需要输入x(n)的频率特性,经数字滤波器处理后的信号y(n)保留信号x(n)中的有用频率成分,去除无用频率成分。 3、巴特沃斯滤波器设计原理 (1)基本性质 巴特沃斯滤波器以巴特沃斯函数来近似滤波器的系统函数。巴特沃斯滤波器是根据幅频特性在通频带内具有最平坦特性定义的滤波器。 巴特沃思滤波器的低通模平方函数表示1 () ΩΩ+ =Ωc N /22 a 11 ) (j H

数字匹配滤波器

数字匹配滤波器 介绍在直接序列扩频通信中应用数字匹配滤波器实现m序列同步,分析其具体结构,详细讨论了其基于FPGA(现场可编程门阵列)的性能优化。结果表明,数字匹配滤波器用FPGA实现时,能够大大减少资源占用,并提高工作效率。 1 引言 在通信系统中,匹配滤波器的应用十分广泛,尤其在扩频通信如在CDMA系统中,用于伪随机序列(通常是m序列)的同步捕获。匹配滤波器是扩频通信中的关键部件,它的性能直接影响到通信的质量。本文从数字匹配滤波器的理论及结构出发,讨论了它在数字通信直扩系统中的应用,并对其基于FPGA的具体实现进行了优化。 2 数字匹配滤波捕获技术 在直接序列扩频解扩系统中,数字匹配滤波器的捕获是以接收端扩频码序列作为数字FIR滤波器的抽头系数,对接收到的信号进行相关滤波,滤波输出结果进入门限判决器进行门限判决,如果超过设定门限,表明此刻本地序列码的相位与接收扩频序列码的相位达到同步。如果并未超过设定门限,则表明此刻本地序列码的相位与接收到的扩频序列码的相位不同步,需要再次重复相关运算,直到同步为止,如图l所示。 数字匹配滤波器由移位寄存器、乘法器和累加器组成,这只是FIR滤波器的结构形式,只不过伪码寄存器中的系数为-1或+1,实际并不是真正意义上的乘法。伪码寄存器中的数据可以由一种伪随机序列发生器产生。 数字匹配滤波器的表达式为: 其中,x(n)为输入信号;h(-i)为滤波系数,由接收端扩频码决定,取值-1或+1,m序列码元为1,取值为+l,m序列码元为O,取值为-1。匹配滤波器的长度N等于扩频比,也就是对于每一信息符号的扩频码元数,即Tb/Tc。当输入信号{x(n)}与本地扩频码{h(-i)}匹配时,时输出Z达到最大,超出预先设定的门限,表示捕获成功。 很显然,数字匹配滤波器中的关键部件是乘法器和累加器,而移位寄存器可以由信号的相互移位来实现,例如要实现8 bit串行数据的移位。假设输入数据序列为din,移位寄存器中的信号为dO,d1,d2,d3,d4,d5,d6,d7,用VHDL语言中的进程语句实现程序为:

IIR数字滤波器设计及软件实现

实验四:IIR 数字滤波器设计及软件实现 一、实验原理与方法 1、设计IIR 数字滤波器一般采用间接法(脉冲响应不变法和双线性变换法),应用最广泛的是双线性变换法,其基本设计过程是: (1)将给定的数字滤波器的指标转换成过渡模拟滤波器的指标; (2)设计过渡模拟滤波器; (3)将过渡模拟滤波器系统函数转换成数字滤波器的系统函数。 本实验的数字滤波器的MATLAB 实现是指调用MATLAB 信号处理工具箱函数filter 对给定的输入信号x(n)进行滤波,得到滤波后的输出信号y(n )。 二、实验内容 1、调用信号产生函数mstg 产生由三路抑制载波调幅信号相加构成的复合信号st ,该函数还会自动绘图显示st 的时域波形和幅频特性曲线,如图4.1所示。由图可见,三路信号时域混叠无法在时域分离。但频域是分离的,所以可以通过滤波的方法在频域分离,这就是本实验的目的。 图4.1 三路调幅信号st (即s (t ))的时域波形和幅频特性曲线 2、要求将st 中三路调幅信号分离,通过观察st 的幅频特性曲线,分别确定可以分离st 中三路抑制载波单频调幅信号的三个滤波器(低通滤波器、带通滤波器、高通滤波器)的通带截止频率和阻带截止频率。要求滤波器的通带最大衰减为0.1dB,阻带最小衰减为60dB 。实验结果如图4.2,程序见附录4.2。 提示:抑制载波单频调幅信号的数学表示式为 0001()cos(2)cos(2)[cos(2())cos(2())]2 c c c s t f t f t f f t f f t ππππ==-++ 其中,cos(2)c f t π称为载波,fc 为载波频率,0cos(2)f t π称为单频调制信号,f0为调制正弦波信号频率,且满足0c f f >。由上式可见,所谓抑制载波单频调幅信号,就是2个正弦信号相乘,它有2个频率成分:和频0c f f +和差频0c f f -,

匹配滤波器原理

数字通信课程设计 匹配滤波器

摘要 ?在通信系统中,滤波器是重要的部件之一,滤波器特征的选择直接影响数字信号的恢复。在数字信号接收中,滤波器的作用有两个方面,使滤波器输出有用信号成分尽可能强;抑制信号带外噪声,使滤波器输出噪声成分尽可能小,减少噪声对信号判决的影响。对最佳线性滤波器的设计有一种准则是使滤波器输出信噪比在特定时刻到达最大,由此导出的最佳线性滤波器称为匹配滤波器。在数字通信中,匹配滤波器具有广泛的应用。因此匹配滤波器是指滤波器的性能与信号的特征取得某种一致,使滤波器输出端的信号瞬时功率与噪声平均功率的比值最大。本文设计并仿真了一种数字基带通信系统接收端的匹配滤波器。 一、课程设计的目的 通过本次对匹配滤波器的设计,让我们对匹配滤波器的原理有更深一步的理 解,掌握具体的匹配滤波器的设计方法与算法。 二、课程设计的原理 设接收滤波器的传输函数为)(f H ,冲击响应为)(t h ,滤波器输入码元)(t s 的持续时间为s T ,信号和噪声之和)(t r 为 )()()(t n t s t r += s T t ≤≤0 式中,)(t s 为信号码元,)(t n 为白噪声。 并设信号码元)(t s 的频谱密度函数为)(f S ,噪声)(t n 的双边功率谱密度为 2/0n P n =,0n 为噪声单边功率谱密度。 假定滤波器是线性的,根据叠加定理,当滤波器输入信号和噪声两部分时,滤波器的输出也包含相应的输出信号和输出噪声两部分,即 )()()(00t n t s t y += 由于:)()()()()()(2 * f P f H f P f H f H f P R R Y == )(f P R 为输出功率谱密度,)(f P R 为输入功率谱密度,2/)(0n f P R = ?这时的输出噪声功率0N 等于 ? ?∞ ∞ -∞ ∞ -=?=df f H n df n f H N 2 02 0)(22)( 在抽样时刻0t 上,输出信号瞬时功率与噪声平均功率之比为

切比雪夫1型数字低通滤波器

目录 1. 数字滤波器的设计任务及要求 (2) 2. 数字滤波器的设计及仿真 (2) 2.1数字滤波器的设计 (3) 2.2数字滤波器的性能分析 (3) 3. 数字滤波器的实现结构对其性能影响的分析 (8) 3.1数字滤波器的实现结构一及其幅频响应 (10) 3.2数字滤波器的实现结构二及其幅频响应 (12) 3.3 数字滤波器的实现结构对其性能影响的小结 (12) 4. 数字滤波器的参数字长对其性能影响的分析 (13) 4.1数字滤波器的实现结构一参数字长及幅频响应特性变化 4.2数字滤波器的实现结构二参数字长及幅频响应特性变化 4.3 数字滤波器的参数字长对其性能影响的小结 (16) 5. 结论及体会 (16) 5.1 滤波器设计、分析结论 (16) 5.2 我的体会 (16) 5.3 展望 (16)

1.数字滤波器的设计任务及要求 1. 设计说明 每位同学抽签得到一个四位数,由该四位数索引下表确定待设计数字滤波器的类型及其设计方法,然后用指定的设计方法完成滤波器设计。 要求:滤波器的设计指标: 低通: (1)通带截止频率πrad (id) pc 32 ln = ω (2)过渡带宽度πrad ) (i d 160 10log tz ≤?ω (3)滚降dB αroll 60= 其中,i d — 抽签得到那个四位数(学号的最末四位数),本设计中i d =0201。 2. 滤波器的初始设计通过手工计算完成; 3. 在计算机辅助计算基础上分析滤波器结构对其性能指标的影响(至少选择两种以上合适的滤波器 结构进行分析); 4. 在计算机辅助计算基础上分析滤波器参数的字长对其性能指标的影响; 5. 以上各项要有理论分析和推导、原程序以及表示计算结果的图表; 6. 课程设计结束时提交设计说明书。 2.数字滤波器的设计及仿真 2.1数字滤波器(编号0201)的设计 数字滤波器是数字信号处理的重要工具之一,它通过数值运算处理改变输入信号所含频率成分的相对比例或者滤出某些频率成分的数字器件或程序,而数字滤波器处理精度高、体积小、稳定、重量轻、灵活、不存在阻抗匹配问题,可以实现模拟滤波器无法实现的特殊功能。 本次课程设计使用MATLAB 信号处理箱和运用切比雪夫法设计数字滤波器,将手工计算一个切比雪夫I 型的IIR 的低通模拟滤波器的系统函数,并在MATLAB 的FDATool 设计工具分析其性能指标。

通信原理报告 数字基带信号利用匹配滤波器的最佳接收模型设计

通信原理课程设计报告 题目:数字基带信号利用匹配滤波器的最佳接收模型设计 专业班级: 姓名: 学号: 指导教师:

摘要 (1) 关键词 (1) 课程设计要求 (1) 正文 (2) 1.概述 (2) 2.1设计原理 (2) 2.2.1硬件框图 (4) 2.2.2Simulink平台模块 (5) 2.3.1设计过程 (5) 2.3.2高斯白噪声发生器 (5) 2.3.3积分器 (6) 2.3.4抽样判决器 (7) 3.1数据 (7) 3.2结果分析 (9) 4.结论 (10) 【摘要】 匹配滤波器能将调制过的信号还原成原来的样子,而最佳接收机则是指在输入信号存在白噪声的情况下,将信号还原的同时还能优化处理成最准确的信号的接收系统。通常在判别一个系统的优劣时,误码率是个好判断标准。本次课程设计也将误码率作为一个重要的分析系统优劣的标准,设计一个误码率最小的接收系统。 【关键词】MATLAB simulink仿真平台匹配滤波器最佳接收机 【课程设计要求】仿真实现数字基带信号利用匹配滤波器的最佳接收机模型。接收信号为高斯白噪声的二进制数字序列x(t),其码型为双极性不归零码,利用匹配滤波器的最佳接收过程的时域图及频谱图,以及对所设计的系统性能进行分析。实现该最佳接收模型和非最佳接收机模型的区别和性能比较。

1.概述 首先从匹配滤波器的定义:输出信噪比Ps/Pn最大的线性滤波器称为匹配滤波器来看。它的优秀性能使它成为一种非常重要的滤波器,广泛应用与通信、雷达相关的系统中。从相频特性上看,匹配滤波器的输入信号与相频特性是刚好完全相反的。这种情况下,信号通过匹配滤波器后,其相位为0,恰好能使信号时域出现相干叠加的结果。反观噪声的相位是随机的,所以噪声只会出现非相干叠加的结果。也就是说时域上的信噪比最大的问题解决了。从幅频特性来看,输入信号与匹配滤波器的幅频需要一致。也就是说,只要在信号频率越强的点,滤波器的放大倍数也会变得越大;在信号频率越弱的点,滤波器的放大倍数也相应的变得越小。换言之,这种特性使得匹配滤波器让信号尽可能通过,而不太会收噪声影响。在信号输入匹配滤波器之前出现的高斯白噪声的功率谱是相对平坦的,在各个频率点也是差不多的。因此,这种情况下,信号能够尽可能的通过,而噪声则被尽可能的减弱。在解决这两方面的问题后匹配滤波器还不够完美,需要进行最佳接收机准则检验。但这就需要另外的一些设计。 2.1设计原理 有y: y(t)=s(t)+n(t)。当发出信号为si(t)时,其概率密度函数为: 按照某种准则,可以对y(t)作出判决,使判决空间中可能出现的状态r1, r2, …, rm与信号空间中的各状态s1, s2, …, sm相对应。

数字滤波器的DSP实现

摘要 当前我们正处于数字化时代,数字信号处理技术受到了人们的广泛关注,其理论及算法随着计算机技术和微电子技术的发展得到了飞速的发展,被广泛应用于语音图象处理、数字通信、谱分析、模式识别、自动控制等领域。数字滤波器是数字信号处理中最重要的组成部分之一,几乎出现在所有的数字信号处理系统中。数字滤波器是指完成信号滤波处理的功能,用有限精度算法实现的离散时间线性非时变系统,其输入是一组(由模拟信号取样和量化的)数字量,其输出是经过变换的另一组数字量。相对于模拟滤波器,数字滤波器没有漂移,能够处理低频信号,频率响应特性可做成非常接近于理想的特性,且精度可以达到很高,容易集成等,这些优势决定了数字滤波器的应用越来越广泛。同时DSP(数字信号处理器)的出现和FPGA的迅速发展也促进了数字滤波器的发展,并为数字滤波器的硬件实现提供了更多的选择。 本论文的主要研究了数字滤波器的基本理论及其算法。基于TI公司的数字信号处理器TMS320VC5509设计了一款稳定度高,低功耗的数字滤波器系统,并完成了软硬调试工作。主要工作如下: (1)研究了数字滤波器的基本理论,以及数字滤波器的实现方法。通过学习识字滤波器 的结构、数字滤波器的设计理论,掌握了各种数字滤波器的原理和特性。为实现数字滤波器奠定了理论基础。 (2)研究分析了如何利用MATLAB仿真软件来设计出符合各种要求的数字滤波器。并采用 了相关的函数设计了几款常用的数字滤波器,并得到了滤波器的相关系数,为利用DSP实现数字滤波做好了一些前期的工作。 (3)根据TI公司5000系列数字信号处理器的基本结构和特征,充分利用其片上资源t结 合MATLAB软件的仿真,用软件实现高性能稳定的数字滤波器。 关键字:数字滤波器,DSP,IIR(无限长单位脉冲响应),FIR(有限长单位脉冲响应)

信号检测实验报告

Harbin Institute of Technology 匹配滤波器实验报告 课程名称:信号检测理论 院系:电子与信息工程学院 姓名:高亚豪 学号:14SD05003 授课教师:郑薇 哈尔滨工业大学

1. 实验目的 通过Matlab 编程实现对白噪声条件下的匹配滤波器的仿真,从而加深对匹配滤波器及其实现过程的理解。通过观察输入输出信号波形及频谱图,对匹配处理有一个更加直观的理解,同时验证匹配滤波器具有时间上的适应性。 2. 实验原理 对于一个观测信号()r t ,已知它或是干扰与噪声之和,或是单纯的干扰, 即 0()()()()a u t n t r t n t +?=?? 这里()r t ,()u t ,()n t 都是复包络,其中0a 是信号的复幅度,()u t 是确知的归一化信号的复包络,它们满足如下条件。 2|()|d 1u t t +∞ -∞=? 201||2 a E = 其中E 为信号的能量。()n t 是干扰的均值为0,方差为0N 的白噪声干扰。 使该信号通过一个线性滤波系统,有效地滤除干扰,使输出信号的信噪比在某一时刻0t 达到最大,以便判断信号的有无。该线性系统即为匹配滤波器。 以()h t 代表系统的脉冲响应,则在信号存在的条件下,滤波器的输出为 0000()()()d ()()d ()()d y t r t h a u t h n t h τττττττττ+∞+∞+∞ =-=-+-???

右边的第一项和第二项分别为滤波器输出的信号成分和噪声成分,即 00()()()d x t a u t h τττ+∞ =-? 0 ()()()d t n t h ?τττ+∞ =-? 则输出噪声成分的平均功率(统计平均)为 2 20E[|()|]=E[|()()d |]t n t h ?τττ+∞ -? **00*000200 =E[()(')]()(')d d '=2()(')(')d d ' 2|()|d n t n t h h N h h N h ττττττδττττττττ+∞+∞+∞+∞+∞ ---=?? ?? ? 而信号成分在0t 时刻的峰值功率为 22 20000|()||||()()d |x t a u t h τττ+∞ =-? 输出信号在0t 时刻的总功率为 22000E[|()|]E[|()()|]y t x t t ?=+ 22**0000002200E[|()||()|()()()()] |()|E[|()|] x t t x t t t x t x t t ????=+++=+ 上式中输出噪声成分的期望值为0,即0E[()]0t ?=,因此输出信号的功率 成分中只包含信号功率和噪声功率。 则该滤波器的输出信噪比为 222000022000|||()()d ||()|E[|()|]2|()|d a u t h x t t N h τττρ?ττ+∞ +∞-==?? 根据Schwartz 不等式有

数字匹配滤波器的优化设计与FPGA实现

●主题论文 1 引言 在通信系统中,匹配滤波器的应用十分广泛,尤 其在扩频通信如在CDMA系统中,用于伪随机序列(通常是m序列)的同步捕获。 匹配滤波器是扩频通信中的关键部件,它的性能直接影响到通信的质量。本文从数字匹配滤波器的理论及结构出发,讨论了它在数字通信直扩系统中的应用,并对其基于FPGA的具体实现进行了优化。 2 数字匹配滤波捕获技术 在直接序列扩频解扩系统中,数字匹配滤波器 的捕获是以接收端扩频码序列作为数字FIR滤波器的抽头系数,对接收到的信号进行相关滤波,滤波输出结果进入门限判决器进行门限判决,如果超过 设定门限,表明此刻本地序列码的相位与接收扩频序列码的相位达到同步。如果并未超过设定门限,则表明此刻本地序列码的相位与接收到的扩频序列码的相位不同步,需要再次重复相关运算,直到同步为止,如图1所示。 数字匹配滤波器由移位寄存器、乘法器和累加器组成,这只是FIR滤波器的结构形式,只不过伪 数字匹配滤波器的优化设计与FPGA实现 (王光1,田斌1,吴勉2, 易克初1,田红心1) (1.西安电子科技大学综合业务网国家重点实验室,陕西西安710071; 2.深圳通创通信有限公司,广东深圳518001) 摘要:介绍在直接序列扩频通信中应用数字匹配滤波器实现m序列同步,分析其具体结构,详细讨论了其基于FPGA(现场可编程门阵列)的性能优化。结果表明,数字匹配滤波器用FPGA实现时,能够大大减少资源占用,并提高工作效率。关 键 词:FPGA;数字匹配滤波器;直接序列扩频 中图分类号:TN713 文献标识码:A 文章编号:1006-6977(2006)05-0070-04 Digitalmatchingfilter’soptimizationdesigning andFPGAimplementation WANGGuang1,TIANBin1, WUMian2,YIKe-chu1,TIANHong-xin1 (1.NationalKeyLaboratoryofIntegratedServicesNetworks,XidianUniversity,Xi’an710071,China; 2.ShenzhenNewComTelecommunicationsCo.,Ltd,Shenzhen518001,China) Abstract:Them-sequence’ssynchronouscapturingindirectsequencespreadspectrumsystembyus- ingdigitalmatchingfilterisdescribed,itsrealizationstructureisanalyzedanditsoptimizationimple-mentationisdiscussedindetail.Theresultshowsthattheoptimizationdigitalmatchingfiltercande-creasetheresourceoccupationgreatlyandincreaseworkingefficiency. Keywords:FPGA;digitalmatchingfilter;directsequencespreadspectrum 图1 数字匹配滤波器的结构图

匹配滤波器检测

1.1 匹配滤波器检测 基于第三章对频谱滤波器检测的简要描述,本节就对此进行详细的解说。前面提到了当认知用户知道主用户的先验信息时,匹配滤波器检测就是频谱检测的最优算法,早期的研究表明,匹配滤波器需要(1/SNR )个采样数,检测时间相比较而言较短,就可以与预期的误差概率相吻合。 这种滤波器在数字通信信号和雷达信号的检测中具有特别重要的意义。匹配滤波器频谱检测算法在加性高斯白噪声信道中是一种最优的频谱感知方法,主要通过对授权信号进行解调或者导频检测实现。前者实现比较复杂,通过采用匹配滤波器对授权用户信号解调,要求认知用户为每类授权用户提供一套接收解码设备;后者实现相对简单,不再需要复杂的接收解码设备,而且目前大部分无线通信系统都存在导频、前导码、时间同步信号和扩频码等确知信号, 这样就使得匹配滤波器检测大大简化,但它的缺点就是为了获得匹配滤波器而必须具备授权用户信号的先验知识,除此之外,计算量也比较大。因此如果先验知识不准确,那么匹配滤波器的性能就会大大下降。 1.1.1 匹配滤波器检测框图 检测统计量Y 为: *)()(∑= N n x n y Y 假设x(n)发射信号已知,将检测统计量与预先设定的门限值λ进行比较,大于门限值时就表明关心的频谱存在授权用户,如果小于门限值,就说明该信道中只有噪声,也就是说,出现了频谱空洞,感知用户可以占用该信道。 匹配滤波器检测框图1

对于现实中的信道,信号可能是M 进制的,这就需要同时进行几路信号同时进行匹配,将每一路频谱的结果进行比较,得到的判决结果后,再根据一定的判决根据,判决得到经过不同信道的接受信号。其工作原理图如下: 匹配滤波器工作原理图2 1.1.2 匹配滤波器检测原理 在第三章中曾提到,匹配滤波器检测的设计准则就是使信号的输出信噪比SNR 在某一时刻达到最大值。信噪比SNR 表达式如下: N 2Es SNR = 式子中Es 为观测时间段中检测信号的能量,N 0为噪声功率。 信道在传输信号时还叠加有高斯白噪声n(t),其均值为零,双边功率谱密度为N 0//2,因此接收信号波形为: t t n t s t r ≤ ≤+=0),()()( 设最大输出信噪比准则下的最佳线性滤波器H(ω),输出为 )()()(y 0t n t s t o += 在t=tm 时候,输出信噪比为: ()()m m t n t s 2 o 2 o =ρ 设()()[]t s S F =ωj ,那么经过匹配滤波器后的输出信号为 ()()()? ∞ ∞ -=ωωωπ ωd 21o m t j m e j S j H t s

设计数字低通滤波器(用matlab实现)

DSP 设计滤波器报告 姓名:张胜男 班级:07级电信(1)班 学号:078319120 一·低通滤波器的设计 (一)实验目的:掌握IIR 数字低通滤波器的设计方法。 (二)实验原理: 1、滤波器的分类 滤波器分两大类:经典滤波器和现代滤波器。 经典滤波器是假定输入信号)(n x 中的有用成分和希望取出的成分各自占有不同的频带。这样,当)(n x 通过一个线性系统(即滤波器)后可讲欲去除的成分有效的去除。 现代滤波器理论研究的主要内容是从含有噪声的数据记录(又称时间序列)中估计出信号的某些特征或信号本身。 经典滤波器分为低通、高通、带通、带阻滤波器。每一种又有模拟滤波器(AF )和数字滤波器(DF )。对数字滤波器,又有IIR 滤波器和FIR 滤波器。 IIR DF 的转移函数是: ∑∑=-=-+==N k k k M r r r z a z b z X z Y z H 10 1)()()( FIR DF 的转移函数是: ∑-=-=10)()(N n n z n h z H FIR 滤波器可以对给定的频率特性直接进行设计,而IIR 滤波器目前最通用的方法是利用已经很成熟的模拟滤波器的设计方法进行设计。 2、滤波器的技术要求 低通滤波器: p ω:通带截止频率(又称通带上限频率) s ω:阻带下限截止频率 p α:通带允许的最大衰减 s α:阻带允许的最小衰减 (p α,s α的单位dB ) p Ω:通带上限角频率 s Ω:阻带下限角频率 (s p p T ω=Ω,s s s T ω=Ω)即 C p p F ωπ2=Ω C s s F ωπ2=Ω 3、IIR 数字滤波器的设计步骤:

数字滤波器的设计及实现

数字滤波器的设计及实现 【一】设计目的 1. 熟悉IIR 数字滤波器和FIR 数字滤波器的设计原理和方法; 2. 学会调用MATLAB 信号处理工具箱中的滤波器设计函数设计各种IIR 和FIR 数字滤波器,学会根据滤波要求确定滤波器指标参数; 3. 掌握用IIR 和FIR 数字滤波器的MA TLAB 实现方法,并能绘制滤波器的幅频特性、相频特性; 4. 通过观察滤波器的输入、输出信号的时域波形及其频谱,建立数字滤波的概念。 【二】设计原理 抑制载波单频调幅信号的数学表达式为 []))(2cos())(2cos(2 1)2cos()2cos()(000t f f t f f t f t f t s c c c ++-==ππππ (2.1) 其中,)2cos(t f c π称为载波,c f 为载波频率,)2cos(0t f π称为单频调制信号,0f 为调制正弦波信号频率,且满足0c f f >。由(2.1)式可见,所谓抑制载波单频调制信号,就是两个正弦信号相乘,它有2个频率成分:和频c f +0f ,差频c f -0f ,这两个频率成分关于载波频率c f 对称。所以,1路抑制载波单频调幅信号的频谱图是关于载波频率c f 对称的两根谱线。 复合信号st 产生函数mstg 清单: function st=mstg %产生信号序列st ,并显示st 的时域波形和频谱 %st=mstg 返回三路调幅信号相加形成的混合信号,长度N=800 N=800; %信号长度N 为800 Fs=10000;T=1/Fs;Tp=N*T; %采样频率Fs=10kHz ,Tp 为采样时间 t=0:T:(N-1)*T;k=0:N-1;f=k/Tp; fc1=Fs/10; %第1路调幅信号载波频率fc1=1000Hz fm1=fc1/10; %第1路调幅信号的调制信号频率fm1=100Hz fc2=Fs/20; %第2路调幅信号载波频率fc2=500Hz fm2=fc2/10; %第2路调幅信号的调制信号频率fm2=50Hz fc3=Fs/40; %第3路调幅信号载波频率fc3=250Hz fm3=fc3/10; %第3路调幅信号的调制信号频率fm3=25Hz xt1=cos(2*pi*fm1*t).*cos(2*pi*fc1*t); %产生第1路调幅信号 xt2=cos(2*pi*fm2*t).*cos(2*pi*fc2*t); %产生第2路调幅信号 xt3=cos(2*pi*fm3*t).*cos(2*pi*fc3*t); %产生第3路调幅信号 st=xt1+xt2+xt3; %三路信号相加,得到复合信号

数字匹配滤波器的设计

数字信号课外作业 数字匹配滤波器的设计

在数字通信系统中,最常用的准则是最大输出信噪比准则,在此准则下获得的最佳线性滤波器叫做匹配滤波器 1.匹配滤波器原理 在通信系统中,若接收机输入信噪比相同,所设计的接收机的输出信噪比最大,则能够最佳地判决出有用信号,从而可以得到系统最小误码率,这就是最大输出信噪比准则。 在数字通信系统里,可在接收机内采用一种线性滤波器,当加噪信号通过它时,使其中有用信号加强并使噪声衰减,并在采样时刻使输出信号的瞬时功率与噪声平均功率之比达到最大,这种线性滤波器称为匹配滤波器。 设接收滤波器的传输函数为H(w),滤波器输入为 r(t)=s(t)+n(t) ⑴ 式中,s(t)为输入有用信号,其频谱为S(w);n(t)为高斯白噪声。由于线性滤波器满足叠加原理,因此滤波器输出为 y(t)=s0(t)+n0(t) ⑵式中,s0(t)和n0(t)分别为s(t)和n(t)单独通过此滤波器的输出。 由线性系统最大响应原理,设K为常数,可以导出当接收滤波器满足 H R(ω)= K S*(ω)e?jωt0⑶ 时,滤波器输出信噪比最大。即当一个线性相位滤波器传输函数等于输入信号频谱复共轭时,称为匹配滤波器。

2.匹配滤波器设计 由无码间干扰(奈奎斯特准则)和最佳接收机原理可以导出,在理想信道的数字通信系统中,若接收和发送滤波器传输函数分别为H R (f)和H T (f),而且有 S(f)=H R (f)H T (f) ⑷ 时,则系统无码间干扰,并可实现最佳接收。在实用中,发送端输入信号频谱常用升余弦函数 S(f)= { T, 0≤|ω|≤(1?a)/2T T 2 {1+cos[ π T a (|f|? 1?a 2T )]} 1?a 2T < |f| ≤ 1+a 2T 0, |f| > 1+a 2T ⑸ 式中,T 为脉冲间隔,0< a ≤1为频谱滚降系数,ω=2πf 图为按⑷和(5)式设计并用MATLAB 程序实现频率特性为HR(f)和HT(f)的滤波器,其中HR(f)是HT(f)的匹配滤波器。 解:设计符合题意的数字滤波器的最简便方法是采用线性相位FIR 滤波器,其幅度特性为 |H R (f)|=|H T (f)|=√S (f ) ⑹ 式中,S(f)由(5)式给出。设hR(f)为滤波器单位脉冲响应,N 为奇数是滤波器阶数,按频率响应与脉冲响应的关系有 H R (f)=∑h(n)(N?1)/2 n=?(N?1)/2e ?j2π fnTS ⑺ 式中,TS 为采样间隔,按采样定理,采样频率至少为 fs=2×1/T,为了保证一定的过渡带,选择

FIR数字滤波器设计与软件实现

实验二:FIR数字滤波器设计与软件实现 一、实验指导 1.实验目的 (1)掌握用窗函数法设计FIR数字滤波器的原理和方法。 (2)掌握用等波纹最佳逼近法设计FIR数字滤波器的原理和方法。(3)掌握FIR滤波器的快速卷积实现原理。 (4)学会调用MATLAB函数设计与实现FIR滤波器。 2.实验内容及步骤 (1)认真复习第七章中用窗函数法和等波纹最佳逼近法设计FIR数字滤波器的原理; (2)调用信号产生函数xtg产生具有加性噪声的信号xt,并自动显示xt及其频谱,如图1所示; 图1 具有加性噪声的信号x(t)及其频谱如图 (3)请设计低通滤波器,从高频噪声中提取xt中的单频调幅信号,要求信号幅频失真小于0.1dB,将噪声频谱衰减60dB。先观察xt的频谱,确定滤波器指标参数。

(4)根据滤波器指标选择合适的窗函数,计算窗函数的长度N,调用MATLAB函数fir1设计一个FIR低通滤波器。并编写程序,调用MATLAB快速卷积函数fftfilt实现对xt的滤波。绘图显示滤波器的频响特性曲线、滤波器输出信号的幅频特性图和时域波形图。(4)重复(3),滤波器指标不变,但改用等波纹最佳逼近法,调用MATLAB函数remezord和remez设计FIR数字滤波器。并比较两种设计方法设计的滤波器阶数。 提示:○1MATLAB函数fir1的功能及其调用格式请查阅教材; ○2采样频率Fs=1000Hz,采样周期T=1/Fs; ○3根据图1(b)和实验要求,可选择滤波器指标参数:通带截止频率fp=120Hz,阻带截至频率fs=150Hz,换算成数字频率,通带截止 频率 p 20.24 p f ωπ =T=π,通带最大衰为0.1dB,阻带截至频率 s 20.3 s f ωπ =T=π,阻带最小衰为60dB。 ○4实验程序框图如图2所示,供读者参考。

(精品)概率实验四--匹配滤波器

《概率论与随机信号分析》实验报告 一、实验目的与任务 1. 了解匹配滤波器的原理; 2. 实现LFM 信号的相关接收。 二、实验原理 1.匹配滤波器 匹配滤波器是一种用于检测噪声中某个确定信号是否存在的最佳滤波方法。 ()()()X t s t N t =+ ()()*()()*()()*()Y t X t h t s t h t N t h t ==+ 使Y(t 0)中的信号与噪声比最大化,这样在Y(t 0)大于某个合适的门限时,就有把握地认为Y(t)中包含有s(t)。 2020()()s out s y t S N E Y t ??= ??????? 02201()()()2j t s y t S j H j e d ωωωωπ+∞-∞??=???? ? 00**()()()j t j t H j c S j e cS j e ωωωωω-??==??令: 2222001()()2()42out s S j d H j d S N N H j d E N ωωωωπωωπ+∞+∞-∞-∞+∞-∞?? ?????= ????? ???= ??? 从时域来说,匹配滤波器的冲击响应为: 0()()h t cs t t =- 2.线性调频信号是大时宽带宽积信号,常用在雷达和通信信号中来提高系统的抗干扰能力,采用匹配滤波器,可以在强噪声背景环境中发现信号。 20001()sin(2),222T T s t A f t ut t π??=+∈-????

其中:0 2B u T π=为调频斜率 其时宽带宽积为BT 0>>1 当信号淹没在强噪声背景里时,可以通关相关接收,即匹配滤波的方法检测信号,而降低噪声的影响。 三、实验内容与结果 %信号和噪声经过匹配滤波器 close all clear all f01=30e+6; %中心频率 b1=8e+6; %信号带宽 t0=10e-6; %信号时宽 fs=150e+6; %采样频率 %系统带宽和中心频率 b2=8e+6; f02=30e+6; c2=30; subplot(2,1,1) [bl al]=butter(4,b2/2/(fs/2));%滤波器归一化带宽1对应于fs/2 [hfl f2]=freqz(bl,al,100,fs); plot(f2,abs(hfl)); title('系统低通频率响应'); grid on subplot(2,1,2); [bb ab]=butter(4,[(f02-b2/2)/(fs/2) (f02+b2/2)/(fs/2)]); [hf f2]=freqz(bb,ab,100,fs); plot(f2,abs(hf)); title('系统带通频率响应'); grid on figure; t=0:1/fs:t0; u=pi*b1/t0; subplot(2,2,1); s=sin(2*pi*(f01-b1/2)*t+u.*t.*t); plot(t,s); title('LFM 信号'); grid on subplot(2,2,3); n=length(s); n1=n/2; f1=(0:n1-1)/n*fs;

巴特沃斯数字(精选)低通滤波器

目录1.题目...................................................................... (2) 2.要求...................................................................... . (2) 3.设计原理...................................................................... .. (2) 3.1数字滤波器基本概念 (2) 3.2数字滤波器工作原理 (2) 3.3巴特沃斯滤波器设计原理 (2) 3.4脉冲响应不法...................................................................... . (4) 3.5实验所用MATLAB函数说明 (5)

4.设计思路...................................................................... (6) 5、实验内容...................................................................... .. (6) 5.1实验程序...................................................................... (6) 5.2实验结果分析...................................................................... (10) 6.心得体会...................................................................... .. (10) 7.参考文献...................................................................... .. (10) 一、题目:巴特沃斯数字低通滤波器 二、要求:利用脉冲响应不变法设计巴特沃斯数字低通滤波器,通带截止频率100HZ,采样频率1000HZ,通带最大衰减为0.5HZ,阻带最小衰减为10HZ,画出幅频、相频相应相应曲线。并假设一个信号x(t)=sin(2*pi*f1*t)+sin(2*pi*f2*t),其中f1=50HZ,f2=200HZ。用此信号验证滤波器设计的正确性。 三、设计原理 1、数字滤波器的基本概念 所谓数字滤波器,是指输入、输出均为数字信号,通过数值运算处理改变输入信号所含频率成分的相对比例,或者滤波器除某些频率成分的数字器件或程序,因此,数字滤波的概念和模拟滤波相同,只是的形式和实现滤波方法不同。正因为数字滤波通过数值运算实现滤波,所以数字滤波处理精度高、稳定、体积小、质量轻、灵活、不存在阻抗匹配问题,可以实验模拟滤波器无法实现的特殊滤

相关文档
最新文档