气制氢装置工艺流程简介及主要设备情况说明

气制氢装置工艺流程简介及主要设备情况说明
气制氢装置工艺流程简介及主要设备情况说明

制氢装置工艺流程简介及主要设备情况说明

天然气制氢装置于2008年从中石化洞氮合成氨车间原料气头部分搬迁至神华。当年设计、当年施工,当年投产。目前运行良好。

工艺流程简要说明如下。

界区来的1.5MPa压力等级的天然气或液化干气在0101-LM和116-F脱液和除去杂质,进入原料气压缩机102-J压缩至4.2MPa,

通过调节进入转化炉对流段加热至350℃左右,进入加氢反应器

101-D加氢(有机硫转化为无机硫),氧化锌脱硫反应器108-

DA/DB除去无机硫(H2S),然后与装置内中压蒸汽管网来的

3.5MPa等级的蒸汽混合,在转化炉对流段加热至500±10℃,进入一段转化炉101-B,在镍系催化剂和高温的作用下反应,约80%左

右的原料气转化生成CO、CO2、H2,工艺介质的温度从810℃降至330℃,其中的热量在废热锅炉101-CA/CB、102-C中得到回收利用,副产10.0MPa压力等级的蒸汽,减压并入装置内3.5MPa蒸汽管网。降温后的工艺介质进入高变反应器104DA将大部分的CO变换成

CO2,回收部分氢气,再在低变反应器104DB中反应,将少量的

CO变换成CO2和H2,经过热量回收和液体脱除后,工艺介质进入脱碳系统吸收塔1101-E,与上部下来的碳酸钾溶液对流换热、脱除CO2,吸收了热量和CO2的碳酸钾溶液从塔底进入再生塔1101-E

再生,脱除CO2后的工艺介质(氢气含量大于93%)从吸收塔顶去PSA工序,经过变压吸附得到纯度为99.5%以上的氢气,经压缩至3.0MPa送至全厂氢气管网,经过变压吸附吸附下来的富甲烷气作为燃料送至装置内转化炉燃烧。流程简图如下:

主要设备参数(涵盖结构、性能等主要参数):

该装置动设备共计36台套,静设备78台套

102-J:

第一废热锅炉(101CA/CB):

形式:刺刀式

换热器规格:Φ1549×13335×24(44)mm

换热管规格:206根(Φ外50/Φ外25)×(3.4/1.65)×5283mm

介质:管程锅炉水/壳程转化气

重量:44010Kg

换热面积:170.9㎡

材质:壳程SA516-70/管程SA-214 SA-209Tla 设计压力:管程11.8/壳程3.4 MPa

设计温度:管程329/壳程1010 ℃

工作压力:管程7.8/壳程3.1 MPa

工作温度:管程314/壳程890 ℃

制造厂家:原产美国湘化机维修

一段转化炉:

形式:箱式炉

规格:长36700×宽18600×高21300

辐射段管数:378根

炉管材质:Hp-Nb

炉管规格:φ内89×18.6×9530 mm

出入口压力:2.3/2.4MPA

出入口温度:830/490

热负荷:73.5MW

燃烧器形式:WYNQ-DQ80 180个

WYNQ-DQ125 10个

WYNQ-DQ60 10个

制造厂家:美国凯洛格

变换反应器

规格:Φ内2134 H=14400mm

介质:天然气/氢气

重量:69854Kg

容积:48.5m3

壳体材质:SA-302GRB

衬材:SA-240

设计/工作压力:4.82/4.07MPa

设计/工作温度:454/420℃

制造厂家:美国

吸收塔:

规格:Φ内2591/Φ内3505 H=47574 δ=37/52 mm 介质:碳酸钾溶液/工艺气

重量:187695Kg

容积:400m3

塔盘形式:填料

层数:4

壳体材质:SA-516-70

设计/工作压力:3.06/2.8MPa

设计/工作温度:140/127℃

制造厂家:美国

再生塔:

规格:Φ内4270 H=56720 δ=16 介质:碳酸钾溶液/CO2

重量:116070Kg

容积:789m3

塔盘形式:填料

层数:3

壳体材质:SA-285-C SA240-T304 设计/工作压力:0.176/0.063MPa 设计/工作温度:149/120℃

制造厂家:美国

PSA:

规格:Φ2600 L=9200

介质:氢气

容积:58m3

形式:立式

壳体材质:16MnR

设计/工作压力:2.84/2.48MPa

设计/工作温度:50/40℃

制造厂家:鹤壁鑫大化工机械有限公司氢气压缩机:

尾气压缩机:

制氢技术比较及分析报告

制氢技术综述&制氢技术路线选择 一、工业制氢技术综述 1.工业制氢方案 工业制氢方案很多,主要有以下几类: (1)化石燃料制氢:天然气制氢、煤炭制氢等。 (2)富氢气体制氢:合成氨生产尾气制氢、炼油厂回收富氢气体制氢、氯碱厂回收副产氢制氢、焦炉煤气中氢的回收利用等。 (3)甲醇制氢:甲醇分解制氢、甲醇水蒸汽重整制氢、甲醇部分氧化制氢、甲醇转化制氢。 (4)水解制氢:电解水、碱性电解、聚合电解质薄膜电解、高温电解、光电 解、生物光解、热化学水解。 (5)生物质制氢。 (6)生物制氢。 2.工业制氢方案对比选择 (1)煤炭制氢制取过程比天然气制氢复杂,得到的氢气成本也高。 (2)由于生物制氢、生物质制氢和富氢气体制氢等方法制取的氢气杂质含量高、纯度较低,不能达到GT等技术提供商的氢气纯度要求。 (3)国内多晶硅绝大多数都采用的是水电解制氢,只有中能用的是天然气制氢,而国外应用的更多是甲醇制氢,因此,我们重点选择以下三类方案进行对比: (A)天然气制氢 (B)甲醇制氢 (C)水电解制氢 3. 天然气制氢

(1)天然气部分氧化制氢因需要大量纯氧增加了昂贵的空分装置投资和制氧成本。 (2)天然气自热重整制氢由于自热重整反应器中强放热反应和强吸热反应分步进行,因此反应器仍需耐高温的不修锈钢管做反应器,这就使得天然气自热重整反应过程具有装置投资高,生产能力低的特点。 (3)天然气绝热转化制氢大部分原料反应本质为部分氧化反应。 (4)天然气高温裂解制氢其关键问题是,所产生的碳能够具有特定的重要

用途和广阔的市场前景。否则,若大量氢所副产的碳不能得到很好应用,必将限制其规模的扩大。 (5)天然气水蒸汽重整制氢,该工艺连续运行, 设备紧凑, 单系列能力较大, 原料费用较低。 因此选用天然气水蒸汽重整制氢进行方案对比。 4.甲醇制氢 (1)甲醇分解制氢,该反应是合成气制甲醇的逆反应,在低温时会产生少量的二甲醚。 (2)甲醇水蒸汽重整制氢,是甲醇制氢法中氢含量最高的反应。这种装置已经广泛使用于航空航天、精细化工、制药、小型石化、特种玻璃、特种钢铁等

生产工艺流程图及说明

(1)电解 本项目电解铝生产采用熔盐电解法:其主要生产设备为预焙阳极电解槽,项目设计采用大面六点进电SY350型预焙阳极电解槽。铝电解生产所需的主要原材料为氧化铝、氟化铝和冰晶石,原料按工艺配料比例加入350KA 预焙阳极电解槽中,通入强大的直流电,在945-955℃温度下,将一定量砂状氧化铝及吸附了电解烟气中氟化物的载氟氧化铝原料溶解于电解质中,通过炭素材料电极导入直流电,使熔融状态的电解质中呈离子状态的冰晶石和氧化铝在两极上发生电化学反应,氧化铝不断分解还原出金属铝——在阴极(电解槽的底部)析出液态的金属铝。 电解槽中发生的电化学反应式如下: 2323497094032CO Al C O Al +?-+℃ ℃直流电 在阴极(电解槽的底部)析出液态的金属铝定期用真空抬包抽出送往铸造车间经混合炉除渣后由铸造机浇铸成铝锭。电解过程中析出的O 2同阳极炭素发生反应生成以CO 2为主的阳极气体,这些阳极气体与氟化盐水解产生的含氟废气、粉尘等含氟烟气经电解槽顶部的密闭集气罩收集后送到以Al 2O 3为吸附剂的干法净化系统处理,净化后烟气排入大气。被消耗的阳极定期进行更换,并将残极运回生产厂家进行回收处置。吸附了含氟气体的截氟氧化铝返回电解槽进行电解。 电解槽是在高温、强磁场条件下连续生产作业,项目设计采用大面六点进电SY350型预焙阳极电解槽,是目前我国较先进的生产设备。电解槽为6点下料,交叉工作,整个工艺过程均自动控制。电解槽阳极作业均由电解多功能机组完成。多功能机组的主要功能为更换阳极、吊运出铝抬包出铝、定期提升阳极母线、打壳加覆盖料等其它作业。 (2)氧化铝及氟化盐贮运供料系统 氧化铝及氟化盐贮运系统的主要任务是贮存由外购到厂的氧化铝和氟化盐 ,并按需要及时将其送到电解车间的电解槽上料箱内。

制氢装置加氢脱毒部分工艺管理和操作规程

制氢装置加氢脱毒部分工艺管理和操作规程 1.1 加氢脱毒部分的任务及主要工艺指标 1.1.1 加氢脱毒部分的任务 脱硫部分的任务是为轻烃水蒸汽转化制氢提供合格的原料(硫含量< 0.5PPm 、烯烃<1%)以防止转化催化剂硫中毒。其中加氢部分是在催化剂和氢气存在的条件下,将原料中 的有机硫,有机氯等转化为无机硫(H2S)和无机氯( HCl ),无机氯被脱氯剂吸收除掉,而 硫化氢则被氧化锌吸收,使得脱硫气含硫<0.5PPm。 1.1.2 加氢脱毒部分的主要工艺指标 (1) 轻石脑油 干点< 160℃ 含硫量≤ 50PPm (2) 干气 干气含硫量≤ 50PPm (3) 加热炉 F2001 出口温度340~380℃ 加热炉炉膛温度≯ 800℃ 入口压力 3.8MPa (4) 加氢反应器 R2001 入口温度340~380℃ 出口温度≯ 400℃ 入口压力 3.38MPa(abs) 出口压力 3.35MPa(abs) 空速1~ 6h-1 氢油比(体)80 ~ 100 加氢反应器床层最高温度≯400℃ (5)氧化锌脱硫反应器 R2002A.B 入口温度 350~370℃ 出口温度 360℃ 入口压力 3.35MPa(abs) 出口压力 3.32MPa(abs) 脱硫气含硫量≤ 0.5PPm 1.2 R2001反应温度的控制 反应温度是调节脱硫气含硫量的主要手段,钴-钼催化剂进行加氢脱硫时,操作温度通常控制在330~400℃范围内。当温度低于320℃时,加氢脱硫效果明显下降。温度高于420℃以上,催化剂表面聚合和结碳现象严重。一般来说,对于 T205 加氢催化剂,当温度高于 250℃ 时,就具有加氢脱硫活性了。因此,操作人员在正常操作时,必须调节TC7101 以控制好加氢反应器 R2001 入口温度。即通过调节加热炉F2001 的燃料气流量来控制加氢反应器R2001入口温度。反应温度主要参考原料性质的变化,空速的大小,氢油比的高低以及催化剂活性 情况来进行控制。 非正常操作因素: 影响因素 1、加热炉出口温度上升 2、原料含烯烃、CO、 CO2、 O2等杂质含量超标控制操作 1、降低加热炉出口温度 2、降低处理量,查明原料杂质来源,并切出超

煤制氢装置工艺说明书

浙江X X X X X X有限公司培训教材 煤制氢装置工艺说明书 二○一○年九月

第一章 概 述 1 设计原则 1.1 本装置设计以无烟煤、蒸汽、空气为主要原料生产水煤气,然后经过一系列的净化变换处理生产工业氢气;生产规模:30000Nm 3/h 工业氢气。 1.2 本装置采用成熟、可靠、先进的技术方案,合理利用能源,降低能耗,节省投资。 1.3 认真贯彻国家关于环境保护和劳动法的法规和要求,认真贯彻“安全第一、预防为主”的指导思想,对生产中易燃易爆、有毒有害的物质设置必要的防范措施,三废排放要符合国家现行的有关标准和法规。 1.4 采用DCS 集散型控制系统。 2 装置概况及特点 2.1装置概况 本装置技术采用固定床煤气发生炉制气、湿法脱硫、全低温变换、变压吸附VPSA 脱碳和(PSA )提纯氢气的工艺技术路线,其中的变压吸附脱碳和提氢技术采用上海华西化工科技有限公司的专有技术。 本装置由原料煤储运工序、固定床煤气发生炉制水煤气工序、水煤气脱硫工序、水煤气压缩工序、全低温变换工序、变换气脱硫工序、变压吸附脱碳和提氢工序、造气和脱硫循环水处理工序以及余热回收等部分组成。 2.2装置组成 原料煤储运→造气→气柜→水煤气脱硫→水煤气压缩→全低温变换→变换气脱硫→变压吸附脱碳→ 变压吸附提氢 2.3生产规模 制氢装置的生产规模为30000Nm 3/h ,其中0.6MPa 产品氢7000 Nm 3/h ,1.3 MPa 产品氢23000 Nm 3/h 。装置的操作弹性为30—110%,年生产时数为8000小时。 2.4物料平衡简图 本装置的界区自原料煤库出来的第一条输煤皮带的下料开始,至产品氢出口的最后一个阀门为止。 煤造气气柜变换压缩脱硫VPSA 脱碳 VPSA 氢提纯余 热 回 收 系 统 动力站界外蒸汽管网硫回收 脱硫循环水造气循环水煤栈桥原料煤库 循环水站界外界外吹风气 粉煤 炉渣蒸汽VPSA 解析气 CO2气界外 界外外卖炉渣硫磺 硫泡沫 上水回水 0.6MPa 产品氢 1.3MPa 产品氢 变脱水煤气水煤气水煤气P-55 水煤气变脱气变换气P-63上水回水空气吹风气蒸汽 蒸汽 块煤 块煤蒸汽 飞灰烟气灰渣

天然气制氢的基本原理及工业技术进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下:

1)可逆反应在一定的条件下,反应可以向右进行生成CO 和H2,称为正反应;随着生成物浓度的增加,反应也可以 向左进行,生成甲烷和水蒸气,称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO 和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以 生成一分子CO和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含 量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使 正反应进行的更快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的 参与的条件下,反应的速度缓慢。只有在找到了合适的催化 剂镍,才使得转化的反应实现工业化称为可能,因此转化反 应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速率对反应温度升高而加快,扩散

制氢站操作规程

一、目的: 保证制氢运行工作正常、安全、有序;使制氢运行人员的各项操作有章可循,为制氢运行人员提供操作的指导规范;保障机组的稳定运行。 二、范围: 适用于6号机组制氢站运行人员。 三、职责 规范作业,杜绝违章操作,保障生产安全稳定运行。 四、内容: 4、1、制氢设备生产工艺流程。 4、1.1、氢气系统 电解槽氢分离器氢洗涤器氢气冷却器氢气捕滴器氢气气水分离器氢气动薄膜调节阀干燥器 储氢罐氢母管发电机 4、1.2、氧气系统 电解槽氧分离器氧洗涤器氧气冷却器氧气捕滴器氧气器水分离器氧气动薄膜调节阀排空 4.2、主要设备参数和有关技术标准

4.3 4.3.1、必须按厂家规定进行水压试验,要求严密不漏。4.3.2、电解槽正、负极、电解隔间电压对地绝缘良好。4.3.3、检查应备有足够合格的电解液。 电解液的配制。 30℃时,10%NaOH、15%KOH溶液比重分别为1.1043、1.180。30℃时,26%NaOH、30%KOH溶液比重分别为1.28、1.281。 待碱液配好后加入2% 0V 2 O 5 添加剂。 4.3.4、分析仪器及其所用的溶液已准备好。 4.3.5、检查应有足够的氮气。 4.3.6、检查安全工具应齐全。 4.3.7、联系热工检查有关表计应完好。 4.3.8、联系电气电工检查电气设备,并向硅整流送电。 4.3.9、检查电解槽及氢系统应用水冲洗。 4.3.9.1、启动配碱泵将原料水打进制氢系统,启动碱液循环泵,清洗电解槽,清洗1小时,停泵、打开槽底排污阀排污。 4.3.9.2、重复上述操作3~4次,直到排液清洁为止。 4、4、气密检验 4.4.1、按6.6.3.9.1操作将原料水打入制氢机,至分离器液位计中部。4.4.2、关闭制氢机所有外连阀门,打开系统中(包括制氢、干燥系统)所有阀门,通过充氮阀向制氢机充氮,使压力缓慢升至3.2MPa,关充氮阀,用肥皂水检查各气路连接部位和阀门是否漏气,并观察液路有无漏液,确认不漏后,保压12小时,泄漏率以平均每小时小于0.5%为合格。 4、5、按工艺要求的碱量进行配碱,缓慢加入KOH(化学纯)待完全溶解后,加入碱液 重量的2%0V 2O 5 添加剂(按工艺要求添加),则电解液配好。 4.6、对微氧仪、露点仪进行调校。 6.7、检查各极框之间,正负极输电铜排间有无短路或有无金属导体,或有无电解液泄漏现象,民现后必须排除。 4.8、仔细检查整流变压器各个接点、可控硅整流柜各回路及正极输电铜排对地的绝缘性,严防短路。 4.9、用15%KOH溶液试车24小时(开停车操作同正常操作规程),然后将其排污。4.10、检查制氢装置的冷却水阀门处于开启状态。 4.11、干燥装置开车前准备 4.11.1、控制柜通电,检查装置是否处于正常状态。 4、11、2、设定干燥器、加热器上下部温度,各为400~450℃和300~350℃。4.11.3、系统进行氮气置换。 4.12、气动部分 4.12.1、接通气源后,分别检查气体过滤减压器的输出是否为0.14MPa,然后用肥皂水检查气动管路及仪表接头是否漏气(每三个月定期检查一次)。

制氢的全部方法

制氢的全部方法 一、电解水制氢 多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。 二、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO 而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。 三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。 四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。 五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。 六、酿造工业副产 用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。 七、铁与水蒸气反应制氢 但品质较差,此系较陈旧的方法现已基本淘汰。 八、金属与酸反应制氢气, 当然,金属必须是活动性排在氢前的(钾,钙,钠不行),可以用镁铝锌铁锡铅。酸不能用硝酸和浓硫酸。 工厂生产方法有: 1、电解水制氢. 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及

工艺设备流程简要说明

安顺市显勋煤业有限公司60万吨/年选煤厂方案工艺流程说明书 设计规模:0.6Mt/a 威远南方选煤设备制造有限公司 2012年3月14日

一、工艺设备流程方案设计原则: 1.采用数空筛下空气室跳汰机作主选+煤泥回收筛回收粗煤泥+浮选机作细煤泥降灰+低灰煤泥用压滤机脱水,高灰煤泥入深锥浓缩池+溢流作选煤用水,底流用压滤机回收高灰煤泥的联合工艺流程,从而实现煤泥厂内回收,洗水闭路循环,达到环保要求。 2.选煤厂原煤入选能力0.6M t/a,利用现有原煤分级系统,将大于80mm以上的块煤分级出来,不入选,直接作为块煤产品。 3.选煤厂的工作制度为每年330天,每天16小时。 4.为提高生产效率和方便管理,采用数控跳汰机作主选设备。 5.入洗煤种为公司选煤厂附近煤矿为主。为适应原料煤煤质波动和用户对精煤产品质量要求的变化,关键环节的设备选型留有适当的调节余地。 6.设计采用的原始资料以安顺市显勋煤业有限公司选煤厂提供的煤质资料为主,为易选煤(中等可选),并结合我公司以往的设计实践修正。 数控筛下空气室跳汰机选煤成套系统,此技术先进,生产可靠,确保80-0.5mm的高效分选。 根据安顺市显勋煤业有限公司选煤厂的要求,入选粒度

上限为80mm,80-0.5mm用数控跳汰机主选,0.5-0.4mm煤泥用粗煤泥回收筛回收,<0.4mm细煤泥用浮选降灰。>80mm的块煤不入洗。 二、工艺设备流程 根据要求,本设计采用数控跳汰机+粗煤泥回收+细煤泥浮选+尾煤泥压滤分选工艺的联合流程。 原则工艺流程参见工艺设备流程图。 工艺设备流程简要说明如下: 煤流系统:原煤―棒条筛-受煤坑―给料机-原煤运输机―主选跳汰机—精煤,并将精煤产品分成4种产品:>10mm精煤-精块煤带式输送机-倾斜式直线分级筛-3种精煤产品-落地堆放。 ≤10mm精煤-精煤脱水筛-落地堆放 中煤-中煤提升机-最终中煤产品-落地堆放 优质中煤-中煤提升机-最终中煤产品-落地堆放 矸石-矸石提升机-最终中煤产品-落地堆放 0.5-0.4mm煤泥回收系统:振动筛筛下水-煤泥回收筛-最终粗煤泥产品-落地堆放 煤泥水-中央水仓-渣浆泵-矿浆准备器-浮选机-消泡池-精煤压滤机入料泵-精煤压滤机-最终浮选精煤产品-落地堆放。 尾矿水-浓缩机-缓冲池-压滤机专用喂料泵-压滤机-最终高灰煤泥产品

制氢装置转化工艺管理和操作规程

制氢装置转化工艺管理和操作规程 1.1 转化部分的任务及主要工艺指标 1.1.1 转化部分的任务及主要工艺指标 转化部分的任务是将合格的脱硫气在催化剂存在条件下与水蒸汽发生复杂的强吸热氢解反应,生成含H2、CO、CO2和未反应的水蒸汽、CH4的转化气。 1.1.2 转化部分的主要工艺指标 入口温度480~520℃ 出口温度≯820℃ 炉膛最高温度≯1020℃ 炉膛温差≯100℃ 入口压力 3.1MPa 出口压力 1.85MPa 炉管压差≯0.38MPa 碳空速1000h-1 水碳比 3.3~5.0 转化气中CH4≯10% 1.2 转化入口温度与转化率操作 转化温度是烃类-水蒸汽转化法制H2的重要影响因素。提高温度,甲烷转化率提高,转化气CH4含量降低。但考虑到设备的承受能力,转化炉的炉膛温度最高不能超过1020℃。 转化炉温度根据转化炉对流段入口温度TI7208的变化情况进行控制。对流段入口温度信号通过切换开关,同时进入TCA7201A及TCA7201B,使燃料系统在不同的情况下,可采用不同的控制回路。 (1)开停工期间 装置开停工时转化炉使用高压瓦斯(副燃料)燃料,采用燃料气流量FC7201与转化炉对流段入口温度TCA7201A的串级控制回路控制转化炉炉温。 (2)变换气作燃料 当装置生产出变换气后,根据需要可投用变换气。变换气通过PC7501控制阀后压力为0.05MPa,送入燃料气混合器MI2001,然后进入转化炉作为燃料使用,其燃料热值不够部分由副燃料提供。 (3)PSA脱附气作燃料 PSA运行以后,转化炉燃料投用脱附气作主燃料,脱附气流量可通过FC7503投自动进行控制,其燃料热值不够部分可通过FC7502补充高压瓦斯来提供。转化炉出口温度采用瓦斯流量FC7502与转化炉对流段入口温度TCA7201B的串级控制。 以上转化炉温度的主副燃料气两种不同控制回路之间的切换,可将一个控制回路由串级控制切换至副表单控,再切换至另一个控制回路的副表单控,然后由另一个控制回路的副表单控切换至串级控制。 在正常生产过程,认真检查转化炉的运行情况,仔细调节火嘴,防止火焰大小不一造成偏烧。尤其火苗不能扑烧炉管,务必使炉膛各点温度均匀,炉管颜色一致,发现问题及时正确处理、汇报。 在正常生产中,为了避免对流段末端发生硫酸露点腐蚀,转化炉的排烟温度不能小于150℃。另外,还要加强转化炉负压操作,防止回火。 转化炉温度控制主要手段: (1)提降整个炉膛温度,即改变瓦斯流量由FC7502完成。

天燃气制氢操作规程

天然气制氢 第一章天然气制氢岗位基本任务 以天燃气为原料的烃类和蒸汽转化,经脱硫、催化转化、中温变化,制得丰富含氢气的转化气,再送入变压吸附装置精制,最后制得纯度≥99.9%的氢气送至盐酸。 1.1工艺流程说明

由界区来的天然气压力为1.8~2.4MPa,经过稳压阀调节到1.8Mpa,进入原料分离器F0101后,经流量调节器调量后入蒸汽转化炉B0101对流段的原料气预热盘管预热至400℃左右,进入脱硫槽D0102,使原料气中的硫脱至0.2PPm以下,脱硫后的原料气与工艺蒸汽按水碳比约为3.5进行自动比值调节后进入混合气预热盘管,进一步预热到~590℃左右,经上集气总管及上猪尾管,均匀地进入转化管中,在催化剂层中,甲烷与水蒸汽反应生产CO和H2。甲烷转化所需热量由底部烧咀燃烧燃料混合气提供。转化气出转化炉的温度约650--850℃,残余甲烷含量约3.0%(干基),进入废热锅炉C0101的管程,C0101产生2.4MPa(A)的饱和蒸汽。出废热锅炉的转化气温度降至450℃左右,再进入转化冷却器C0102,进一步降至360℃左右,进入中温变换炉。转化气中含13.3%左右的CO,在催化剂的作用下与水蒸气反应生成CO2和H2,出中变炉的转化气再进入废热锅炉C0101的管程换热后,再经锅炉给水预热器C0103和水冷器C0104被冷至≤40℃,进入变换气分离器F0102分离出工艺冷凝液,工艺气体压力约为1.4MPa(G)。 燃料天然气和变压吸附装置来的尾气分别进入转化炉的分离烧嘴燃烧,向转化炉提供热量≤1100℃。 为回收烟气热量,在转化炉对流段内设有五组换热盘管:(由高温段至低温段)蒸汽-A原料混合气预热器, B 原料气预热器,C烟气废锅,D燃料气预热器, E尾气预热器 压力约为1.4的转化工艺气进入变化气缓冲罐,再进入PSA装置。采用5-1-3P,即(5个吸附塔,1个塔吸附同时3次均降)。常温中压下吸附,常温常压下解吸的工作方式。每个吸附塔在一次循环中均需经历;吸附A,→一均降E1D,→二均降E2D,→顺放PP,→三均降E3,→逆放D,→冲洗P,→三均升E3R,→二均升E2R,→一均升E1R,→终升FR,等十一个步骤。五个吸附塔在执行程序的设定时间相互错开,构成一个闭路循环,以保证转化工艺气连续输入和产品气不断输出。 1.2原料天然气组份表

PID工艺流程图的说明与介绍讲解学习

P I D工艺流程图的说 明与介绍

PID工艺流程图的说明与介绍 PID:Process and Instrument Diagram 即管道及仪表流程图、管道仪表流程图借助统一规定的图形符号和文字代号,用图示的方法把建立化工工艺装置所需的全部设备、仪表、管道、阀门及主要管件,按其各自功能以及工艺要求组合起来,以起到描述工艺装置的结构和功能的作用。 管道和仪表流程图又称为PID,是PIPING AND INSTRUMENTATION DIAGRAM的缩写。PID的设计是在PFD的基础上完成的。它是化工厂的工程设计中从工艺流程到工程施工设计的重要工序,是工厂安装设计的依据。 化工工程的设计,从工艺包、基础设计到详细设计中的大部分阶段,PID 都是化工工艺及工艺系统专业的设计中心,其他专业(设备、机泵、仪表、电气、管道、土建、安全等)都在为实现P&ID里的设计要求而工作。 广义的PID可分为工艺管道和仪表流程图(即通常意义的PID)和公用工程管道和仪表流程图(即UID)两大类。 PID的设计介绍 1.PID的设计内容 PID的设计应包括下列内容 1.1 设备 (1)设备的名称和位号。

每台设备包括备用设备,都必须标示出来。对于扩建、改建项目,已有设备要用细实线表示,并用文字注明。 (2)成套设备 对成套供应的设备(如快装锅炉、冷冻机组、压缩机组等),要用点划线画出成套供应范围的框线,并加标注。通常在此范围内的所有附属设备位号后都要带后缀“X”以示这部分设备随主机供应,不需另外订货。 (3)设备位号和设备规格 PID上应注明设备位号和设备的主要规格和设计参数,如泵应注明流量Q和扬程H;容器应注明直径D和长度L;换热器要注出换热面积及设计数据;储罐要注出容积及有关的数据。和PFD不同的是,PID中标注的设备规格和参数是设计值,而PFD标注的是操作数据。 (4)接管与联接方式 管口尺寸、法兰面形式和法兰压力等级均应详细注明。一般而言,若设备管口的尺寸、法兰面形式和压力等级与相接管道尺寸、管道等级规定的法兰面形式和压力等级一致,则不需特殊标出;若不一致,须在管口附近加注说明,以免在安装设计时配错法兰。 (5)零部件 为便于理解工艺流程,零部件如与管口相邻的塔盘、塔盘号和塔的其他内件(如挡板、堰、内分离器、加热/冷却盘)都要在PID中表示出来。

制氢装置开工操作规程

制氢装置开工操作规程 制氢装置开工步骤可分为:装置气密、脱硫系统升温干燥硫化、低变干燥还原、中低压汽包建立液位、转化中变系统升温干燥、蒸汽并网,转化炉配汽配氢还原、脱硫系统切入转化、中变大循环系统、进干气进油、投用PSA系统、向外供氢等步骤。 1 催化剂装填 1.1 反应器固定床催化剂装填 1.1.1 准备工作与条件 (1)相关的系统隔离,防止可燃气体、惰性气体进入反应器 (2)反应器采样分析合格达到进人条件。 (3)反应器及内构件检验合格。 (4)反应器内杂物清理干净。 (5)搭好催化剂、瓷球防雨棚。 (6)按照催化剂的搬运要求将催化剂、瓷球搬运至现场进行合理堆放。 (8)对催化剂的数量及型号进行确认,将相同型号,相同生产批号的催化剂放在一起,并按照装剂的先后顺序摆放好,最好用警示牌加以区分。 (9)装催化剂所用的器具已齐备。 1.1.2 装填技术要求 (1)必须严格按催化剂装填图的要求装填瓷球(柱)和催化剂。 (2)定期测量催化剂料面的高度,核算所装催化剂的数量和装填密度,尽可能使催化剂装填密度接近设计值。 (3)催化剂装填过程中,尽可能相同水平面的密度均匀,防止出现局部过松。 (4)催化剂的自由下落高度小于1.5米以免撞碎催化剂。 (5)在催化剂上站立或行走也会损坏催化剂,要求脚下拥有大的胶合板“雪橇”或在0.3m2的支撑板上工作,尽量减少直接在催化剂上行走。 (6)每层催化剂的料面要水平。 1.1.3 装填注意事项 (1)催化剂搬至现场堆放后,应作好防雨措施。 (2)催化剂装进料斗时要检查,严禁杂物进入反应器。 (3)催化剂装填过程中,车间的质量监督人员若发现操作过程中存在影响装填质量的问题,停止装填操作,待问题处理完毕后方能继续装填。 (4)催化剂搬运过程中,应小心轻放,不能滚动。 (5)在天气潮湿的情况下,只有在装填催化剂时才将催化剂开封,并在装填催化剂的平台上架设帆布棚。 (6)在催化剂装填过程中,对催化剂的型号进行确认,检查催化剂的质量,防止结块的或粉碎的催化剂装进反应器。 (7)在装催化剂期间装剂人员必须做好防尘措施。 (8)准确记录装入每一层催化剂的类型、体积和重量。 (9)装填期间,遇到任何与装填图要求不符的情况要及时通知工程技术人员以决定下一步的装填方法。 (10)在催化剂装填时,所有带入反应器内的工具应在出反应器时核对检查,防止将工

制氢装置工艺流程说明

制氢装置工艺流程说明 1.1 膜分离系统 膜分离单元主要由原料气预处理和膜分离两部分组成。 混合加氢干气经干气压缩机升压至 3.4MPa,升温至110℃,首先进入冷却器(E-102)冷却至45℃左右,然后进入预处理系统,预处理系统由旋风分离器(V-101)、前置过滤器(F-101AB)、精密过滤器(F-102AB)和加热器(E-101)组成。 预处理的目的是除去原料气中可能含有的液态烃和水,以及固体颗粒,从而得到清洁的饱和气体,为防止饱和气体在膜表面凝结,在进入膜分离器前,先进入加热器(E-101)加热到80℃左右,使其远离露点。 经过预处理的气体直接进入膜分离器(M-101),膜分离器将氢气与其他气体分离,从而实现提纯氢气的目的。 每个膜分离器外形类似一管壳式热交换器,膜分离器壳内由数千根中空纤维膜丝填充,类似于管束。原料气从上端侧面进入膜分离器。由于各种气体组分在透过中空纤维膜时的溶解度和扩散系数不同,导致不同气体在膜中的相对渗透速率不同,在原料气的各组分中氢气的相对渗透速率最快,从而可将氢气分离提纯。 在原料气沿膜分离器长度方向流动时,更多的氢气进入中空纤维。在中空纤维芯侧得到94%的富氢产品,称为渗透

气,压力为1.3 MPa(G),该气体经产品冷却器(E-103)冷却到40℃后进入氢气管网。 没有透过中空纤维膜的贫氢气体在壳侧富集,称为尾气,尾气进入制氢下工序。 本单元设有联锁导流阀(HV-103)和联锁放空阀(HV-104),当紧急停车时,膜前切断阀(HV-101)关闭,保护膜分离器,同时HV-103和HV-104自动打开,保证原料气通过HV-103直接进入制氢装置,确保制氢装置连续生产;通过HV-104的分流,可以保证通过HV-103进入制氢装置的气体流量不至于波动过大,使制氢装置平稳运行。 1.2 脱硫系统 本制氢装置原料共有三种:轻石脑油、焦化干气、加氢干气(渣油加氢干气、柴油加氢脱硫净化气、加氢裂化干气)。 以石脑油为原料时,石脑油由系统管网进入,先进入原料缓冲罐(V2001),然后由石脑油泵(P2001A、P2001B、P2001C、P2001D)抽出经加压至4.45MPa后进入原料预热炉(F2001)。钴-钼加氢脱硫所需的氢气,由柴油加氢装置来,但是一般采用南北制氢来的纯氢气或由PSA返回的自产氢经压缩机加压后在石脑油泵出口与石脑油混合,一起进入原料预热炉。 以加氢干气和焦化干气为原料时,干气首先进入加氢干气分液罐(V2002),经分液后进入加氢干气压缩机(C2001A、

天然气制氢

天然气制氢 1.制氢原理 1.天然气脱硫本装置采用干法脱硫来处理该原料气中的硫份。为了脱除有机硫,采用铁锰系转化吸收型脱硫催化剂,并在原料气中加入约1?5%1 勺氢,在约400C高温 下发生下述反应: RSH+H 2=H2S+RH H 2S+MnO=MnS2+OH 经铁锰系脱硫剂初步转化吸收后,剩余勺硫化氢,再在采用勺氧化锌催化剂作用下发生下述脱硫反应而被吸收: H 2S+ZnO=ZnS+2OH C 2H5SH+ZnO=ZnS+2HC4+H2O 氧化锌吸硫速度极快,因而脱硫沿气体流动方向逐层进行,最终硫被脱除至O.lppm以下,以满足蒸汽转化催化剂对硫的要求。 2蒸汽转化和变换原理原料天然气和蒸汽在转化炉管中的高温催化剂上发生烃--- 蒸汽转化反应, 主要反应如下: CH 4+H3CO+3HQ ⑴ 一氧化碳产氢CO + H 2O CO2 + H 2 +Q (2) 前一反应需大量吸热,高温有利于反应进行;后一反应是微放热反应,高温不利于反应进行。因此在转化炉中反应是不完全的。 在发生上述反应的同时还伴有一系列复杂的付反应。包括烃类的热裂解,催化裂解,水合,蒸汽裂解,脱氢,加氢,积炭,氧化等。 在转化反应中,要使转化率高,残余甲烷少,氢纯度高,反应温度就要高。但要考虑设备承受能力和能耗,所以炉温不宜太高。为缓和积炭,增加收率,要控制较大的水碳比。 3变换反应的反应方程式如下: CO+H 2O=CO2+H2+Q 这是一个可逆的放热反应,降低温度和增加过量的水蒸汽,均有利于变换反应向右侧进行,变换反应如果不借助于催化剂,其速度是非常慢的,催化剂能大大加速其反应速度。为使最终CO浓度降到低的程度,只有低变催化剂才能胜任。高低变串联不仅充分发挥了两种催化剂各自的特点,而且为生产过程中的废热利用创造了良好的条 4改良热钾碱法 改良热钾碱溶液中含碳酸钾,二乙醇胺及VO。碳酸钾做吸收剂、二乙醇胺做催化剂、它起着加快吸收和解吸的作用。VO5为缓蚀剂,可以使碳钢表面产生致密的保护膜,从而防止碳钢的腐蚀。KCO吸收CO的反应机理如下: K2CO+CO+H

生产工艺流程图和工艺说明

1 9 10 12 2 11 13 3 14 4 15 5 16 17 8 7 6 18 至提升机工艺流程设备编号及名称 编号名称 1 永磁筒 2 圆筒初清筛 3 电动三通 4 锤片粉碎机 5 吸尘罩 6 栅筛 7 下料斗 8 斗式提升机 9 风帽 10 组合脉冲除尘器 11 叶轮式闭风机 12 双轴桨叶混合机 13 自动闸门 14 料位器 15 手动闸门 16 螺旋喂料器 17 电子秤 18 刮板输送机 工艺流程图

19 23 20 24 21 25 22 26 工艺流程设备编号及名称编号名称 19 环模制粒机 20 空压机 21 双层冷却器 22 对辊破碎机 23 振动分级筛 24 离心通风机 25 离心集尘器 26 自动打包机 集尘袋

生产流程图工艺说明 一.原料粉碎 需粉碎原料经栅筛除去较大杂质后,投放到下料斗经吸尘罩吸,其目的是降低粉尘浓度。由提升机送到永磁筒除去磁性铁杂质,再经圆筒初清筛得到合格的原料经粉碎储备仓进入粉碎机粉碎至需要大小粒度的粉料 小学少先队组织机构 少先队组织由少先队大队部及各中队组成,其成员包括少先队辅导员、大队长、中队长、小队长、少先队员,为了健全完善我校少先队组织,特制定以下方案: 一、成员的确定 1、大队长由纪律部门、卫生部门、升旗手、鼓号队四个组织各推荐一名优秀学生担任(共四名),该部门就主要由大队长负责部门内的纪律。 2、中、小队长由各班中队公开、公平选举产生,中队长各班一名(共11名),一般由班长担任,也可以根据本班的实际情况另行选举。小队长各班各小组先选举出一名(共8个小组,就8名小队长)然后各班可以根据需要添加小队长几名。 3、在进行班级选举中、小队长时应注意,必须把卫生、纪律部门的检查学生先选举在中、小队长之内,剩余的中、小队长名额由班级其他优秀学生担任。 4、在班级公开、公平选举出中、小队长之后,由班主任老师授予中、小队长标志,大队长由少先队大队部授予大队长标志。 二、成员的职责及任免 1、大、中、小队长属于学校少先队组织,各队长不管是遇见该班的、外班的,不管是否在值勤,只要发现任何人在学校内出现说脏话、乱扔果皮纸屑、追逐打闹、攀爬栏杆、乱写乱画等等一些违纪现象,都可以站出来制止或者报告老师。 2、班主任在各中队要对中、小队长提出具体的责任,如设置管卫生的小队长,管纪律的小队长,管文明礼貌的、管服装整洁的等等,根据你班的需要自行定出若干相应职责,让各位队长清楚自己的职权,有具体可操作的事情去管理,让各位队长成为班主任真正的助手,让学生管理学生。各中队长可以负责全班的任何违纪现象,并负责每天早上检查红领巾与校牌及各小队长标志的佩戴情况。 3、大、中、小队长标志要求各队长必须每天佩戴,以身作则,不得违纪,如有违纪现象,班主任可根据中、小队长的表现撤消该同学中、小队长的职务,另行选举,大队长由纪律、卫生部门及少先队大队部撤消,另行选举。 4、各班中、小队长在管理班级的过程中负责,表现优秀,期末评为少先队部门优秀干部。

制氢操作规程(变压吸附部分)

第二部分变压吸附部分 1 主题内容 本操作规程描述了甲醇重整制氢的工艺控制、设备运行的操作规范,以及操作中的注意事项、异常情况的处理;通过实施本操作规程,确保甲醇重整制氢的质量和设备的正常运行,减少事故的发生。 2 适用范围 本操作规程适用甲醇重整制氢装置的操作与控制。 3 职责 3.1 生产部管理人员负责本工艺操作规程的编制、修改、监督与管理。 3.2 制氢岗位操作人员负责执行本操作规程。 4 工作程序 4.1 装置概况 4.1.1 概述 本装置采用变压吸附(简称PSA)法从甲醇转化气中提取氢气,在正常操作条件,转化气的处理量可达到800NM3 --1200NM3/h。在不同的操作条件下可生产不同纯度的氢气,氢气纯度最高可达99,9995%。 4.1.2 吸附剂的工作原理 本装置采用变压吸附(PSA)分离气体的工艺,从含氢混合气中提取氢气。其原理是利用吸附剂对不同吸附质的选择性吸附,同时吸附剂对吸附质的吸附容量是随压力的变化而有差异的特性,在吸附剂选择吸附条件下,高压吸附除去原料中杂质组份,低压下脱附这些杂质而使吸附剂获得再生。整个操作过程是在环境温度下进行的。 4.1.3 吸附剂的再生 吸附剂的再生是通过三个基本步骤来完成的: (1)吸附塔压力降至低压 吸附塔内的气体逆着原料气进入的方向进行降压,称为逆向放压,通过逆向放压,吸附塔内的压力直到接近大气压力。逆向放压时,被吸附的部分杂质从吸附剂中解吸,并被排出吸附塔。 (2)抽真空 吸附床压力下降到大气压后,床内仍有少部分杂质,为使这部分杂质尽可能解吸,

要求床内压力进一步降低,在此利用真空泵抽吸的方法使杂质解吸,并随抽空气体带出吸附床。 (3)吸附塔升压至吸附压力,以准备再次分离原料气 4.2 工艺操作 本装置是有5台吸附塔(T201A、B、C、D、E)、二台真空泵(P203A、B)、33台程控阀和2个手动调节阀通过若干管线连接构成 4.2.1 工艺流程说明 工艺过程是按设定好的运行方式,通过各程控阀有序地开启和关闭来实现的。现以吸附塔T201A在一次循环内所经历的20个步骤为例,对本装置变压吸附工艺过程进行说明。 (1)吸附 开启程控阀KS205和KS201,原料气由阀KS205进入,并自下而上通过吸附塔T201A,原料气中的杂质组份被吸附,分离出的氢气通过阀KS201输出。当被吸附杂质的吸附前沿(指产品中允许的最低杂质浓度)移动到吸附塔一定位置时,关闭KS205和KS201,停止原料气进入和产品气输出。此时吸附器中吸附前沿至出口端之间还留有一段未吸附杂质的吸附剂。 (2)第一次压力均衡降(简称一均降) 开启程控阀KS203和KS216,吸附器T201A与刚结束隔离步骤的吸附器T201C进行第一次压力均衡降,均压过程中吸附器T201A的吸附前沿朝出口端方向推进,但仍未到达其出口端。当两台吸附塔压力基本相等时,关闭阀KS216,一均降步骤结束(继续开启阀KS203,便于吸附器V201A下一步二均降进行)。 (3)第二次压力均衡降(简称二均降) 开启程控阀KS222,继续开启阀KS203,吸附塔T201A与刚结束隔离步骤的吸附塔T201D进行第二次压力均衡降,均压过程中吸附塔T201A的吸附前沿继续朝出口端方向推进,仍未到达其出口端。当两台吸附器压力基本相等时,关闭阀KS222,二均降步骤结束(继续开启阀KS203,便于吸附塔T201A下一步三均降进行)。 (4)第三次压力均衡降(简称三均降) 开启程控阀KS228,继续开启阀KS203,吸附塔T201A与刚结束抽真空步骤的吸附塔T201E进行第三次压力均衡降,均压过程中吸附塔T201A的吸附前沿刚好到达出口端时,两台吸附塔压力也基本相等,此时关闭阀KS203和KS228,三均降步骤结束。

变压吸附制氢工艺

变压吸附制氢工艺 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

工艺技术说明 1、吸附制氢装置工艺技术说明 1)工艺原理 吸附是指:当两种相态不同的物质接触时,其中密度较低物质的分子在密度较高的物质表面被富集的现象和过程。具有吸附作用的物质(一般为密度相对较大的多孔固体)被称为吸附剂,被吸附的物质(一般为密度相对较小的气体或液体)称为吸附质。吸附按其性质的不同可分为四大类,即:化学吸附、活性吸附、毛细管凝缩和物理吸附。变压吸附(PSA)气体分离装置中的吸附主要为物理吸附。 物理吸附是指依靠吸附剂与吸附质分子间的分子力(包括范德华力和电磁力)进行的吸附。其特点是:吸附过程中没有化学反应,吸附过程进行的极快,参与吸附的各相物质间的动态平衡在瞬间即可完成,并且这种吸附是完全可逆的。 变压吸附气体分离工艺过程之所以得以实现是由于吸附剂在这种物理吸附中所具有的两个基本性质:一是对不同组分的吸附能力不同,二是吸附质在吸附剂上的吸附容量随吸附质的分压上升而增加,随吸附温度的上升而下降。利用吸附剂的第一个性质,可实现对混合气体中某些组分的优先吸附而使其它组分得以提纯;利用吸附剂的第二个性质,可实现吸附剂在低温、高压下吸附而在高温、低压下解吸再生,从而构成吸附剂的吸附与再生循环,达到连续分离气体的目的。 吸附剂: 工业PSA-H2装置所选用的吸附剂都是具有较大比表面积的固体颗粒,主要有:活性氧化铝类、活性炭类、硅胶类和分子筛类吸附剂;另外还有针对某种组分选择性吸附而研制的特殊吸附材料,如CO专用吸附剂和碳分子筛等。吸附剂最重要的物理特征包括孔容积、孔径分布、表面积和表面性质等。不同的吸附剂由于有不同的孔隙大小分布、不同的比表面积和不同的表面性质,因而对混合气体中的各组分具有不同的吸附能力和吸附容量。 吸附剂对各种气体的吸附性能主要是通过实验测定的吸附等温线和动态下的穿透曲线来评价的。优良的吸附性能和较大的吸附容量是实现吸附分离的基本条件。 同时,要在工业上实现有效的分离,还必须考虑吸附剂对各组分的分离系数应尽可能大。所谓分离系数是指:在达到吸附平衡时,(弱吸附组分在吸附床死空间中残

1500Nm3-h天然气转化制氢装置项目建议书

xxxx集团有限公司 1500Nm3/h天然气转化制氢装置 项目建议书 编号:xxxx-xxxx-1112

一、总论 1.1 装置名称及建设地点 装置名称:1500Nm3/h 天然气制氢装置 建设地点:xxxx 1.2 装置能力和年操作时间 装置能力: :1500Nm3/h; H 2 纯度: ≧99.99(V/V) 压力≧2.0 MPa(待定) 年操作时间:≧8000h 操作范围:40%-110% 1.3 原料 天然气(参考条件,请根据实际组分修改完善): 1.4 产品 氢气产品

1.5 公用工程规格 1.5.1 脱盐水 ●温度:常温 ●压力:0.05MPa(G) ●水质:电导率≤5μS/cm 溶解O2 ≤2 mg/kg 氯化物≤0.1 mg/kg 硅酸盐(以SiO2计) ≤0.2 mg/kg Fe ≤0.1 mg/kg 1.5.2 循环冷却水 ●供水温度:≤28℃ ●回水温度:≤40℃ ●供水压力:≥0.40MPa ●回水压力:≥0.25MPa ●氯离子≤25 mg/kg 1.5.3 电 ●交流电:相数/电压等级/频率 3 PH/380V/50Hz ●交流电:相数/电压等级/频率 1 PH/220V/50Hz ● UPS交流电:相数/电压等级/频率 1 PH/220V/50Hz 1.5.4 仪表空气 ●压力: 0.7MPa

●温度:常温 ●露点: -55 ℃ ●含尘量: <1mg/m3,含尘颗粒直径小于3μm。 ●含油量:油份含量控制在1ppm以下 1.5.5 氮气 ●压力: 0.6MPa ●温度: 40℃ ●需求量:在装置建成初次置换使用,总量约为5000 Nm3 正常生产时不用 1.6 公用工程及原材料消耗 注:电耗与原料天然气压力有关。

相关文档
最新文档