【结构设计】弹塑性地震反应分析中的滞回曲线解析

【结构设计】弹塑性地震反应分析中的滞回曲线解析
【结构设计】弹塑性地震反应分析中的滞回曲线解析

弹塑性地震反应分析中的滞回曲线解析我们在进行弹塑性地震反应分析时,经常要用到结构的滞回曲线,今天为大家详细介绍一下这个神秘的东东.

滞回曲线,也叫恢复力曲线,是在循环力的往复作用下,得到结构的荷载-变形曲线.它反映结构在反复受力过程中的变形特征、刚度退化及能量消耗.

为啥要研究在反复受力过程中各种特性呢?因为地震力就是反复循环作用的.我们弹性设计只是拟静力法,不能体现反复力的作用.

大多材料都是具有弹塑性性质的,当荷载大于一定程度后,在卸荷时产生残余变形,即荷载为零而变形不回到零,称之为“滞后”现象,这样经过一个荷载循环,荷载位移曲线就形成了一个环,将此环线叫做滞回环,多个滞回环就组成了滞回曲线!

滞回曲线有哪几种呢?

1、梭形

梭形说明滞回曲线的形状非常饱满,反映出整个结构或构件的塑性变形能力很强,具有很好的抗震性能和耗能能力.例如受弯、偏压、压弯以及不发生剪切破坏的弯剪构件,具有良好塑性变形能力的钢框架结构或构件的P一△滞回曲线即呈梭形.

2、弓形

弓形具有“捏缩”效应,显示出滞回曲线受到了一定的滑移影响.滞回曲线的形状比较饱满,但饱满程度比梭形要低,反映出整个结构或构件的塑性变形能力比较强,节点低周反复荷载试验研究性能较好,.能较好地吸收地震能量.例如剪跨比较大,剪力较小并配有一定箍筋的弯剪构件和压弯剪构件,一般的钢筋混凝土结构,其滞回曲线均属此

类.

3、反S形

反S形反映了更多的滑移影响,滞回曲线的形状不饱满,说明该结构或构件延性和吸收地震能量的能力较差.例如一般框架、梁柱节点和剪力墙等的滞回曲线均属此类.

4、Z形

Z形反映出滞回曲线受到了大量的滑移影响,具有滑移性质.例如小剪跨而斜裂缝又可以充分发展的构件以及锚固钢筋有较大滑移的构件等,其滞回曲线均属此类.

很多专家做过的实验表明,混凝土构件轴压比为0时(受弯构件),滞回曲线十分饱满,有优越的延性和耗能性能,而轴压比提高时,延性明显下降,滞回环严重捏拢.这就是为何规范限制轴压比的原因.

滞回曲线的物理意义为:地震时,结构处于地震能量场内,地震将能量输入结构,结构有一个能量吸收和耗散的持续过程.当结构进入弹塑性状态时,其抗震性能主要取决于构件耗能的能力.滞回曲线中加荷阶段荷载-位移曲线下所包围的面积可以反映结构吸收能量的大小;而卸荷时的曲线与加载曲线所包围的面积即为耗散的能量.这些能量是通过材料的内摩阻或局部损伤(如开裂、塑性铰转动等)而将能量转化为热能散失到空间中去.因此,滞回曲线中滞回环的面积是被用来评定结构耗能的一项重要指标.

框架结构地震响应时程分析的计算模型

框架结构地震响应时程分析的计算模型 摘要:在结构进行地震响应时程分析时,必须首先确定结构的计算模型,以便确立结构的层间刚度。在地震作用下,结构计算模型是结构进行地震响应时分析的主体,由几何模型和物理模型两部分组成。其中几何模型反映了结构计算模型的几何构成,物理模型反映了材料或构件的力学性能。目前在工程上常用的计算模型主要有层间模型、杆系模型和杆系—层间模型。本文针对这三种模型进行全面的分析,并对它们的优缺点展开论述。 1前言 在求解结构在地震作用下的运动方程时,必须要计算结构的刚度矩阵[k],而要计算结构的刚度矩阵[k],就得确定结构的计算模型。因此,确定结构的计算模型是结构进行动力分析时必不可少的内容。对于多层框架结构,目前应用最广泛的模型是层间模型、杆系模型和杆系—层间模型。 2 层间模型 层间模型是在假定建筑各层楼板在其自身平面内刚度无穷大,水平地震作用下同层各竖向位移相同,以及建筑结构刚度中心和质量中心相重合,水平地震作用下没有绕竖轴扭转发生的基础上建立起来的。在这种模型中,将结构视为一根竖向杆,结构的质量集中于各楼层处,如图1(a)所示。 (a) (b) (c) (d) 图1 层间模型 (a)层间模型一般形式;(b)层间剪切模型;(c)层间弯曲模型;(d) 层间弯剪模型计算时,层间模型取各层为基本计算单元,采用层恢复力模型来表示地震作用过程中层刚度随层剪力的变化关系,而不考虑弹塑性阶段层刚度沿层高的变化。其几何模型相当于串联质点模型,物理模型的重要参数是层间刚度及其非线性变化规律。根据结构形式、构造特点以及结构侧向变形情况不同,层间模型又分为层间剪切模型、层间弯曲模型及层间弯剪模型,如图1(b)—(d)所示。其中,层间弯曲模型主要用于结构侧向变形以弯曲为主的剪力墙结构中。 而在进行框架结构动力分析时,常用的层间模型是层间剪切模型和层间弯剪模型。当框架横梁与柱的线刚度之比较大时,即“强梁弱住”型框架结构,在振动过程中各楼层始终保持水平,结构的变形表现为层间的错动,其侧向变形主要是层间剪切变形,那么应该采用层间剪切模型。 当框架梁对柱的约束相对较弱时,如一些高层框架,即“强柱弱梁”型结构,其侧向变形包含有层间弯曲和剪切两种成分,层间剪切模型已不能完全反映其变形特点,那么应该采用层间弯剪模型。 层间模型的优点在于自由度数较少,动力方程逐步积分所耗时也较少,但方法比较粗糙,计算精度较差,无法求出结构各杆件的时程反应,也不能确定结构各杆单元的内力和变形。因此,在工程实践中,层间模型主要是用于确定结构的层间剪力和层间侧移,以校核结构在地震作用下层间剪力是否超过层间极限承载力和检验结构在地震作用下的薄弱层位置。 3 杆系模型 杆系模型是较为精确的计算模型,它是在假定楼板在其自身平面内为绝对刚性的基础上建立起来的。这种模型将整个框架结构的梁柱构件离散为杆元,以结构的各杆件作为基本计算单元,将结构的质量集中于框架的各个节点,如图2所示。

【结构设计】弹塑性地震反应分析中的滞回曲线解析

弹塑性地震反应分析中的滞回曲线解析我们在进行弹塑性地震反应分析时,经常要用到结构的滞回曲线,今天为大家详细介绍一下这个神秘的东东. 滞回曲线,也叫恢复力曲线,是在循环力的往复作用下,得到结构的荷载-变形曲线.它反映结构在反复受力过程中的变形特征、刚度退化及能量消耗. 为啥要研究在反复受力过程中各种特性呢?因为地震力就是反复循环作用的.我们弹性设计只是拟静力法,不能体现反复力的作用. 大多材料都是具有弹塑性性质的,当荷载大于一定程度后,在卸荷时产生残余变形,即荷载为零而变形不回到零,称之为“滞后”现象,这样经过一个荷载循环,荷载位移曲线就形成了一个环,将此环线叫做滞回环,多个滞回环就组成了滞回曲线! 滞回曲线有哪几种呢? 1、梭形 梭形说明滞回曲线的形状非常饱满,反映出整个结构或构件的塑性变形能力很强,具有很好的抗震性能和耗能能力.例如受弯、偏压、压弯以及不发生剪切破坏的弯剪构件,具有良好塑性变形能力的钢框架结构或构件的P一△滞回曲线即呈梭形.

2、弓形 弓形具有“捏缩”效应,显示出滞回曲线受到了一定的滑移影响.滞回曲线的形状比较饱满,但饱满程度比梭形要低,反映出整个结构或构件的塑性变形能力比较强,节点低周反复荷载试验研究性能较好,.能较好地吸收地震能量.例如剪跨比较大,剪力较小并配有一定箍筋的弯剪构件和压弯剪构件,一般的钢筋混凝土结构,其滞回曲线均属此 类.

3、反S形 反S形反映了更多的滑移影响,滞回曲线的形状不饱满,说明该结构或构件延性和吸收地震能量的能力较差.例如一般框架、梁柱节点和剪力墙等的滞回曲线均属此类. 4、Z形 Z形反映出滞回曲线受到了大量的滑移影响,具有滑移性质.例如小剪跨而斜裂缝又可以充分发展的构件以及锚固钢筋有较大滑移的构件等,其滞回曲线均属此类.

地下结构地震破坏形式与抗震分析方法综述

地下结构地震破坏形式与抗震分析方法综述 摘要:随着人口的在激增以及经济的发展,人们的需求也开始狂飙式的增长。然而,城市的空间有限,地面空间已经被充分利用,人们的视线开始转为地下,地下结构的开发缓解了城市的地面压力。然而,由于地下结构的抗震技术的发展还并不成熟,在地震后,往往会造成地下结构的损坏甚至直接丧失继续工作的能力,给人们的财产安全带来威胁,影响人们的正常生活。因此在此文中对地下结构的震害形式以及近年来地下结构抗震分析的研究成果进行展示。以加深对地下结构震害的了解,并引起人们对地下结构抗震减震的重视。 关键词:地下结构抗震,震害形式,抗震分析,抗震减震 0 引言 地震是自然界自然界一种常见的自然灾害,地球上每年约发生500多万次地震,即每天要发生上万次地震。其中绝大多数太小或太远以至于人们感觉不到。真正能对人类造成严重危害的地震大约有一二十次,能造成特别严重灾害的地震大约有一两次。然而,这种地震不仅仅会给损害人们的财产安全,更有甚者会威胁到生命安全。 以往的抗震研究主要集中在地上建筑。认为地下结构受到的外界环境较少,各方向约束较多,刚度较大,且高度较小,加之过去地下结构的建设规模相对较少,地下结构受地震作用引起的结构的严重破坏的相关资料也较少,因此地下结构的工程抗震研究及设计长期未得到足够的重视。 1923年日本关东大地震(M8.2),震区内116座铁路隧道,有82座受到破坏;1952 年美国加州克恩郡地震(M7.6),造成南太平洋铁路的四座隧道损坏严重;1976年唐山地震(M7.8),唐山市给水系统完全瘫痪,秦京输油管道发生五处破坏;1978年日本伊豆尾岛地震(M7.0)震后出现了横贯隧道的断裂,隧道衬砌出现了一系列的破坏;特别是1995年日本阪神大地震(M7.2)中,神户市及阪神地区几座城市的供水系统和污水排放系统受到严重破坏,其中神户市供系统完全破坏,并基本丧失功能。神户市部分地铁车站和区间隧道受到不同程度的破坏,其中大开站最为严重,一半以上的中柱完全倒塌,导致顶板坍塌和上覆土层大量沉降,最大沉降量达2.5m。 地震对地下结构造成大规模破坏的同时,地震对地下结构的安全性构成的威胁也开始引起了人们的重视,地下结构工程抗震从业者在震后获取了大量的地震动作用在地下结构上产生的动力特性及影响结构动 力响应的影响因素等宝贵资料,对地下结构工程抗震减震领域的发展具有极大的推动作用。 近年来,关于地下结构的工程抗震分析方法的文献大量涌现。学者从不同角度对地下结构抗震进行阐述,并且有不少理论转化为工程技术,在工程实践中得到了论证。笔者试图综合前人的研究成果,在本文中简要介绍地下结构在地震作用下的破坏形式以及地下结构抗震分析方法,以便加深对地下结构工程抗震的了解,也可增加人们对地下结构工程抗震的重视程度。 1 地下结构震害 由于所处环境、约束情况等的差异,地下结构的破坏形式与结构破坏的影响因素与地上结构有很多不同之处。 1.1 地下结构震害形式 以下以日本阪神地震为主要对象,结合其他地震造成的震害,总结了地铁车站、地下管道、地下隧道的主要震害形式。

地震反应谱分析实例

结构地震反应谱分析实例 在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0

!进行模态求解 ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom

大型地下结构三维地震响应特点研究

第43卷第3期2003年5月 大连理工大学学报 Jour nal of Dalian University of Technology Vol .43,No .3May 2003 文章编号:1000-8608(2003)03-0344-05 收稿日期:2002-04-01; 修回日期:2003-03-25. 基金项目:国家自然科学基金资助项目(50209002);辽宁省自然科学基金资助项目(20022130). 作者简介:陈健云*(1968-),男,副教授;林 皋(1929-),男,教授,博士生导师,中国科学院院士. 大型地下结构三维地震响应特点研究 陈健云*, 胡志强, 林 皋 (大连理工大学土木水利学院,辽宁大连 116024) 摘要:采用阻尼影响抽取法分析了地下结构无限围岩介质的动刚度特性,建立了岩石地下 结构抗震分析的实用相互作用分析时域模型,比较研究了地下结构-围岩动力相互作用分析中地震动输入机制、无限围岩动刚度及结构特性等各种主要因素对地下结构地震响应的影响程度.指出几种常用地下结构地震响应近似分析方法只在一定条件下适用,无限介质的阻尼特性对结构响应起着重要的作用. 关键词:地下洞室;地震反应分析;动刚度;优化;阻尼影响抽取法中图分类号:T U 35;TU 9;TV3 文献标识码:A 0 引 言 随着国民经济的发展,地下空间得到了越来越广泛的使用.然而近几年世界范围内发生了一 系列大地震,造成了巨大的灾难,不少地下结构遭受破坏.由于与围岩的相互作用,地下结构的动力特性十分复杂,其响应特点与地面结构有明显的差别.研究表明[1] ,对地下结构采用施加惯性力的地震响应分析,即使采用几倍于结构尺寸的地基离散模型,施加不同的边界条件对地震位移响应的影响可达10倍,应力差别达5~6倍. 目前各种实际地下结构的动力响应分析仍以各种近似方法为主.包括各种拟静力方法,如位 移响应法[2、3] ,地基影响参数通常根据简化假定采 用经验参数.动力近似分析通常将结构简化为二维问题处理[4],对于地下管线等结构形式具有一定的适用性.对于处于比较复杂地质、地形条件下的地下结构,或者形式较复杂的大型地下空间结构,要合理地反映地下结构的地震响应,则必须进行三维动力响应分析. 当前常用的地下结构三维地震分析方法,主要有在模型外边界施加各种人工透射边界解决能量向无限远处辐射[5]的波动分析方法;以地下结构为主体,围岩的作用通过相互作用力来求解的相互作用分析方法[6] ,通常采用有限元、边界元、 解析法或半解析法等耦合求解;以及在外边界施 加粘性阻尼器的惯性力方法.前两种方法属于较精确的数值方法,后一种方法则为近似方法. 由于围岩介质对结构的动力影响在时间与空 间都是耦合的,较精确的地下结构地震响应分析具有一定难度,时域求解复杂且求解代价很大. 本文采用相互作用分析方法,结合溪洛渡超 大型地下洞室群的地震响应分析,研究动力相互 作用运动方程中各主要因素对地下结构地震响应的影响程度,为地下结构的简化分析提供依据. 1 地下结构地震响应的相互作用分 析方法 地下结构的相互作用分析主要采用各种耦合 方法,如有限元与边界元的耦合分析.本文则采 用阻尼影响抽取法得到地基刚度与有限元进行耦合分析. 1.1 阻尼影响抽取法的基本概念 [7] 将无限地基截取有限区域,其刚度阵为S t (X )=K -X 2 M (1) 式中:K 和M 分别为有限域的刚度阵与质量阵. 引入量纲一的频率a 0=X ?r 0/c s 及刚度阵K 与质量阵M ,则式(1)可表达为  S t (X )=Gr s -2 0(K -a 20M )=Gr s -2 0S (a 0) (2)

地震工程学心得体会

精心整理《地震工程学》课程总结? 1.对所学内容的综述? 1.1结构地震反应分析的方法? 结构地震反应分析的方法很多,下面主要介绍反应谱理论和时程反应分析法? 绍。 也并不是一次地震动作用下的反应谱,而是不同地震反应的包线。 1.1.2?? 时程分析法? 时程分析法又称作动态分析法。它是将地震波段按时段进行数值化后,输入结构体系的振动微分方程,采用逐步积分法进行结构弹塑性动力反应分析,计算出结构在整个强震时域中的振动状态过程,给出各个时刻各杆件的内力和变形以及各杆

件出现塑性铰的顺序。? 时程分析法计算地震反应需要输入地震动参数,该参数具有概率含义的加速度时程曲线、结构和构件的动力模型考虑了结构的非线性恢复力特性,更接近实际情况,因而时程分析方法具有很多优点。它全面地考虑了强震三要素;比较确切地、具体地和细致地给出了结构弹塑性地震反应。? 1.1.3地震信号频域分析? ???? X(f), 1.2? 1.2.1 (1) ??(2 (3 ?(4 性和有效性;? ?? (5)验证抗震理论、结构地震反应分析方法、结构振动控制算法等的可靠性和适用性。? 1.2.2? 结构抗震试验的实施程序? ??

(1)确定研究目标和试验方法,含试验目的、试验设备和试件的采用、需要测量的物理量等;? ?? (2)荷载施加,含与试验设备相关的荷载施加方式和加载规则等;? ?(3)测点布置和数据采集,含各类传感器和数采设备的采用、测点数量的选择;? ??(4)数据分析,含测试数据的常规处理和特殊分析。? (1 ? (2 ????旨在 (3 ?? 入下结构或构件的地震反应,研究和验证结构地震破坏机理、破坏特征、抗震能力和抗震薄弱环节。 ?(4)振动台试验? ?????振动台试验是利用振动台装置进行的结构强迫振动试验,是地震工程研究中最重要的实验手段之一。?

地震工程中的静力弹塑性_pushover_分析法

第32卷 第2期 贵州工业大学学报(自然科学版) Vol.32No.2 2003年 4月 JOURNAL OF GUIZHOU UNIVERSI TY OF TEC HNOLOGY April.2003 (Natural Science Edition) 文章编号:1009-0193(2003)02-0089-03 地震工程中的静力弹塑性(pushover)分析法 冯峻辉,闫贵平,钟铁毅 (北方交通大学土建学院,北京100044) 摘 要:静力弹塑性(pushover)分析法在抗震结构的设计和评估中,尤其是基于性能/位移的抗 震设计中,具有很大的潜力。根据其发展背景和近况,评述了它在运用中的一些关键论点用于 性能评估的缺陷。为了预测地震反应,提出了一些可能的发展方向。 关键词:抗震设计;静力弹塑性分析;推倒分析 中图分类号:TU311.3 文献标识码:A 0 引 言 基于性能的抗震结构设计概念,包括了工程的设计,评估和施工等,要求在未来不同强度水平的地震作用下结构达到预期的性能目标[1]。为此需在工程实践中完成一个近似且简易的性能评估方法,通常所指的是静力弹塑性分析法(简称为推倒法)。由于推倒法的优点突出:考虑了结构的弹塑性特性,可用图形方式直观表达结构的能力与需求,通常比同一模型的动力分析更快且易于运行,可提供一个较可靠的结构性能预测等特点,正逐渐受到重视和推广。目前国内外许多组织把其纳入抗震规范,如美国的ATC-40,FE MA274等。我国也把其引入 建筑抗震设计规范 (GB50011-2001)。 1 推倒(Pushover)分析方法的原理,用途和实施过程 1.1 Pushover的原理和用途 推倒法是一个用于预测地震引起的力和变形需求的方法。其基本原理是:在结构分析模型上施加按某种方式(如均匀荷载,倒三角形荷载等)模拟地震水平惯性力的侧向力,并逐级单调加大,直到结构达到预定的状态(位移超限或达到目标位移),然后评估结构的性能。 推倒法可用于建筑物的抗震鉴定和加固,以及对新建结构的抗震设计和性能评估。它可以对所设计的地震运动作用在结构体系和它的组件上的抗震需求提供充足的信息,如对潜在脆性单元的真实力的需求,估计单元非弹性变形需求,个别单元强度退化时对结构体系行为作用的影响,对层间移位的估计(考虑了强度和高度不连续),对加载路径的证实等,其中一些是不能从弹性静力或动力分析中获得的。 1.2 Pushover的实施过程 推倒分析法的实施步骤为: 1.准备结构数据。包括建立结构模型,构件的物理常数和恢复力模型等; 2.计算结构在竖向荷载作用下的内力(将其与水平力作用下的内力叠加,作为某一级水平力作用下构件的内力,以判断构件是否开裂或屈服); 3.在结构每一层的质心处,施加沿高度分布的某种水平荷载。施加水平力的大小按以下原则确定:水平力产生的内力与2步所计算的内力叠加后,使一个或一批构件开裂或屈服; 4.对于开裂或屈服的构件,对其刚度进行修改后,再施加一级荷载,使得又一个或一批构件开裂或屈服; 5.不断重复3,4步,直至结构顶点位移足够大或塑性铰足够多,或达到预定的破坏极限状态。 6.绘制基础剪力 顶部位移关系曲线,即推倒分析曲线。 收稿日期:2002-10-25

结构地震反应谱分析实例

在多位朋友的大力帮助下,经过半个多月的努力,鄙人终于对结构地震反应谱分析有了一定的了解,现将其求解步骤整理出来,以便各位参阅,同时,尚有一些问题,欢迎各位讨论! 为叙述方便,举一简单实例: 在侧水压与顶部集中力作用下的柱子的地震反应谱分析,谱值为加速度反应谱,考虑X 与Y向地震效应作用。已知地震影响系数a与周期T的关系: a(T)= 0.4853*(0.4444+2.2222*T) 0<T<=0.04 秒 0.4853*(0.10/T)^(-0.686) 0.04<T<=0.1 秒 0.4853 0.1<T<=1.2 秒 0.4853*(1.2/T)^1.5 1.2<T<=4 秒 以下是命令流程序 ---------------------------------------------------------------------------------------------------- /filname,SPEC,1 /PREP7 !定义单元类型及材料特性 ET,1,45 MP,EX,1,2.8E10 MP,DENS,1,2.4E3 MP,NUXY,1,0.18 !建立模型 BLOCK,0,1,0,1,0,5 !网格剖分 ESIZE,0.5 VMESH,all /VIEW,,-0.3,-1,1 EPLOT FINISH /SOLU !施加底部约束 ASEL,,LOC,Z,0 DA,ALL,ALL ALLSEL !施加自重荷载 ACEL,0,0,10 !进行模态求解

ANTYPE,MODAL MODOPT,LANB,30 SOLVE FINISH !进行谱分析 /SOLU ANTYPE,SPECTR SPOPT,SPRS,30,YES SVTYP,2 !加速度反应谱 SED,1,1 !X与Y向 FREQ,0.2500,0.2632,0.2778,0.2941,0.3125,0.3333,0.3571,0.3846,0.4167 FREQ,0.4545,0.5000,0.5556,0.6250,0.7143,0.8333,1.1111,2.0000,10.0000 FREQ,25.0000,1000.0000 SV,0.05,0.0797,0.0861,0.0934,0.1018,0.1114,0.1228,0.1362,0.1522,0.1716 SV,0.05,0.1955,0.2255,0.2642,0.3152,0.3851,0.4853,0.4853,0.4853,0.4853 SV,0.05,0.2588,0.2167 SOLVE FINISH !进行模态求解(模态扩展) /SOLU ANTYPE,MODAL EXPASS,ON MXPAND,30,,,YES,0.005 SOLVE FINISH !进行谱分析(合并模态) /SOLU ANTYPE,SPECTR SRSS,0.15,disp SOLVE FINISH /POST1 SET,LIST !结果1 /INP,,mcom lcwrite,11

地震作用下结构弹塑性位移反应规律的研究_尹保江

第21卷第5期重庆建筑大学学报Vol.21No.5 1999年10月Journal of Chon gq in g J ianzhu Universit y Oct.1999文章编号:1006-7329(1999)05-0010-06 地震作用下结构弹塑性位移反应规律的研究 尹保江1黄宗明2白绍良2 (1.中国建筑科学研究院抗震所100013;2.重庆建筑大学建筑工程学院400045) 摘要通过对单自由度体系在不同类型地面运动作用下的弹塑性位移反应特性的研究,总结了结构在地震作用下的位移反应规律,为考虑塑性累积疲劳损伤的结构地震破坏准则的研究提供依据。 关键词结构弹塑性地震反应;弹塑性位移反应规律;低周疲劳破坏准则 中图法分类号TU313文献标识码A 1问题的提出 结构地震破坏准则的研究,一直是工程结构抗震领域一个十分重要的课题。目前,人们已普遍认为结构在地震作用下的破坏是由于位移的首次超越和塑性累积疲劳损伤共同作用的结果。大量的试验研究表明〔1〕,结构在往复荷载作用下的疲劳损伤破坏,不但和塑性耗能总量有关,而且还和位移幅值的大小、偏移量、不同幅值位移的发生顺序及其组合方式等密切相关,是一个非常复杂的问题。因此,要想考虑不同位移组合的情况,通过较为完备的试验系列来建立一个比较客观的能够反映以上各种因素的具有普遍意义的通用低周疲劳破坏准则,是相当困难的。 本文认为,地震地面运动虽然复杂,但其分类特征是明显的,结构在不同类型地震作用下的位移反应也一定会遵循某种规律。既然如此,就可以考虑放弃建立具有普遍意义的通用低周疲劳破坏准则的研究方法,而主要针对适用于地震作用的结构低周疲劳破坏准则进行研究,使问题得到简化,同时使提出的破坏准则更具有针对性。基于这种思想,本文研究了单自由度体系在不同类型地震地面运动作用下的弹塑性位移反应规律,以期作为今后研究结构地震破坏准则的参考。 2结构位移反应规律的研究方法 根据文献〔2〕的研究成果,将地震地面运动分为5类:S型为短持时脉冲型地面运动;L-1型和M-1型分别为长持时和中等持时有较明显卓越周期的地面运动;L-2型和M-2型分别为长持时和中等持时不规则的地面运动。本文选择了79条峰值加速度在0.2g以上的典型地震地面运动记录作为输入,计算了单自由度体系在这些地面运动作用下的位移反应时程。各类地震输入的分布见表1。 表1本文采用地震动输入的类型分布 地面运动类型S型L-1型M-1型L-2型M-2型 数量(条)191719816 对于每一条地震记录输入,所计算结构的基本周期T0分别取为0.5s、1.0s和2.0s、结构的目标延性系数分别取为2.0、4.0和6.0,共九种情况;阻尼比ζ统一取为0.05,选用武田模型作为恢 收稿日期:1999-09-06 基金项目:国家自然科学基金资助项目 作者简介:尹保江(1972-),男,中国建筑科学研究院工程师。

弹塑性时程分析

弹塑性时程分析方法将结构作为弹塑性振动体系加以分析,直接按照地震波数据输入地面运动,通过积分运算,求得在地面加速度随时间变化期间内,结构的内力和变形随时间变化的全过程,也称为弹塑性直接动力法。 基本原理 多自由度体系在地面运动作用下的振动方程为: 式中、、分别为体系的水平位移、速度、加速度向量;为地面运动水平加速度,、、 分别为体系的刚度矩阵、阻尼矩阵和质量矩阵。将强震记录下来的某水平分量加速度-时间曲线划分为很小的时段,然后依次对各个时段通过振动方程进行直接积分,从而求出体系在各时刻的位移、速度和加速度,进而计算结构的内力。 式中结构整体的刚度矩阵、阻尼矩阵和质量矩阵通过每个构件所赋予的单元和材料类型组装形成。动力弹塑性分析中对于材料需要考虑包括:在往复循环加载下,混凝土及钢材的滞回性能、混凝土从出现开裂直至完全压碎退出工作全过程中的刚度退化、混凝土拉压循环中强度恢复等大量非线性问题。 基本步骤 弹塑性动力分析包括以下几个步骤: (1) 建立结构的几何模型并划分网格; (2) 定义材料的本构关系,通过对各个构件指定相应的单元类型和材料类型确定结构的质量、刚度和阻尼矩阵; (3) 输入适合本场地的地震波并定义模型的边界条件,开始计算; (4) 计算完成后,对结果数据进行处理,对结构整体的可靠度做出评估。 计算模型 在常用的商业有限元软件中,ABAQUS、ADINA、ANSYS、MSC.MARC都内置了混凝土的本构模型,并提供了丰富的单元类型及相应的前后处理功能。在这些程序中一般都有专用的钢筋模型,可以建立组合式或整体式钢筋。 以ABAQUS为例,它提供了混凝土弹塑性断裂和混凝土损伤模型以及钢筋单元。其中弹塑性断裂和损伤的混凝土模型非常适合于钢筋混凝土结构的动力弹塑性分析。它的主要优

结构抗震课后习题答案解析

《建筑结构抗震设计》课后习题解答建筑结构抗震设计》第 1 章绪论 1、震级和烈度有什么区别和联系?震级是表示地震大小的一种度量,只跟地震释放能量的多少有关,而烈度则表示某一区域的地表和建筑物受一次地震影响的平均强烈的程度。烈度不仅跟震级有关,同时还跟震源深度、距离震中的远近以及地震波通过的介质条件等多种因素有关。一次地震只有一个震级,但不同的地点有不同的烈度。 2.如何考虑不同类型建筑的抗震设防?规范将建筑物按其用途分为四类:甲类(特殊设防类)、乙类(重点设防类)、丙类(标准设防类)、丁类(适度设防类)。 1 )标准设防类,应按本地区抗震设防烈度确定其抗震措施和地震作用,达到在遭遇高于当地抗震设防烈度的预估罕遇地震影响时不致倒塌或发生危及生命安全的严重破坏的抗震设防目标。 2 )重点设防类,应按高于本地区抗震设防烈度一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施;地基基础的抗震措施,应符合有关规定。同时,应按本地区抗震设防烈度确定其地震作用。 3 )特殊设防类,应按高于本地区抗震设防烈度提高一度的要求加强其抗震措施;但抗震设防烈度为 9 度时应按比 9 度更高的要求采取抗震措施。同时,应按批准的地震安全性评价的结果且高于本地区抗震设防烈度的要求确定其地震作用。 4 )适度设防类,允许比本地区抗震设防烈度的要求适当降低其抗震措施,但抗震设防烈度为 6 度时不应降低。一般情况下,仍应按本地区抗震设防烈度确定其地震作用。 3.怎样理解小震、中震与大震? 小震就是发生机会较多的地震,50 年年限,被超越概率为63.2%;中震,10%;大震是罕遇的地震,2%。 4、概念设计、抗震计算、构造措施三者之间的关系? 建筑抗震设计包括三个层次:概念设计、抗震计算、构造措施。概念设计在总体上把握抗震设计的基本原则;抗震计算为建筑抗震设计提供定量手段;构造措施则可以在保证结构整体性、加强局部薄弱环节等意义上保证抗震计算结果的有效性。他们是一个不可割裂的整体。

地层地震反应对地下结构的影响

地层地震反应对地下结构的影响 隧道二班谭坤(07011227) 地震对地下工程影响的一般规律 地震对地下工程的影响规律总体上有以下的特点: 1) 地下结构的振动变形受周围地基土壤的约束作用显著,结构的动力反应 一般不明显表现出自振特性的影响。 2) 地下结构的振动形态受地震波入射方向的影响很大,地震波的入射方向 发生不大的变化,地下结构各点的变形和应力可以发生较大的变化,相位差别也 十分明显。但主要应变一般与地震加速度大小的联系不很明显,随埋深发生的变化也不很明显。 3) 地下结构地基的相互作用都对它的动力反应产生重要影响,对结构动力 反应起主要作用的因素是地基的运动特性,一般来说,结构形状的改变对动力反 应的影响相对较小,只引起量的变化。而地下结构的存在对周围地基震动的影响一般很小(指地下结构的尺寸相对于地震波长的比例较小的情况) 。 岩体隧道震害的形式主要有裂纹、剥落、底部隆起或倾斜,破坏程度主要取决于地震作用力方向及现场地质条件,一般发生于存在破碎带的地层中。 对于土体隧道,土体对地震的响应要明显强于岩体,所以隧道破坏的可能性 也更大。又由于土体隧道多用于城市地铁,车站较多,整体结构形式不均一,容易产生应力集中,使破坏多集中在车站上。 1) 并行隧道距离越小, 其地震内力反应越大, 当距离小于隧道断面外径D , 尤其是小于0. 5D 时, 抗震设计应给予足够的重视; 2) 地震引起的地基变形是影响盾构隧道地震反应的决定性因素, 因而在抗震设计时需要合理考虑盾构隧道应承受的地基变形, 因此相对于地震系数法, 反应位移法的设计思想更为合理; 3) 相对于目前广泛采用的设计基本地震加速度, 对地铁区间隧道等地下结构进行抗震分析及设计时采用地面峰值相对位移作为设计地震动参数更为合理。 上述结论是基于三类建筑场地条件得出的, 可供地铁盾构区间隧道等地下 结构抗震设计参考。对于其他场地条件, 还有待进一步研究。

基于Matlab求解建筑结构地震响应的时程分析法_孟宪萍 (1)

2008年第6期总第120期 福 建 建 筑 F u j i a nA r c h i t e c t u r e &C o n s t r u c t i o n N o 6·2008 V o l ·120 基于M a t l a b 求解建筑结构地震响应的时程分析法 孟宪萍 (开封市供水总公司 475004) 摘 要:本文基于m a t l a b 阐述了我国《建筑抗震设计规范》(G B 50011-2001)规定的求解建筑结构地震响应的时程分析法,应用m a t l a b 语言编制了时程分析法求解建筑结构地震响应的计算程序,并以一三层钢筋混凝土结构为工程算例,应用基于m a t l a b 的时程分析法进行结构的地震响应计算。结果表明,基于m a t l a b 的时程分析计算效率较高。关键词:M A T L A B 地震响应 时程分析法 中图分类号:T U 312+.1 文献标识码:A 文章编号:1004-6135(2008)06-0038-03 T h e t i m e -h i s t o r y m e t h o db a s e d o nm a t l a b o f r e s o l v i n g t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s M e n g X i a n p i n g (K a i f e n g Wa t e r S u p p l y C o m p a n y 475004) A b s t r a c t :I nt h i s p a p e r ,t h e t i m e -h i s t o r y m e t h o dw h i c h i s m e n t i o n e d i n t h e c o d e f o r s e i s m i c d e s i g n o f b u i l d i n g s (G B 50011-2001)t o r e s o l v e t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s i s d i s c u s s e d b a s e d o nm a t l a b .T h e c a l c u l a t i o np r o g r a m s o f t h et i m e -h i s t o r y m e t h o da r e w o r k e do u t u s i n g t h e l a n g u a g e m a t l a b .T a k i n g a t h r e es t o r y r e i n f o r c e d c o n c r e t e f r a m e s t r u c t u r e a s a ne x a m p l e ,t h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e i s r e s o l v e d b y u s i n g t h e c a l c u l a t i o n p r o g r a m s o f t h e t i m e -h i s t o r y m e t h o d .T h e r e s u l t i n d i c a t e s t h a t T h e t i m e -h i s t o r y m e t h o d b a s e do n m a t l a bo f r e s o l v i n gt h e e a r t h q u a k e r e s p o n s e o f t h e s t r u c t u r e s i s e f f i c i e n t .K e y w o r d s : M A T L A B e a r t h q u a k e r e s p o n s e t i m e -h i s t o r y a n a l y s i s m e t h o d 作者简介:孟宪萍,女,1966年出生,主要从事建筑结构设 计及建筑咨询。 收稿日期:2008-03-25 1 引言 我国《建筑抗震设计规范》(G B 50011-2001)第5章对时程分析法的使用情况作出了规定。时程分析法又称为直接动力法或逐步积分法。采用时程分析法可以计算出结构在地震过程中每一瞬时的反应,可用来求解建筑结构的几何及物理线性与非线性动力响应。与经典的反应谱方法相比,有很多的优点,但是它也存在许多不足,主要有计算模型的合理选择困难;地震波输入的不确定性;在计算过程中要进行刚度矩阵等的不断修正,每一时刻的结果都受到此刻之前的结果的影响等,导致计算分析工作量较大。虽然目前在结构弹塑性时程分析时,结构动力增量微分方程已有较为成熟的算法以及相关的大型分析软件可以利用,但是其计算分析工作量仍然十分繁重,不但耗费机时,结果处理复杂,而且同计算者本身的经验和对结构在地震作用下的损伤形态和破坏顺序的 假定相关,这些都带有一定的主观性。但是随着计算机的普及,时程分析法正逐步被抗震规范接受。本文在详细阐述了时程分析法基本原理基础上,结合m a t -l a b 语言编制了时程分析法求解建筑结构地震响应的计算程序,并以一三层钢筋混凝土结构为例进行验证。 2 时程分析法基本原理 2.1 结构在地震作用下的动力微分方程 多自由度体系建筑结构在地震作用下的运动运动微分方程为 [M ]{x ·· }+[C ]{x · }+[K ]{x }=-[M ]{x ·· g } (1) 其中,[M ],[C ],[K ]分别为建筑结构质量、阻尼和刚度矩阵,{x ·· g }为地面运动加速度。2.2 建筑结构的计算模型 建筑结构计算模型一般应根据结构形式及构造特点、分析精度以及计算机容量等情况确定。用时程分析法求解时,由于计算工作量大,在尽量真实再现结构动力反应特点的前提下,尽可能对结构予以简化。对于传统的多层房屋结构,最简单且应用最广的模型是层间剪切模型,如图1所示,在这种模型中,房

浅析土木工程结构地震反应分析方法

2012Vol.44No.1林业科技情报 浅析土木工程结构地震反应分析方法 王亚芝 (黑龙江省林业设计研究院) [摘要]近年来世界范围内频繁发生特大地震,其中包括我国2008年的汶川大地震,日本2011年的大地震,其震害及其次生灾害造成了巨大的人员伤亡和国民经济损失。笔者针对土木工程结构抗震一直是当今研究的热门课题这一重点主线,详细介绍了土木工程抗震领域的主要研究方法。 [关键词]土木工程结构;地震反应;反应谱法;非线性时程分析;Pushover;IDA Earthquake Reaction Analysis Method Of Civil Engineering Structure Wang Yazhi (Forest Design And Research Institute Of Heilongjiang Province) Abstract:There are especially big earthquakes in the world frequently in recent years,including the earthquake of 2008in China and2011in Japan.They caused large casualties and national economy loss.Civil engineering struc-ture anti-seismic is a hot task.This paper introduces the main research method in the anti-seismic field of civil engineering structure. Key words:civil engineering structure;earthquake reaction;response spectrum method;non-linear time-histo-ries;Pushover;IDA 地震作用理论是研究地震时地面运动对结构物产生的动态效应,结构的地震反应取决于地震动力和结构动力特性两个方面,因此,地震反应分析方法的发展是随着人们对这两方面的认识逐渐深入而提高的。目前世界各国的土木工程结构抗震设计规范中普遍采用的是确定性地震反应分析方法,本文就目前普遍采用的以下四种地震反应分析方法进行详细的阐述。 1动力反应谱分析方法 动力反应谱理论是目前土木工程结构抗震设计中比较常用的一种分析方法。采用动力反应谱方法计算土木工程结构动力响应包括以下几个方面:第一,是确定抗震设计的反应谱,第二,将结构震动方程进行振型分解,根据场地土的平均剪切模量或场地土的剪切波速、质量密度和分层厚度实测反应谱求得每个自由的振子在各个阶段求得振型反应最大值。第三,动力反应谱分析在土木工程结构反应中的最大值可以通过SRSS或者CQC方法将各个不同的振型反应的最大值进行组合,在实际分析中所要考虑的自由度数和振型模态数要确保在纵向和横向获得90%的振型参与系数。 2非线性时程分析方法 时程分析法是20世纪60年代逐步发展起来的一种抗震分析方法。用于进行超高层建筑结构的抗震分析和工程抗震研究等。到80年代,已经成为很多国家抗震设计规范和抗震研究工作的分析方法之一。动态时程分析法是结构在地震动作用下的响应时程,可详细了解结构在整个地震持续时间内的结构响应过程,同时反应出地震动的振幅、频谱及持续时间内对结构的影响。时程分析通过结构构件内力的变化及构件逐步开裂可求出弹性和非弹性阶段的结构的内力与变形。这时结构的薄弱部位的位移即将达到最大值,从而造成结构的最终破坏,直至倒塌的全过程。 动态时程分析方法是随着强震记录的增多和计算机技术的广泛应用而迅速发展起来的以研究结构抗震的一种分析方法。动态时程分析理论考虑了反应谱不能计算结构和结构构件在每个时刻的地震反应包括内力和变形等。对于复杂结构体系,振型密集以及结构受到强烈地震时发生非线性反应的情况下,能够更真实地反映出结构的地震反应,从而能更精确细致地反映出结构的薄弱部位。因此采用动态时程分析理论进行地震反应分析和抗震设计成为在抗震领域比较常用的一种分析方法。但是,动态时程分析方法计算量比较大、耗时多、建立模型复杂,而且需要对计算结果进行整理做统计分析等。3静力弹塑性分析方法(Pushover) Pushover方法是目前常用的一种静力非线性分析方法,国内外学者都对其进行了广泛的研究。Pushover分析的基本思路是用一个单自由度体系来等效实际结构,代替多自由度体系,通过研究等效单自由度体系的地震弹塑性反应来预测实际结构的 · 36 ·

地下结构抗震设计的分析方法及其现状

地下结构抗震设计的分析方法及其现状 【摘要】地下结构抗震设计不同于地表结构的抗震设计,因此,分析其设计的分析方法很有必要。本文将从以下几个方面来具体分析地下结构抗震设计的分析方法和现状。 【关键词】地下结构;抗震设计;分析方法 一、前言 随着地下建筑物的增多,地下结构抗震设计成为了重点工程之一。地下结构抗震尤其特定的原理,必须要从特定的原理出发展开设计才能够保证设计的有效性和科学性,满足抗震的需要。 二、结构和土相互作用的分析模型 在地震作用时,地铁等地下工程结构和土会出现弹塑性和非线性的特点,相互之间的接触有可能出现局部的滑移和脱离。因此,在建立结构和土相互作用结构模型时要考虑结构材料的非线性、结构和地基接触的非线性、近场地基和远场地基的非线性等因素。目前对这几种非线性的单个研究已经很成熟,但是在实际工程中如何综合利用这些非线性的研究成果来建立合理的地铁等地下工程结构的分析模型还要进一步的讨论。 地铁车站等地下结构受到场地周围地基地震反应的影响十分显著,在地震作用时,地铁周围的土特别是上层覆土的重力作用对地铁结构的影响不容忽视,因此,如何在分析模型中体现地铁地基的静力作用和地基的半无限性也是一个很重要的问题。解决这一问题主要靠合理的设定静力人工边界和动力人工边界,但是目前的边界模型一般来说不适合应用与地下结构,很有必要发展一种对静力分析及动力分析都可以适用的静力—动力人工边界,直接在边界上输入地震波,计算结构的地震反应。 三、地下结构地震动反应的特点及其基本分析方法 从以往的震害报道中可以看出,地下结构与地面结构的振动特性有很大的不同: 1、地下结构的振动变形受周围地基土壤的约束作用显著,结构的动力反应一般不明显表观出自振特性的影响; 2、地下结构的存在对周围地基震动的影响一般很小(指地下结构的尺寸相对于地震波长的比例较小的情况);

相关文档
最新文档