2341农药残留量测定法

2341农药残留量测定法
2341农药残留量测定法

2341 农药残留量测定法

第五法药材及饮片(植物类)中禁用农药多残留测定法

1. 气相色谱-串联质谱法

色谱条件用(50%苯基)-甲基聚硅氧烷为固定液的弹性石英毛细管柱(柱长为30m,柱内径为0.25mm,膜厚度为0.25μm)。进样口温度250℃,不分流进样。载气为高纯氦气(He)。进样口为恒压模式,柱前压力为146kPa。程序升温:初始温度60℃,保持1分钟,以每分钟10℃的速率升温至160℃,再以每分钟2℃

监测离子对、碰撞电压(CE)见附表2。为提高检测灵敏度,可根据保留时间分段监测各农药。

3. 对照溶液的制备

3.1 混合对照品溶液的制备精密量取禁用农药混合对照品溶液(已标示各相关农药品种的浓度)1ml,置20ml量瓶中,用乙腈稀释至刻度,摇匀,即得。

3.2气相色谱-串联质谱法分析用内标溶液的制备取磷酸三苯酯对照品适量,精密称定,加乙腈溶解并制成每1ml含1.0mg的溶液,即得。精密量取适量,加乙腈制成每1ml含0.1μg的溶液。

3.3 空白基质溶液的制备取空白基质样品,同供试品溶液的制备方法处理制成空白基质溶液。

3.4 基质混合对照溶液的制备分别精密量取空白基质溶液1.0ml(6份),置氮吹仪上,40℃水浴浓缩至约0.6ml,分别加入混合对照品溶液10μl、20μl、50μl、100μl、150μl、200μl,加乙腈稀释至l ml,涡旋混匀,即得。

4. 供试品溶液的制备

4.1 直接提取法

取供试品粉末(过三号筛)5g,精密称定,加氯化钠1g,立即摇散,再加入乙腈50ml,匀浆处理2分钟(转速不低于每分钟12000转),离心(每分钟4000转),分取上清液,沉淀再加乙腈50ml,匀浆处理1分钟,离心,合并两次提取的上清液,减压浓缩至约3~5ml,放冷,用乙腈稀释至10.0ml,摇匀,即得。

4.2 快速样品处理法(QuEChERS)法

取供试品粉末(过三号筛)3g,精密称定,置50ml聚苯乙烯具塞离心管中,加入1%冰醋酸溶液15ml,涡旋使药粉充分浸润,放置30分钟,精密加入乙腈15ml,涡旋使混匀,置振荡器上剧烈振荡(每分钟500次)5分钟,加入无水硫酸镁与无水乙酸钠的混合粉末(4:1)7.5g,立即摇散,再置振荡器上剧烈振荡(每分钟500次)3分钟,于冰浴中冷却10分钟,离心(每分钟4000转)5分钟,取上清液9ml,置预先装有净化材料的分散固相萃取净化管[无水硫酸镁900mg,N-丙基乙二胺300mg,十八烷基硅烷键合硅胶300mg,硅胶300mg,石墨化碳黑90mg]中,涡旋使充分混匀,置振荡器上剧烈振荡(每分钟500次)5分钟使净化完全,离心(每分钟4000转)5分钟,精密吸取上清液5ml,置氮吹仪上于40℃水浴浓缩至约0.4ml,加乙腈稀释至1.0ml,涡旋混匀,滤过,取续滤液,即得。

4.3固相萃取法

固相萃取净化方式包括以下三种:

方式一:量取直接提取法制备的供试品溶液3~5ml,置于装有分散型净化材料的净化管[无水硫酸镁1200mg,N-丙基乙二胺300mg,十八烷基硅烷键合硅胶

100mg]中,涡旋使充分混匀,再置震荡器上剧烈震荡(每分钟500次)5分钟使净化完全,离心,取上清液,即得。

方式二:量取直接提取法制备的供试品溶液3~5ml,通过亲水亲油平衡材料(HLB SPE)固相萃取柱(200mg ,6ml)净化,收集全部净化液,混匀,即得。

方式三: 量取直接提取法制备的供试品溶液2ml,加在装有石墨化碳氨基复合固相萃取小柱(500mg,6ml)[临用前用乙腈-甲苯混合溶液(3:1)10ml预洗],用乙腈-甲苯混合溶液(3:1)20ml洗脱,收集洗脱液,减压浓缩至近干,用乙腈转移并稀释至2.0ml,混匀,即得。

5.测定法

气相色谱-串联质谱法分别精密吸取上述的基质混合对照溶液和供试品溶液各1ml,精密加入内标溶液0.3ml,混匀,滤过,取续滤液。分别精密吸取上述两种溶液各1μl,注入气相色谱串联质谱仪,按内标标准曲线法计算,即得。

高效液相色谱-串联质谱法分别精密吸取上述的基质混合对照溶液和供试品溶液各1ml,精密加入水0.3ml,混匀,滤过,取续滤液。分别精密吸取上述两种溶液各1~5μl,注入液相色谱串联质谱仪,按外标标准曲线法计算,即得。

【附注】

(1)同第四法“附注”(2)

(2)同第四法“附注”(3)

(3)同第四法“附注”(4)

(4)同第四法“附注”(6)

(5)同第四法“附注”(7)

(6)根据供试品基质特点和方法确认结果,选择一种最适宜的供试品溶液制备方法。

表 1 各农药及相关化学品、内标化合物保留时间、监测离子对及碰撞电压(CE)参考值(GCMSMS部分)

编号中文名英文名保留时间

(min)

母离子

(m/z)

子离子

(m/z)

CE

(V)

1 灭线磷Ethoprophos 12.4 199.7 157.8 5.0 199.7 114.0 5.0 157.8 96.7 20.0 157.8 113.8 15.0

2 杀虫脒Chlordimeform 13.0 152.0 117.0 15.0 196.0 181.0 5.0

11 α-硫丹α-Endosulfan 28.9 240.8 205.6 15 240.8 170.0 25 194.8 159.0 10

12 β-硫丹β-Endosulfan 37.1 194.8 159.0 10 194.8 124.7 30 206.8 171.8 15

13 硫丹硫酸酯Endosulfan Sulfate 41.3 271.8 236.7 15 273.8 238.9 15 271.8 141.0 40 271.8 117.0 40

14 4,4'-滴滴伊p,p'-DDE 31.7 246.0 176.0 30

246.0 210.0 28

15 2,4'-滴滴涕o,p'-DDT 36.1 237.0 165.0 25 235.0 199.0 15 246.0 176.0 15

16 4,4'-滴滴滴p,p'-DDD 37.0 235.0 165.0 25 237.0 165.0 25 235.0 199.0 18

235.0 165.0 25 121.0 93.0 15

26 甲基硫环磷Phosfolan-methyl 34.4 227.0 92.0 10 227.0 60.0 30 227.0 167.8 10 168.0 109.0 15

27 除草醚Nitrofen 36.1 201.8 138.7 28 282.8 201.8 15 282.8 253.0 10

28 蝇毒磷Coumaphos 47.9 361.8 109.0 16 361.8 225.8 14

29 磷酸三苯酯Triphenyl phosphate 44.0 326.0 233.0 10 326.0 215.0 25 326.0 169.0 30

30 苯线磷Fenamiphos 33.4 303.1 195.0 25 303.1 154.0 30 303.1 122.0 20

31 治螟磷Sulfotep 13.7 322.0 202.0 20 322.0 294.0 10 322.0 174.0 15

备注:每个监测指标至少选择不少于2对监测离子对。

表2 各农药及相关化学品保留时间、监测离子对及碰撞电压(CE)参考值(LCMSMS部分)

编号中文名英文名保留时间

(min)

母离子

(m/z)

子离子

(m/z)

CE

(V)

1 甲胺磷Methamidophos 0.8 142.1 94.1 17 142.1 125.1 16

2 苯线磷Fenamiphos 8.8 304.0 217.2 31 304.0 234.

3 28 304.0 202.0 20

336.0 266.2 27 314.0 120.2 41

14 甲拌磷Phorate 11.2 260.9 75.1 17 260.9 47.0 53

15 甲拌磷亚砜Phorate-sulfoxide 6.3 277.0 171.1 16 277.0 97.1 44 277.0 143.0 25 277.0 199.0 15

16 甲拌磷砜Phorate-sulfone 8.1 293.0 247.1 12 293.0 115.1 33 293.0 171.0 28

涂膜性能及测量

涂膜性能及测量 1、涂膜的制备 国家标准《GB1727—— 79(88)漆膜一般制备法》中分别列出刷涂法、喷涂法、浸涂法和刮涂法的涂膜制备方法。但在制备时需要依赖操作人员的技术熟练程度,涂膜的均匀性较难保证。采用仪器制备涂膜在当前普遍推行,方法有旋转涂漆法和刮涂器法。 2、涂膜外观及光泽测定 (1)涂膜外观 通常在日光下肉眼观察涂膜的样板有无缺陷,如刷痕、颗粒、起泡、起皱、缩孔等,一般与标准样板对比。 (2)光泽的测定基本上采用两大仪器,即光电光泽计和投影光泽计,前者用得较多。 3、涂膜的鲜映性测定 鲜映性是指涂膜表面反映影象(或投影)的清晰程度,以DOI值表示(distinctness of image)。它能表征与涂膜装饰性相关的一些性能(如光泽、平滑度、丰满度等)的综合效应。它可用来对飞机、汽车、精密仪器、家用电器,特别是高级轿车车身等的涂膜的装饰性进行等级评定。 鲜映性测定仪的关键装置是一系列标准的鲜映性数码板,以数码表示等级,分为0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1.0、1.2、1.5、2.0共13个等级,称为DOI值。每个DOI值旁印有几个数字,随着DOI值升高,印的数字越来越小,用肉眼越不易辨认。观察被测表面并读取可清晰地看到的DOI值旁的数字,即为相应的鲜映性。 4、涂膜雾影测定 雾影系高光泽漆膜由于光线照射而产生的漫反射现象。雾影光泽仪是一台双光束光泽仪,其中参与光束可以消除温度对光泽以及颜色对雾影值的影响。仪器的主接收器接收漆膜的光泽,而副接收器则接收反射光泽周围的雾影。雾影值最高可达1000,但评价涂料时,雾影

3 溶液法测定极性分子的偶极矩

实验3 溶液法测定极性分子的偶极矩 1 目的要求 (1) 用溶液法测定乙酸乙酯的偶极矩。 (2) 了解偶极矩与分子电性质的关系。 (3) 掌握溶液法测定偶极矩的主要实验技术。 2 基本原理 (1) 偶极矩与极化度:分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于其空间构型的不同,其正负电荷中心可以是重合的,也可以不 重合。前者称为非极性分子,后者称为极性分子。 图18-1电偶极矩示意图 图18-2极性分子在电场作用下的定向 1912年德拜提出“偶极矩” μ 的概念来度量分子极性的大小,如图18-1所示, 其定义是 d q ?=μ (1-1) 式中,q 是正负电荷中心所带的电量; d 为正负电荷中心之间的距离;μ 是一个 向量,其方向规定为从正到负。因分子中原子间的距离的数量级为10-10m ,电荷的数量级为10-20C ,所以偶极矩的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,如图Ⅱ-29-2所示趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔转向极化度P 转向来衡量。 转向 P 与永久偶极矩2μ的值成正比,与绝对温度T 成反比。 kT N P 3432μπ ?=转向 kT N μ π ?=9 4 (1-2) 式中:k 为玻兹曼常数,N 为阿伏加德罗常数。

在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱 导 来衡量。显然P 诱导可分为二项,即电子极化度P 电子和原子极化度P 原子,因此P 诱导=P 电子 +P 原子。P 诱导与外电场强度成正比,与温度无关。 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率 小于1010s -1的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 原子电子转向P P P P ++= (1-3) 当频率增加到1012~1014的中频(红外频率)时,电子的交变周期小于分子偶极矩的松弛时间,极性分子的转向运动跟不上电场的变化,即极性分子来不及沿电场方向定向,故转向P =0,此时极性分子的摩尔极化度等于摩尔诱导极化度诱导P 。当交变电场的频率进一步增加到>1015秒-1的高频(可见光和紫外频率)时,极向分子的转向运动和分子骨架变形都跟不上电场的变化。此时极性分子的摩尔极化度等于电子极化度电子 P 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P ,在红外频率下测得极性分子的摩尔诱导极化度诱导P ,两者相减得到极性分子摩尔转向极化度转向P ,然后代入(18-2)式就可算出极性分子的永久偶极矩μ来。 (2) 极化度的测定:克劳修斯、莫索和德拜从电磁场理论得到了摩尔极化度P 与介电常数ε之间的关系式: ρ εεM P ?+-= 21 (1-4) 式中,M 为被测物质的分子量;ρ为该物质在TK 下的密度;ε可以通过实验测定。 但(1-4)式是假定分子与分子间无相互作用而推导得到的。所以它只适用于温度不太低的气相体系,对某些物质甚至根本无法获得气相状态。因此后来提出了用一种溶液来解决这一困难。溶液法的基本想法是,在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞2P ,就可以看作为(1-4)式中的P 。 海台斯纳特首先利用稀释溶液的近似公式。

1 漆膜附着力测定法 GB

1 漆膜附着力测定法GB/T 1720-1979(89) 2 漆膜一般制备法GB/T 1727-1992 3 漆膜硬度测定法摆杆阻尼试验GB/T 1730-1993 4 漆膜柔韧性测定法GB/T 1731-1993 5 漆膜耐冲击测定法GB/T 1732-1993 6 漆膜耐水性测定法GB/T 1733-1993 7 漆膜耐汽油性测定法GB/T 1734-1993 8 漆膜耐热性测定法GB/T 1735-1979(89) 9 漆膜耐湿热测定法GB/T 1740-1979(89) 10 漆膜光泽测定法GB/T 1743-1979(89) 11 漆膜耐化学试剂性测定法GB/T 1763-1979(89) 12 漆膜厚度测定法GB/T 1764-1979(89) 13 测定耐湿性﹑耐盐雾﹑耐候性(人工加速)的漆膜制备法GB/T 1765-1979(89) 14 色漆和清漆涂层老化的评级方法GB/T 1766-1995 15 色漆和清漆耐中性盐雾性能的测定GB/T 1771-1991 16 色漆和清漆人工气候老化和人工辐射暴露(滤过的氙弧辐射)GB/T 1865-1997 17 漆膜颜色标准GB/T 3181-1995 18 色漆和清漆耐水性的测定浸水法GB/T 5209-1985 19 涂层附着力的测定法拉开法GB/T 5210-1985 20 涂膜硬度铅笔测定法GB/T 6739-1996 21 涂膜弯曲试验(圆柱轴)GB/T 6742-1986 22 色漆和清漆划痕试验GB 9279-1988 23 色漆和清漆漆膜的划格试验GB/T 9286-1998 24 色漆和清漆杯突试验GB/T 9753-1988 25 色漆和清漆不含金属颜料的色漆漆膜之20°﹑60°和85°镜面光泽的测定GB/T 9754-1988 26 人造气氛腐蚀试验盐雾试验GB/T 10125-1997 27 金属和其他非有机覆盖层通常凝露条件下的二氧化硫腐蚀试验GB/T 9789-1988 28 色漆和清漆漆膜厚度的测定GB/T 13452.2-1992 29 色漆和清漆钢铁表面上的丝状腐蚀试验GB/T 13452.4-1992 30 色漆和清漆耐湿性的测定连续冷凝法GB/T 13893-1992 31 色漆涂层粉化程度的测定方法及评定GB/T 14826-1993 32 绝缘漆漆膜击穿强度测定法HG/T 2-57-1980(85) 喷漆及其相关的标准术语与解释(2) 起(粗)粒bittiness起(粗)粒bittiness在塗料中存在凝膠、絮凝物或外來物的顆粒,或這些粒子從漆膜表面上凸出。在涂料中存在凝胶、絮凝物或外来物的颗粒,或这些粒子从漆膜表面上凸出。褪色;脫色bleaching褪色;脱色bleaching通常由於氣候作用或化學品侵蝕而使塗料的顏色完全褪去。通常由于气候作用或化学品侵蚀而使涂料的颜色完全褪去。滲色bleedin g渗色bleeding來自下層的可溶著色物質進入或透過上層塗膜而擴散的過程,来自下层的可溶着色物质进入或透过上层涂膜而扩散的过程,因而產生了不希望有的染色或褪色。因而产生了不希望有的染色或褪色。可引起這種塗膜缺陷的物質包括瀝青漆、可引起这种涂膜缺陷的物质包括沥青漆、木材防腐劑、木節中的油性樹脂、有機顏料和染色劑。木材防腐剂、木节中的油性树脂、有机颜料和染色剂。起泡blistering起泡blistering由於幹塗膜局部失去附著力而脫離其下底面,形成圓拱形凸起物或泡。由于干涂膜局部失去附着力而脱离其下底面,形成圆拱形凸起物或泡。這樣的泡可以含有液體、蒸氣、氣體或結晶物。这样的泡可以含有液体、蒸气、气体或结晶物。粘連blocking粘连blocking當塗漆工件相接觸時,在工件鄰近表面之間出現不希望有的粘附。当涂漆工件相接触时,在工件邻近表面之间出现不希望有的粘附。塗漆工件堆積存放時常遇到粘連。涂漆工件堆积存放时常遇到粘连。起霜bloom起霜bloo m有時在有光塗膜上形成一種似葡萄上霜的沉積物,造成其失光和顏色變黯淡。有时在有光涂膜上形成一种似葡萄上霜的沉积物,造成其失光和颜色变黯淡。發白blushing发白blushing當噴漆膜乾燥時,有時由於空氣中的濕氣附著和/或噴漆中的一種或多種固體組分沉澱析出而出現的似乳白光。当喷漆膜干燥时,有时由于空气中的湿气附着和/或喷漆中的一种或多种固体组分沉淀析出而出现的似乳白光。通常只限于單靠溶劑揮發而乾燥的噴漆。通常只限于单靠溶剂挥发而干燥的喷漆。增稠bodying增稠bodying在塗料生產或隨後的貯存過程中,出現的不希望有的稠度增大。在涂料生产或随后的贮存过程中,出现的不希望有的稠度增大。(塗膜的)搭接覆蓋bridging(涂膜的)搭接覆盖bridging塗膜覆蓋在未嵌填

药分题第二章物理常数的测定教学提纲

药分题第二章物理常 数的测定

第二章物理常数的测定 单选 1.测定旋光度时,配制溶液与测定时,应调节温度至()。A.10℃ B.20℃±0.5℃ C.25℃±0.1℃ D.室温 E.30℃正确答案:B 2.旋光法测定的药物应具有()。 A.手性碳原子 B.共轭体系 C.立体结构 D.氢键 E.苯环结构 正确答案:A 3.测定比旋度的公式L的单位是()。 A.nm B.mm C.cm D.dm E.m 正确答案:D 4.供试品在毛细管内开始局部液化出现明显液滴时的温度为()。A.全熔 B.终熔 C.初熔 D.熔点 E.熔融 正确答案:C 5.称取葡萄糖10.00g,加水溶解并稀释至100.0ml,于20℃用2dm测定管,测得溶液的旋光度为+10.6°,此葡萄糖的比旋度为()。A.53.0° B.-53.0° C.0.53° D.+106° E.+53.0° 收集于网络,如有侵权请联系管理员删除

正确答案:E 6.旋光度的符号是()。 A.[α] B.n C.d D.n E.α 正确答案:E 7.黏度是指()。 A.流体的流速 B.流体流动的状态 C.流体的流动惯性 D.流体对变形的阻力 E.流体对流动的阻抗能力 正确答案:E 8.比旋度计算公式中c的单位是()。 A.g/ml B.mg/ml C.100mg/L D.g/100ml E.mg/100ml 正确答案:D 9.测定不易粉碎的固体药物的熔点,《中国药典》2005年版采用的方法是()。 A.第一法 B.第二法 C.第三法 D.第四法 E.附录V法 正确答案:A 10.熔点是指一种物质照规定方法测定,在熔化时()。 A.初熔时的温度 B.全熔时的温度 C.自初熔至全熔的一段温度 收集于网络,如有侵权请联系管理员删除

2341农药残留量测定法

2341 农药残留量测定法 第五法药材及饮片(植物类)中禁用农药多残留测定法 1. 气相色谱-串联质谱法 色谱条件用(50%苯基)-甲基聚硅氧烷为固定液的弹性石英毛细管柱(柱长为30m,柱内径为0.25mm,膜厚度为0.25μm)。进样口温度250℃,不分流进样。载气为高纯氦气(He)。进样口为恒压模式,柱前压力为146kPa。程序升温:初始温度60℃,保持1分钟,以每分钟10℃的速率升温至160℃,再以每分钟2℃ ) , % 监测离子对、碰撞电压(CE)见附表2。为提高检测灵敏度,可根据保留时间分段监测各农药。 3. 对照溶液的制备 3.1 混合对照品溶液的制备精密量取禁用农药混合对照品溶液(已标示各相关农药品种的浓度)1ml,置20ml量瓶中,用乙腈稀释至刻度,摇匀,即得。

3.2气相色谱-串联质谱法分析用内标溶液的制备取磷酸三苯酯对照品适量,精密称定,加乙腈溶解并制成每1ml含1.0mg的溶液,即得。精密量取适量,加乙腈制成每1ml含0.1μg的溶液。 3.3 空白基质溶液的制备取空白基质样品,同供试品溶液的制备方法处理制成空白基质溶液。 3.4 基质混合对照溶液的制备分别精密量取空白基质溶液1.0ml(6份),置氮吹仪上,40℃水浴浓缩至约0.6ml,分别加入混合对照品溶液10μl、20μl、50μl、100μl、150μl、200μl,加乙腈稀释至l ml,涡旋混匀,即得。 4. 供试品溶液的制备 4.1 直接提取法 取供试品粉末(过三号筛)5g,精密称定,加氯化钠1g,立即摇散,再加入乙腈50ml,匀浆处理2分钟(转速不低于每分钟12000转),离心(每分钟4000转),分取上清液,沉淀再加乙腈50ml,匀浆处理1分钟,离心,合并两次提取的上清液,减压浓缩至约3~5ml,放冷,用乙腈稀释至10.0ml,摇匀,即得。 4.2 快速样品处理法(QuEChERS)法 取供试品粉末(过三号筛)3g,精密称定,置50ml聚苯乙烯具塞离心管中,加入1%冰醋酸溶液15ml,涡旋使药粉充分浸润,放置30分钟,精密加入乙腈15ml,涡旋使混匀,置振荡器上剧烈振荡(每分钟500次)5分钟,加入无水硫酸镁与无水乙酸钠的混合粉末(4:1)7.5g,立即摇散,再置振荡器上剧烈振荡(每分钟500次)3分钟,于冰浴中冷却10分钟,离心(每分钟4000转)5分钟,取上清液9ml,置预先装有净化材料的分散固相萃取净化管[无水硫酸镁900mg,N-丙基乙二胺300mg,十八烷基硅烷键合硅胶300mg,硅胶300mg,石墨化碳黑90mg]中,涡旋使充分混匀,置振荡器上剧烈振荡(每分钟500次)5分钟使净化完全,离心(每分钟4000转)5分钟,精密吸取上清液5ml,置氮吹仪上于40℃水浴浓缩至约0.4ml,加乙腈稀释至1.0ml,涡旋混匀,滤过,取续滤液,即得。 4.3固相萃取法 固相萃取净化方式包括以下三种: 方式一:量取直接提取法制备的供试品溶液3~5ml,置于装有分散型净化材料的净化管[无水硫酸镁1200mg,N-丙基乙二胺300mg,十八烷基硅烷键合硅胶

涂料基础标准与通用方法汇总

涂料基础标准与通用方法汇总 标准号标准名称被代替(废止)标准号 (采用国际标准和国外先进标准号及程度) GB/T1720-1979(1989)漆膜附着力测定法 HG2-462-78 GB/T1721-1979 清漆、清油及稀释剂外观和透明度测定法 HG2-498-77 GB/T1722-1992 清漆、清油及稀释剂颜色测定法 GB1722-79 GB/T1723-1993 涂料粘度测定法neq ГOCT8420:1974 GB1723-79 GB/T1724-1979(1989)涂料细度测定法 HG2-501-77 GB/T1725-1979(1989)涂料固体含量测定法HG2-502-77 GB/T1726-1979(1989)涂料遮盖力测定法HG2-503-77 GB/T1727-1992 漆膜一般制备法 GB1727-79 GB/T1728-1979(1989)漆膜、腻子膜干燥时间测定法HG2-505-78 GB/T1730-1993 漆膜硬度的测定摆杆阻尼试验neq ISO1522:1973 GB1730-88 GB/T1731-1993 漆膜柔韧性测定法neq ГOCT6806:1973 GB1731-88 GB/T1732-1993 漆膜耐冲击测定法neq ГOCT4765:1973 GB1732-88 GB/T1733-1993 漆膜耐水性测定法neq ГOCT9.043:1980 GB1733-88 GB/T1734-1993 漆膜耐汽油性测定法neq ГOCT9.043:1980 GB1734-88 GB/T1735-1979(1989)漆膜热性测定法 HG2-512-77 GB/T1736-1979(1989)绝缘漆漆膜制备法HG2-50-78 GB/T1738-1979(1989)绝缘漆漆膜吸水率测定HG2-55-78 GB/T1739-1979(1989)绝缘漆漆膜耐油性测定法 HG2-56-78 GB/T1740-1979(1989)漆膜耐湿热测定法 HG2-739-78 GB/T1741-1979(1989)漆膜耐霉菌测定法 HG2-740-78 GB/T1742-1979(1989)胶液粘合强度测定法 HG2-783-78 GB/T1743-1979(1989)漆膜光泽度测定法 HG2-667-78 GB/T1746-1979(1989)涂料水分测定法 ; HG2-1027-77 GB/T1747-1979(1989)涂料灰分测定法 HG2-1028-77 GB/T1748-1979(1989)腻子、腻子稠度测定法 HG2-1029-77 GB/T1749-1979(1989)厚漆、腻子稠度测定法 HG2-1030-77 GB/T1750-1979(1989)涂料流平性测定法 HG2-1031-77 GB/T1751-1992 稀释剂、防潮剂白化性测定法 GB1751-79

偶极矩的测定

偶极矩的测定 XXX 中国科学技术大学材料科学与工程系,合肥 联系人Email :XXX 摘要:本实验通过溶液法测定正丁醇偶极矩。通过测定不同浓度正丁醇的环己烷稀溶液的折射率、密度、介电常数,利用外推法得到一系列数据,从而计算得到正丁醇分子的偶极矩。 关键词: 偶极矩溶液法外推法正丁醇极性分子 ABSTRACT:In this experiment,we determined the dipole moment of Butanol by usingsolution method.Wemeasuredthe density, dielectric constantand refractive index of Butanol cyclohexane solution. Then we used extrapolation to determine the relative value which help calculate the dipole moment of Butanol. Key word: Dipole momentButanol Solution method extrapolation Polar molecule 前言 偶极矩是分子结构的重要参数, 在无机化学、分析化学、有机化学、物理化学中都有涉及。它对判断分子的空间结构, 了解分子中的电荷分布、极性、对称性有重要作用。 分子结构可以被看成是由电子和分子骨架所构成。由于其空间构型不同其正负电荷中心可以重合,也可以不重合,前者称为非极性分子,后者称为极性分子,分子的极性可用偶极矩μ=q?r 来表示。式中r是两个电荷中心间距矢量,方向是从正电荷指向负电荷。q为电荷量,一个电子的电荷为4.8×10-10CGSE,而分子中原子核间距为1? = 10-8cm的量级,所以偶极矩的量级为:μ = 4.8×10-10×10-8 = 4.8×10-18 CGSE×cm = 4.8 Debye,即1 Debye = 10-18 CGSE×cm。电介质分子处于电场中,电场会使非极性分子的正负电荷中心发生相对位移而变得不重合,电场也会使极性分子的正负电荷中心间距增大这样会使分子产生附加的偶极矩(诱导偶极矩)。这种现象称为分子的变形极化。 如将电介质置于交变电场中,则其极化和电场变化的频率有关。交变电场的频率小于1010秒-1时,极性分子的摩尔极化度P中包含了电子原子和取向的贡献。当频率增加到1012-1014秒-1时,电场的交变周期小于分子偶极矩的松弛时间,极性分子的取向运动跟不上电场的变 化,这时极性分子来不及沿电场取向,故P O = 0。当交变电场的频率进一步增加到大于1015 秒-1高频场时,分子的取向和分子骨架的变形都跟不上电场的变化,这时的摩尔极化度称为摩尔折射度R。 这样我们用交变频率为1000HZ的交流电桥测出电容池中各浓度下溶液的电容,用此电容除以真空下电容池的电容即得介电常数。用阿贝折射仪测出可见光下各溶液的折射率,再用分析天平测出各溶液的密度,可定出α、β、γ,而后算出P∞和R∞,进而算出分子的永久偶 极矩μ。 1实验部分 (i)试剂. 正丁醇(分析纯,国药集团化学试剂有限公司) 环已烷(分析纯,国药集团化学试剂有限公司) (ii)仪器. 2W AJ型阿贝折射仪(上海申光仪器仪表有限公司) PCM-1A型精密电容测量仪(南京南大万和科技有限公司)

中国药品检验标准操作规范2010年版中药补充部分24有机磷类农药残留量测定法

有机磷类农药残留量测定法 1 简述 很多有机磷类农药具有毒性,其残留严重危及人体健康。《中国药典》2010年版一部收载了有机磷类农药(对硫磷、甲基对硫磷、乐果、氧化乐果、甲胺磷、久效磷、二嗪农、乙硫磷、马拉硫磷、杀扑磷、敌敌畏、乙酰甲胺磷)的测定方法。 本法通过提取、净化和富集等步骤制备供试品溶液,采用气相色谱法,氮磷检测器测定。 2 仪器与用具 2.1 气相色谱仪,带有氮磷检测器(NPD),载气为高纯氮(纯度>99.9999%)。 2.2 超声仪。 2.3 旋转蒸发仪。 2.4 多功能真空样品处理器(如SUPELCO,isiprep TM DL)。 2.5 活性炭小柱(120~400目,石墨碳填料0.25g,内径0.9cm,3ml)。 2.6 氮吹仪(如Organomation Associates,Inc.,N-EV AP TM 112 nitrogen evaporator)。 2.7 色谱柱:DB-17MS或HP-5弹性石英毛细管柱(30m×0.25mm×0.25μm)或类似极性的毛细管柱。 2.8 具塞锥形瓶、250ml平底烧瓶、棕色量瓶、移液管等。 3 试药与试液 3.1 无水硫酸钠为分析纯。 3.2 乙酸乙酯、正己烷(农残级或分析纯试剂经过全玻璃蒸馏装置重蒸馏,经气相色谱法确认,符合农残检测的要求)。 3.3 农药对照品:对硫磷、甲基对硫磷、乐果、氧化乐果、甲胺磷、久效磷、二嗪农、乙硫磷、马拉硫磷、杀扑磷、敌敌畏、乙酰甲胺磷,由国家标准物质研究中心及农业部环境保护科研检测所提供,其纯度大于99%;也可以使用国际认可的、纯度要求等符合规定的进口标准物质。 4 色谱条件与系统适用性试验 进样口温度:220℃;检测器温度:300℃。不分流进样。程序升温:初始120℃,每fenzh 10℃升至200℃。每分钟5℃升至240℃,保持2min,每分钟20℃升至270℃,保持0.5min。理论板数按敌敌畏峰计算应不低于6000,两个相邻色谱峰的分离度应大于1.5。 5 操作方法 5.1 对照品储备液的制备精密称取对硫磷、甲基对硫磷、乐果、氧化乐果、甲胺磷、久效磷、二嗪农、乙硫磷、马拉硫磷、杀扑磷、敌敌畏、乙酰甲胺磷农药对照品适量,用醋酸乙酯分别制成每1ml约含100μg的溶液,即得。 5.2 混合对照品储备液的制备精密量取上述各对照品储备液1ml,置20ml棕色量瓶中,加乙酸乙酯稀释至刻度,摇匀,即得。 5.3 混合对照品溶液的制备精密量取上述混合对照品储备液,用乙酸乙酯制成每1ml 分别含0.1μg、0.5μg、1μg、2μg、5μg的溶液,即得。 5.4 供试品溶液的制备药材取供试品粉末(过二号筛)约5g,精密称定,加无水硫酸钠5g,加入乙酸乙酯50~100ml,冰浴超声处理3min,放置,取上层液滤过,药渣加乙酸乙酯30~50ml,冰浴超声处理2min,放置,滤过,合并两次滤液,用少量乙酸乙酯洗涤滤纸及残渣,与上述滤液合并。取滤液于40℃下减压浓缩至近干,用乙酸乙酯转移至5ml量瓶中,并稀释至刻度,精密量取1ml,置活性炭小柱[120~400目,0.25g,内径0.9cm(如Supelclean ENVI-Carb SPE Tubes,3ml活性炭小柱),用乙酸乙酯5ml预洗]上,置多功能真空样品处理器上,用正己烷-乙酸乙酯(1:1)的混合溶液5ml洗脱,收集洗脱液,置氮吹仪

偶极矩的测定

偶极矩的测定 一、实验目的: 1.用溶液法测定CHCl 3的偶极矩 2.了解介电常数法测定偶极矩的原理 3.掌握测定液体介电常数的实验技术 二、基本原理: 1. 偶极矩与极化度 分子结构可近似地被看成是由电子云和分子骨架(原子核及内层电子)所构成的,分子本身呈电中性,但由于空间构型的不同,正、负电荷中心可重合也可不重合,前者称为非极性分子,后者称为极性分子。分子极性大小常用偶极矩来度量,其定义为: qd =μ (1) 其中q 是正负电荷中心所带的电荷,d 为正、负电荷中心间距离,μ 为向量,其方向规定为从正到负。因分子中原子间距离的数量级为10-10m ,电荷数量级为10-20C ,所以偶极矩的数量级为10-30C ·m 。 极性分子具有永久偶极矩。若将极性分子置于均匀的外电场中,则偶极矩在电场的作用下会趋向电场方向排列。这时我们称这些分子被极化了。极化的程度可用摩尔定向极化度P u 来衡量。P u 与永久偶极矩平方成正比,与热力学温度T 成反比 kT N kT L P A 2 294334μπμπμ==(A N kTP πμμ49=) (2) 式中k 为玻尔兹曼常数,N A 为阿伏加德罗常数。 在外电场作用下,不论是极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生变形,这种现象称为诱导极化或变形极化,用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,为电子极化和原子极化之和,分别记为P e 和P a ,则摩尔极化度为: P m = Pe + Pa + P μ (3) 对于非极性分子,因μ=0,所以P= Pe + Pa 外电场若是交变电场,则极性分子的极化与交变电场的频率有关。当电场的频率小于1010s -1 的低频电场或静电场下,极性分子产生的摩尔极化度P m 是定向极化、电子极化和原子极化的总和,即P m = Pe + Pa + P μ。而在电场频率为1012s -1~1014 s -1的中频电场下(红外光区),因为电场的交变周期小,使得极性分子的定向运动跟不上电场变化,即极性分子无法沿电场方向定向,则P μ= 0。此时分子的摩尔极化度P m = P e + P a 。当交变电场的频率大于1015s -1(即可见光和紫外光区),极性分子的定向运动和分子骨架变形都跟不上电场的变化,此时Pm = Pe 。 因此,原则上只要在低频电场下测得极性分子的摩尔极化度P m ,在红外频率下测得极性分子的摩尔诱导极化度P 诱导,两者相减得到极性分子的摩尔定向极化度P u ,带入(2)式,即可算出其永久偶极矩μ。 因为Pa 只占P 诱导中5%~15%,而实验时由于条件的限制,一般总是用高频电场来代替中频电场。所以通常近似的把高频电场下测得的摩尔极化度当作摩尔诱导偶极矩。 2.极化度和偶极矩的测定 对于分子间相互作用很小的体系,Clausius-Mosotti-Debye 从电磁理论推得摩尔极化度P 于介电常数ε之间的关系为 d M P ?+-= 21εε (4) 式中:M 为摩尔质量,d 为密度。 上式是假定分子间无相互作用而推导出的,只适用于温度不太低的气相体系。但测定气相介电常数和密度在实验上困难较大,所以提出溶液法来解决这一问题。溶液法的基本思想是:在无限稀释的非极性溶剂的溶液中,溶质分子所处的状态和气相时相近,于是无限稀释溶液中溶质的摩尔极化度∞ P 就可看作为上式中的P ,即:

蔬菜中农药残留检测方法研究

蔬菜中农药残留检测方法研究 【摘要】随着栽培技术的不断进步,农药残留的问题越来越严重,对消费者的身体健康构成了严重威胁。开展蔬菜中农药残留检测方法的研究是控制农药残留保证食品安全的基础,具有重大的意义。本文介绍了蔬菜中农药残留检测的各种方法并对前景进行了展望。 【关键词】蔬菜、农药残留、检测、研究进展 随着栽培技术的不断进步,蔬菜的生长期已越来越短,而随着环境污染的加剧,蔬菜的病虫害也越来越重,绝大部分蔬菜需要连续多次放药后才能成熟上市。农药污染较重的有叶类蔬菜,其中韭菜、油菜受到的污染比例最大。茄果类蔬菜如青椒、番茄等,嫩荚类蔬菜如豆角等,鳞茎类蔬菜如葱、蒜、洋葱等,农药的污染相对较小。农药残留监测体系的建立,对农药残留的监测手段和检测水平提出了更高要求,并促进了农药残留快速检测方法的研究和应用进展,使农药残留检测技术朝着更加快速方便、灵敏可靠的方向发展,逐渐以农药残留专业检测机构的少量检测为中心,向现场检测及实验室的大量检测辐射翻。 1 仪器分析法 由于农药的活性成分大多是小分子有机化合物,故多使用气相色(GC,)~41、高效液相色谱(HPLC,)~、气相色谱一质谱联用(GC-MS)嘲和高效液相色谱一质谱联用(HPLC—Ms)同等技术。其中研究最多的是色质联用技术。因为色质联用特别适合于多种标样残留分析,所以国外把它也划为农药残留快速检测技术之列。大部分农药(如有机氯、有机磷、拟除虫菊酯等)残留可使用GC—MS检测昀,检出限一般为1~10 b~g/kg,但对分子量较大、极性或热不稳定性太强的农药及其化合物,GC-MS不适用,需采用高效液相色谱一质谱联用(HPLC-MS)和其他的方法来检测。 1.1 固相萃取技术 固相萃取法是1种基于液相色谱分离机制的样品制备方法,已广泛应用于农药残留检测工作。它根据液相分离、解析、浓缩等原理,使样品溶液混合物通过柱子后,样品中某一组分保留在柱中,选择合适的溶剂把保留在柱中的组分洗脱下来,从而达到分离、净化的目的。SPE克服了液一液萃取技术及一般柱层析的缺点,具有高效、简便、快速、安全、重复性好、便于前处理自动化等特点。根据柱中填料大体可分为吸附型(如硅胶、大孔吸附树脂等)、分配型(c。,c 、苯基柱等)和离子交换型。1L.R_odriguez等人采用固相萃取法通过改变移动相中缓冲液的浓度、pH值、表面活性剂的浓度和类型对蔬菜中的木精、笨基苯酚、锑比灵和有机磷残留量进行分析,结果表明:pH9.2,缓冲液中含有4mmoUL硼酸和75mmol/L胆酸钠能够得到最好的结果。 1.2 固相微萃取 加拿大Waterloo大学Pawliszyn 1990年首创的一种无需溶剂的萃取技术,它是在固相萃取的基础上发展起来的一种新型的预处理技术。SPME技术由固相萃取技术(SPE)发展而来,对目标化合物有较好的选择性,并且有较高的灵敏度,

稀溶液法测定偶极矩实验报告(华南师范大学物化实验)

稀溶液法测定偶极矩 一、实验目的 (1)掌握溶液法测定偶极矩的主要实验技术 (2)了解偶极矩与分子电性质的关系 (3)测定正丁醇的偶极矩 二、实验原理 2.1偶极矩与极化度 分子结构可以近似地看成是由电子云和分子骨架(原子核及内层电子)所构成。由于空间构型的不同,其正负电荷中心可能重合,也可能不重合。前者称为非极性分子,后者称为极性分子。 1912年,德拜提出“偶极矩”的概念来度量分子极性的大小,其定义是 qd → μ (1) 式中,q 是正负电荷中心所带的电量;d 为正负电荷中心之间的距离;→ μ是一个矢量,其方向规定为从正到负,的数量级是10-30C ·m 。 通过偶极矩的测定,可以了解分子结构中有关电子云的分布和分子的对称性,可以用来鉴别几何异构体和分子的立体结构等。 极性分子具有永久偶极矩,但由于分子的热运动,偶极矩指向某个方向的机会均等。所以偶极矩的统计值等于零。若将极性分子置于均匀的电场E 中,则偶极矩在电场的作用下,趋向电场方向排列。这时称这些分子被极化了。极化的程度可以用摩尔转向极化度P μ来衡量。P μ与永久偶极矩μ的平方成正比,与绝对温度T 成反比。

kT 9μ πN 4P A μ= (2) 式中,k 为波兹曼常数;NA 为阿弗加德罗常数;T 为热力学温度;μ为分子的永久偶极矩。 在外电场作用下,不论极性分子或非极性分子,都会发生电子云对分子骨架的相对移动,分子骨架也会发生形变。这称为诱导极化或变形极化。用摩尔诱导极化度P 诱导来衡量。显然,P 诱导可分为两项,即电子极化度P e 和原子极化度P a ,因此 P 诱导 = P e + P a (3) 如果外电场是交变场,极性分子的极化情况则与交变场的频率有关。当处于频率小于1010H Z 的低频电场或静电场中,极性分子所产生的摩尔极化度P 是转向极化、电子极化和原子极化的总和。 P = P μ+ P e +P a (4) 介电常数实际上是在107H Z 一下的频率测定的,测得的极化度为 P μ+ P e +P a 。若把频率提高到红外范围,分子已经来不及转向,此时测得的极化度只有P e 和P a 的贡献了。所以从按介电常数计算的P 中减去红外线频率范围测得的极化,就等于P μ,在实验上,若把频率提高到可见光范围,则原子极化也可以忽略,则在可见光范围: P μ =P -( P e +P a ) ≈ P - P e (5) 2.2 摩尔极化度的计算 摩尔极化度P 与介电常数 ε 之间的关系式。 ρM × +2ε-1ε= P (6)

药典附录ⅨQ.农药残留量测定法

附录ⅨQ.农药残留量测定法 本法系用气相色谱法(附录ⅥE)测定药材和饮片及制剂中部分有机氯、有机磷和拟除虫菊酯类农药,除另有规定外,按下列方法测定。 一、有机氯类农药残留量测定 色谱条件与系统适用性试验弹性石英毛细管柱(30m×0.32mm×0.25μm) SE-54,63Ni-ECD电子捕获检测器。进样口温度230℃;检测器温度300℃。不分流进样。程序升温:初始100℃,每分钟10℃升至220℃,每分钟8℃升至250℃,保持10分钟。理论板数按α-BHC峰计算应不低于1×106,两个相邻色谱峰的分离度应大于1.5。 对照品储备液制备精密称取六六六(BHC)[α-BHC,β-BHC,γ-BHC,δ-BHC),滴滴涕(DDT)[ PP’-DDE,PP’-DDD,OP’-DDT,PP’-DDT]及五氯硝基苯(PCNB)农药对照品适量,用石油醚(60~90℃)分别制成每1ml约含4~5μg的溶液,即得。 混合对照品储备液的制备精密量取上述各对照品储备液0.5ml置10ml量瓶中,用石油醚(60~90℃)稀释至刻度,即得。 混合对照品溶液的制备精密量取上述混合对照品储备液,用石油醚(60~90℃)制成每1L含0μg、1μg、5μg、10μg、50μg、100μg、250μg的溶液,即得。 供试品溶液制备药材和饮片取供试品于60℃干燥4小时,粉碎成细粉,取约2g,精密称定,置100ml具塞锥形瓶中,加水20ml浸泡过夜,精密加丙酮40ml,称定重量,超声处理30分钟,放冷,再称定重量,用丙酮补足减失的重量,再加氯化钠约6g及二氯甲烷30ml,称定重量,超声处理15分钟,再称定重量,用二氯甲烷补足减失的重量,静置(使分层),将有机相迅速移入装有适量无水硫酸钠的100ml具塞锥形瓶中,放置4小时。精密量取35ml,于40℃水浴上减压浓缩至近干,加少量石油醚(60~90℃)如前反复操作至二氯甲烷及丙酮除净,用石油醚(60~90℃)溶解并转移至10ml具塞刻度离心管中,加石油醚(60~90℃)至5ml。小心加入硫酸1ml,振摇1分钟,离心(3000转/分)10分钟。精密量取上清液2ml置具刻度的浓缩瓶中,连接旋转蒸发器,40℃下(或用氮气)将溶液浓缩至适量、精密稀释至1ml,即得。 制剂取供试品,研成细粉(蜜丸切碎,液体制剂直接量取),精密称取适量(相当于药材和饮片2g),以下按上述供试品溶液制备,即得供试品溶液。 测定法分别精密吸取供试品溶液和与之相对应浓度的混合对照品溶液各1μl,分别连续进样3次,取3次平均值,按外标法计算供试品中9种农药残留量。 二、有机磷类农药残留量测定

涂料柔韧性检测 漆膜柔韧性检测方法-科标.

涂料柔韧性检测漆膜柔韧性检测方法 漆膜的柔韧性,也柔韧性的试验方法,是将涂漆的马口铁在不同直径的轴棒上弯曲,直至当其弯曲后,不致弓起漆膜破坏的最小轴棒为止。该最小轴棒的直径即表示该漆膜的柔韧性数值。漆膜在轴棒上弯曲时并非只是单纯的漆膜弹性试验,而是某些综合性能的反映,如抗拉强度、抗张强度,漆膜对底漆的附着力等,所以一般称为柔韧性试验。关于柔韧性试验,国家标准《漆膜柔韧性测定法》 (GBl73卜79已有明确的规定: 1.一般规定 (1材料和仪器设备: ①4倍放大镜; ②马口铁板:25×120×(O.2~O.3毫米; ③柔韧性测定器,如图25所示,是由粗细不同的6个 钢制轴棒所组成,固定于底座上,底座可用螺钉固定在试验 台边上。 (2轴棒的尺寸:每个轴棒长度35毫米。 轴棒1:直径为10毫米及外径为15毫米的套管; 轴棒2:截面5×10毫米,曲率半径为2.5毫米; 轴棒3:截面4×10毫米,曲率半径为2毫米;

轴棒4:截面3×lO毫米,曲率半径为1.5毫米; 科标涂料检测中心(SCT是一家专业从事涂料检测的机构,中心主营涂料的成分分析、成品检测、老化测试以及防火阻燃测试,由青岛科标化工分析检测有限公司运营。 轴棒5:截面2×10毫米,曲率半径为1毫米; 轴棒6:截面1×10毫米,曲率半径为O.‘5毫米。 2.测定方法按《漆膜一般制备法》(GBl727—79 在马口铁板(或按产品标准规定上制备漆膜。待漆膜实干后,在恒温恒湿条件下,漆膜朝上,用双手将涂漆样板紧压在按产品标准规定直径的轴棒上,绕棒弯曲,弯曲后双手拇指应对称予轴棒中心线,弯曲动作必须在2~3秒内完成。漆膜在弯曲后用4倍放大镜观察,如有网纹、裂纹及剥落等破坏现象,即为不合格。 科标涂料检测中心可提供油漆柔韧性检测、漆膜柔韧性检测、涂料柔韧性检测服务,中心承接涂料(涂层、油漆(漆膜、颜料及其相关化工材料的成分分析,性能检测,老化测试以及配方研发等检测服务,是一家权威的涂料检测机构。 其他检测项目:外观颜色比重粘度细度厚度固体分遮盖力使用量筛余物消耗量干燥时间胶化时间流动特性附着力冲击强度耐磨性粘弹特性光泽度防霉变性防火性击穿强度耐水性耐酸性耐碱性耐盐雾性耐油性耐溶剂型介质透过率耐候性重金属检测。 油漆的柔韧性,也可以视为扩张性能的另一种表现。没有极佳的韧性性能,便会出现家装中最让人头痛的墙面漆开裂、脱落等现象。

农药残留量测定法

1.主题内容:建立有农药残留量测定法操作方法。 2.适用范围:本规程适用于检查药物在生产过程中的农药残留量测定法的操作。 3.引用标准:《中国药典2010版一部》 4.责任:化验员、QC主管。 5. 用途:化验室 6.检查内容及方法 本法系用气相色谱法(附录ⅥE)测定药材、饮片及制剂中部分有机氯、有机磷和拟除虫菊酯类农药,除另有规定外,按下列方法测定。 6.1有机氯类农药残留量测定 6.1.1色谱条件与系统适用性试验 弹性石英毛细管柱(30m×0.32mm×0.25μm)SE-54(或DB-1701),63Ni-ECD电子捕获检测器。进样口温度230℃,检测器温度300℃,不分流进样。程序升温:初始100℃,每分钟10℃升至220℃,每分钟8℃升至250℃,保持10分钟,理论板数按α-BHC峰计算应不低于1×106,两个相邻色谱峰的分离度应大于1.5. 6.1.2对照品储备液的制备 精密称取六六六(BHC)(α-BHC,β-BHC,γ-BHC,δ-BHC)、滴滴涕(DDT)(PP′-DDE,PP′-DDD,OP′-DDT,PP′-DDT)及五氯硝基苯(PCNB)农药对照品适量,用石油醚(60~90℃)分别制成每1ml约含4~5μg的溶液,即得。 6.1.3混合对照品储备液的制备 精密量取上述各对照品储备液0.5ml,置10ml量瓶中,用石油醚(60~90℃)稀释至刻度,摇匀,即得。 6.1.4混合对照品溶液的制备 精密量取上述各对照品储备液,用石油醚(60~90℃)制成每1L分别含0μg、1μg、5μ

g、10μg、50μg、100μg、250μg的溶液,即得。 6.1.5供试品溶液的制备 药材或饮片:取供试品于60℃干燥4小时,粉碎成细粉,取约2g,精密称定,置100ml 具塞锥形瓶中,加水20ml浸泡过夜,精密加丙酮40ml,称定重量,超声处理30分钟,放冷,再称定重量,用丙酮不足减失的重量,再加氯化钠约6g,精密加二氯甲烷30ml,称定重量,超声处理15分钟,再称定重量,用二氯甲烷补足减失的重量,静置(使分层),将有机相迅速移入装有适量无水硫酸钠的100ml具塞锥形瓶中,放置4小时。精密量取35ml,于40℃水浴上减压浓缩至近干,加少量石油醚(69~90℃)如前反复操作至二氯甲烷及丙酮除净,再用石油醚(69~90℃)溶解并转移至10ml具塞刻度离心管中,加石油醚(69~90℃)精密稀释至5ml,小心加入硫酸1ml,振摇1分钟,离心(3000转/分)10分钟,精密量取上清液2ml,至具刻度的浓缩瓶(见图)中,连接旋转蒸发器,40℃下(或用氮气)将溶液浓缩至适量,精密稀释至1ml,即得。 6.1.6制剂 取供试品,研成细粉(蜜丸切碎,液体直接量取),精密称取适量(相当于药材2g),以下按上述供试品溶液制备法制备,即得供试品溶液。 6.1.7测定法 分别精密吸取供试品溶液和与之相对应浓度的混合对照品溶液各1μl,分别连续进样3次,取3次平均值,按外标法计算公式品中9中有机氯农药残留量。 6.2有机磷类农药残留量测定 6.2.1色谱条件与系统适用性试验 弹性石英毛细管柱(30m×0.25mm×0.25μm)DB-17MS(或HP-5),磷酸检测器(NPD)。进样口温度220℃,检测器温度300℃,不分流进样。程序升温:初始120℃,每分钟10℃升

执业药师药物分析第三章 物理常数测定法习题及答案说课讲解

执业药师药物分析第三章物理常数测定法习题及答案

第三章物理常数测定法 一、A 1、供试品在毛细管内供试品全部液化时的温度为 A、全熔 B、熔程 C、初熔 D、熔点 E、熔融 2、以下关于熔点测定方法的叙述中,正确的是 A、取供试品,直接装入玻璃毛细管中,装管高度为1 cm,置传温液中,升温速度为每分钟1.0~1.5℃ B、取经干燥的供试品,装入玻璃毛细管中,装管高度为1cm,置传温液中,升温速度为每分钟1.0~ 1.5℃ C、取供试品,直接装入玻璃毛细管中,装管高度为3mm,置传温液中,升温速度为每分钟3.0~5.0℃ D、取经干燥的供试品,装入玻璃毛细管中,装管高度为3mm,置传温液中,升温数度为每分钟 1.0~1.5℃ E、取经干燥的供试品,装入玻璃毛细管中,装管高度为1cm,置传温液中,升温速度为每分钟3.0~ 5.0℃ 3、熔点是指一种物质照规定方法测定,在熔化时 A、初熔时的温度 B、全熔时的温度 C自初熔至全熔的一段温度 D自初熔至全熔的中间温度 E、被测物晶型转化时的温度 4、中国药典规定,熔点测定所用温度计 A、用分浸型温度计 B、必须具有0.5℃刻度的温度计 C、必须进行校正 D、若为普通温度计,必须进行校正 E、采用分浸型、具有0.5℃刻度的温度计,并预先用熔点测定用对照品校正 5、中国药典收载的熔点测定方法有几种?测定易粉碎固体药品的熔点应采用哪一法 A、2种,第一法 B、4种,第二法 C、3种,第一法 D、4种,第一法 E、3种,第二法 6、比旋度计算公式中c的单位是 A、g/L B、mg/ml C、100mg/L D、g/100ml E、mol/L 7、中l的单位是 A、nm B、mm C、cm D、dm E、m 8、用旋光度测定法检查硫酸阿托品中的莨菪碱的方法如下:配制硫酸阿托品溶液(50mg/ml),按规定方法测定其旋光度,不得超过-0.40℃,试计算莨菪碱的限量为(已知莨菪碱的比旋度为-32.5℃)

相关文档
最新文档