微积分2习题答案

微积分2习题答案
微积分2习题答案

一、填空题

1.设)(x P 是x 的多项式,且26)(lim 23=-∞→x x x P x ,3)

(lim 0=→x

x P x ,则=)(x P 2.=-++∞

→))(arcsin(lim 2

x x x x

6

π x x x 3262

3++↑ 3.=??

?

??-∞

→3

21lim x x x 32

-e

4.设A x x ax x x =-+--→1

4

lim

31,则有=a ,=A 4,-2 5.设x

x

x x x f sin 2sin )(+=,则=∞→)(lim x f x 2

6.=?+→2

32031

sin

sin lim

x x x x x 31 7.函数)

2)(1(1+-+=x x x

y 的间断点是 1=x

8.为使函数()x x x f tan 1

?=在点0=x 处连续,应补充定义()=0f 1

9.设函数?????=≠-=00)1(3

x K

x x y x 在0=x 处连续,则参数=K 3-e 10.函数???>+≤+=0

10

)(x e x a x x f x 在点0=x 处连续,则=a 2

二、单项选择题

1.设0>n x ,且n n x ∞→lim 存在,则n n x ∞

→lim ②

①0> ②0≥ ③0= ④0< 2.极限=-→1

11

lim x e

x ③

①∞ ②1 ③不存在 ④0 3.=++∞→-

→x

x x x x

x 1

sin

lim )

1(lim 10 ④

①e ; ②1e -; ③1e +; ④1

1e -+

4.()()

213

++-=

x x x y 的连续区间是__________________ ②

①()()()+∞----∞-,11,22, ②[)+∞,3

③()()+∞--∞-,22, ④()()+∞--∞-,11,

5.函数1

2

111

11+----=x x x x y 的不连续点有 ③ ①2个 ②3个 ③4个 ④4个以上

6.下列函数中,.当0→x 时,与无穷小量x 相比是高阶无穷小量的是___________;是等价无穷小量的是__________________ ①,②

①x cos 1- ②2

x x + ③x ④x 2sin

7.当+

→0x 时,x sin 与||x 相比是 ② ①高阶无穷小量 ②低阶无穷小量 ③同阶但不等价的无穷小量 ④等价无穷小量

8.当0→x 时,x 2cos 1-与2x 相比是 ② ①高阶无穷小量 ②同阶但不等价的无穷小量

③低阶无穷小量 ④等价无穷小量

9.设()??

???=≠-=00

,3sin x k x x

x x f 为连续函数,则k =_______________ ② ① 1 ② -3 ③ 0 ④ 3

10.函数()x f 在点0x 处有定义是()x f 当0x x →时极限存在的 ④ ①充分但非必要条件 ②必要但非充分条件

③充分必要条件 ④既非充分又非必要条件

11.当0→x 时,下列函数中比x 高阶的无穷小量是 ②

①x x sin + ②x x sin - ③()x +1ln ④()x -1ln 12.当0→x 时,下列函数中为无穷小量的是 ② ①x x 1sin

+ ②x x 1sin ? ③x x sin 1+ ④x x

sin 1

? 13.当∞→x 时,下列函数中为无穷小量的是 ③

①x x 1sin

+ ②x x 1sin ? ③x x sin 1+ ④x x

sin 1

? 14.设在某个极限过程中函数()x f 与()x g 均是无穷大量,则下列函数中哪一个也必是无穷

大量 ③ ① ()()x g x f + ② ()()x g x f - ③ ()()x g x f ? ④

()()

x g x f 15.设()a x f =0,()b x f x x =-→0

lim ,()c x f x x =+→0

lim ,则函数()x f 在点0x 处连续的充分必要

条件是 ④ ①b a = ②c a = ③c b = ④c b a ==

16.1=x 是??

?

??=≠--=-1

0111)(11

2x x e

x x x f x 的 ④ ①连续点 ②跳跃间断点 ③可去间断点 ④无穷间断点

三、求下列极限

1.)1(lim 2

x x x -++∞

→011lim

2

=++=+∞

→x

x x

2.)1(lim 2

x x x -+-∞

→+∞=

3.)2222(lim 22

+--

+++∞

→x x x x x

22212214

lim

2

2224lim

222

2

=+-+++

=+-+++=+∞

→+∞

→x

x x x x x x x x

x x

4.??

?

?

?

?∞

→x x x 1arcsin

arctan lim 0=

5.)111)(110()110()13()12()1(lim 2222--++++++++∞→x x x x x x x (2

7

=)

6.)21(lim 222n

n n

n n n n n ++++++∞→

[解] 记n n n

n n n n x n ++++++=2

2221 因为 222222n n

n n n n x n n n n n n n n n n +++≤≤++++++

即 11≤≤+n x n n ,由于11

lim =+∞→n n n ,所以由夹逼定理,得1lim =∞→n n x

7.设2006)1(lim =--∞→β

βα

n n n n ,求βα,

[解] 原式左端????????? ??-+-=???

???????? ??--=∞

→∞

→n o n n n n n n n n 1111lim

111lim

ββα

β

β

α

βββα1

1lim 1=?

????

????? ??-=-∞→n n o n n n (1-=βα)

由于极限存在,故1-=βα。

20061=β ∴2006

1

=

β,200620051200611-=-=-=βα 四、分析题

1.讨论极限x x x |

sin |lim 0→

[解] 因为1|sin |lim 0=+→x x x ,1|

sin |lim 0-=-→x x x ,故原极限不存在。

2.求2

31

22+--=x x x y 的间断点,并判别间断点的类型。

[解] 因为)2)(1(232

--=+-x x x x ,而2231lim 2

21-=+--→x x x x ,∞=+--→2

31lim 222x x x x 因此有间断点:1=x 为可去间断点,2=x 为无穷间断点。.

3.求函数x

x y 1

6+=的连续区间,若有间断点,试指出间断点的类型。

[解] 函数的连续区间为),0()0,(+∞-∞ ,点0=x 为函数的第二类无穷间断点。

4.讨论函数t

x t x t t x x f -→??

?

??--=11lim )(的连续性。

[解] ()1)1(011lim 11lim 11lim )(--+→--=-→-→=+???

?

?--+=??? ??--==x x

x y y

x y t t

x y t

x t x t t

x t x t e y t t x t x x f 令 在点1=x 处没有定义,是间断点,故)(x f 的连续区间为),1()1,(+∞-∞ ,点1=x 为)(x f 的第二类无穷间断点。

5.讨论函数??

?<+≥=0

10

cos )(x x x x x f 在点0=x 处的连续性。

[解] 1cos lim )(lim 0

==++→→x x f x x ,1)1(lim )(lim 0

=+=--→→x x f x x

∴ )(x f 在点0=x 处连续性。

6.设函数()???????≥+<--==02

cos 0x x x x x x

a a x f y (0>a )

(1)当a 取何值时,点0=x 是函数()x f 的间断点?是何种间断点?

(2)当a 取何值时,函数()x f 在()∞+∞-,

上连续?为什么? [解](1)在点0=x 处,21)0(=f ,2

1

2cos lim )(lim 00=+=++→→x x x f x x ,

a

x a a x x a a x f x x x 21

1lim lim )(lim 000=

-+=--=---→→→ 当0>a 且1≠a 时,由于)(lim )(lim 0

x f x f x x -+→→≠,所以点0=x 是()x f 的跳跃间

断点。

(2)当1=a 时,由于)0()(lim )(lim 0

f x f x f x x ==-+→→,则()x f 在点0=x 处连续。

又因为在)0,(-∞或),0(∞+上,()x f 为初等函数,所以连续。

故当1=a 时,函数()x f 在()∞+∞-,

上连续。 7.设函数()????

?

????<≤<≤<+==4110011

x a x x x x x f y

(1)求函数()x f 的定义域;

(2)讨论函数()x f 在点0=x 处的极限是否存在?为什么?

(3)a 为何值时,函数()x f 在点1=x 处连续?并求函数()x f 的连续区间;

(4)画出函数()x f y =的图形。 [解](1)]4,1()1,(---∞= f D

(2)因为111

lim )(lim 00=+=-

-→→x x f x x ,0lim )(lim 0

0==-+→→x x f x x ,所以)(lim 0x f x →不存在

(3)在点1=x 处,a f =)1(,1lim )(lim 11==--→→x x f x x ,a a x f x x ==++

→→1

1lim )(lim , 所以,当1=a 时,)1()(lim )(lim 1

1f x f x f x x ==-+→→,即函数()x f 在点1=x 处连续。 此时,()x f 的连续区间为:]4,1()1,(---∞ (4)略 五、证明题

1.证明方程475

=-x x 在区间)2,1(内至少有一个实根。 [证] 设47)(5

--=x x x f ,)(x f 在]2,1[上连续,

又010)1(<-=f ,014)2(>=f ,由零点定理知,在)2,1(内至少存在一点ξ,

使得0)(=ξf ,即0475=--ξξ,故方程475

=-x x 在区间)2,1(内至少有一个实根。

2.证明:方程k x x =-sin 2(0>k )至少有一个正根。 [证] 设),0[sin 2)(∞+∈--=C k x x x f

因为0)0(<-=k f ,0)3sin(23)3(>+-=+k k f

故由零点定理知,)3,0(+∈?k ξ,使得0)(=ξf ,所以方程k x x =-sin 2至少有一正根。

3.证明方程2sin +=x a x (0>a )至少有一个正根,并且不超过2+a 。 [证] 设2sin )(--=x a x x f ,下面分两种情形来讨论:

情形1 若 1)2sin(=+a ,则因为0>a ,故2+a 是方程2sin +=x a x (0>a )的正根,并且不超过2+a 。

情形2 若1)2sin(≠+a ,则因0>a ,故0)]2sin(1[)2(>+-=+a a a f ,

02)0(<-=f ,又因)(x f 在]2,0[+a 上连续,故由零点定理知,

)2,0(+∈?a ξ,使得0)(=ξf ,因此ξ是方程2sin +=x a x (0>a )的正根,并且不超过2+a 。

4.设n 为正整数,函数)(x f 在],0[n 上连续,且)()0(n f f =,证明存在数],0[1,n a a ∈+,使得)1()(+=a f a f 。

[证] 若1=n ,即)1()0(f f =,取0=a ,]1,0[11∈=+a ,结论成立。

若2≥n ,作辅助函数)()1()(x f x f x F -+=,易知)(x F 在]1,0[-n 上连续,因为

)0()()]1()([)]2()3([)]1()2([)]0()1([)

1()1()0(=-=--++-+-+-=-+++f n f n f n f f f f f f f n F F F

则n 个实数)1(,),1(),0(-n F F F 全部为零或同时有正数与负数,

(1)若这些数全部为零,即0)1()1()0(=-===n F F F ,则结论成立。

(2)若这些数中有正数与负数,即有某个)1,0,(,0)(,0)(-≤≤≠>

0)(=a F ,即 )1()(+=a f a f ###

第二章微积分0

> 第二章微积分运算 微积分是数学学习的重点和难点之一, 而微积分运算是Maple最为拿手的计算之一, 任何解析函数, Maple都可以求出它的导数来, 任何理论上可以计算的积分, Maple都可以毫不费力的将它计算出来. > > 随着作为数学符号计算平台的Maple的不断开发和研究, 越来越多的应用程序也 在不断地出现。 函数的极限和连续 1.1 函数和表达式的极限 在Maple中, 利用函数limit计算函数和表达式的极限. 如果要仅仅聋子耳朵,仅仅写出数学表达式, 则用惰性函数Limit. 若a可为任意实数或无穷大时, 求极限命令格式为: limit(f,x=a); 求时的命令格式为limit(f, x=a, right); 求时的命令格式为limit(f, x=a, left); 请看下述例子: > Limit((1+1/x)^x,x=infinity)=limit((1+1/x)^x,x=infinity); >

> > > > >

对于多重极限计算, 也用limit. 命令格式为: limit(f, points, dir); 其中, points是由一系列方程定义的极限点, dir(可选项)代表方向: left(左)、right(右)等. 例如: > limit(a*x*y-b/(x*y),{x=1,y=1}); > > restart: > plot3d(sin(x+y), x=-1..1, y=-1..1); > plot3d(x^2*(1+x)-y^2*(1-y)/(x^2+y^2),x=-1..1,y=-1..1); >

微积分2期末复习提纲答案

2015年6月微积分2期末复习提纲 1、 本学期期末考试考察的知识点如下: 第六章隐函数的偏导数求解P194例9-10,条件极值应用题(例10)求解,约占12% 第七章二重积分(二重积分的概念,比较大小P209课后习题,直角坐标系下的交换积分次序P212例题3&P213习题1(7),直角坐标与极坐标系下的二重积分计算)约占26%; 第八章无穷级数(无穷级数的概念,几何级数,P-级数,正项级数的比较判别法和比值判别法,任意项级数的敛散性,幂级数的收敛半径及收敛域,求幂级数的和函数,间接 展开以 1 ,,ln(1)1x e x x +-为主)约占35%; 第九章微分方程(微分方程及其解的概念,一阶分离变量,齐次和一阶线性微分方程求解(通解和特解),二阶常系数齐次,非齐次微分方程的通解(三角型的不要求)。约占27%. 2、样题供参考(难度、题型) 一、填空题:(14小题) 1、若D :224x y y +≤,则 D d σ=??4π。(表示求解积分区域D 的面积——圆) ● 或D :9122≤+≤y x ,则 ??=D dxdy 8π。(表示求解积分区域D 的面积——圆环) ● 或2 2 :4D x y y +≤,将 dxdy y D ??化为极坐标系下的累次积分4sin 20 sin d r dr π θ θθ? ? . (判断θ的范围作为上下限,判断r 的范围作为上下限,y 用rsin θ代入) 7.3极坐标系下二重积分的计算 2、交换积分次序 1 1 (,)y dy f x y dx = ? ?1 (,)x dx f x y dy ? ?。 (依题得:010<

微积分2习题答案

一、填空题 1.设)(x P 是x 的多项式,且26)(lim 23=-∞→x x x P x ,3) (lim 0=→x x P x ,则=)(x P 2.=-++∞ →))(arcsin(lim 2 x x x x 6 π x x x 3262 3++↑ 3.=?? ? ??-∞ →3 21lim x x x 32 -e 4.设A x x ax x x =-+--→1 4 lim 31,则有=a ,=A 4,-2 5.设x x x x x f sin 2sin )(+=,则=∞→)(lim x f x 2 6.=?+→2 32031 sin sin lim x x x x x 31 7.函数) 2)(1(1+-+=x x x y 的间断点是 1=x 8.为使函数()x x x f tan 1 ?=在点0=x 处连续,应补充定义()=0f 1 9.设函数?????=≠-=00)1(3 x K x x y x 在0=x 处连续,则参数=K 3-e 10.函数???>+≤+=0 10 )(x e x a x x f x 在点0=x 处连续,则=a 2 二、单项选择题 1.设0>n x ,且n n x ∞→lim 存在,则n n x ∞ →lim ② ①0> ②0≥ ③0= ④0< 2.极限=-→1 11 lim x e x ③ ①∞ ②1 ③不存在 ④0 3.=++∞→- →x x x x x x 1 sin lim ) 1(lim 10 ④ ①e ; ②1e -; ③1e +; ④1 1e -+ 4.()() 213 ++-= x x x y 的连续区间是__________________ ② ①()()()+∞----∞-,11,22, ②[)+∞,3 ③()()+∞--∞-,22, ④()()+∞--∞-,11, 5.函数1 2 111 11+----=x x x x y 的不连续点有 ③ ①2个 ②3个 ③4个 ④4个以上 6.下列函数中,.当0→x 时,与无穷小量x 相比是高阶无穷小量的是___________;是等价无穷小量的是__________________ ①,② ①x cos 1- ②2 x x + ③x ④x 2sin

《微积分》《高等数学》第二章测试题

《微积分》第二章测试题 1. 【导数的概念】已知()23f '=,求()() 22lim h f h f h h →+-- 解()() ()() ()()()0 0222222lim lim 226h h f h f h f h f f h f f h h h →→+--+---??'=+== ?-?? 2. 设函数cos ln x y x e a -=++,求 d y d x 解 sin x dy x e dx -=-- 3. 设函数arctan x y e =,求 d y d x 解 d y d x () arctan arctan 1 1 1221x x e e x x x x =? ? = ++ 4. 设函数2 sin cos 2y x x =,求 d y d x , x dy dx = 解()2 2 2 2 4 sin cos 2sin 12sin sin 2sin y x x x x x x ==-=- ()()3 2 2 2sin cos 8sin cos 2sin cos 14sin sin 214sin dy x x x x x x x x x dx =-=-=-, 0x dy dx == 5. 【函数的微分,记得加dx 】设函数2 sin 2x y x = ,求dy 解2 4 3 3 2cos 22sin 22cos 22sin 22cos 22sin 2,dy x x x x x x x x x x dy dx dx x x x ---== ∴= 6. 【高阶导数】设函数11 y x = -,求 n n d y dx 解 () () () () () () () 2 3 1 2 3 4 1 23 ! 11, 21, 3!1,, 1n n n n dy d y d y d y n x x x x dx dx dx dx x ----+' = -=--=-=--=-- 7.【隐函数求导】 设函数()y y x =由方程2 sin 20xy y -=确定,求 d y d x 解 等式两边同时对x 求导2 22sin 20,y xyy y y ''+-=则 () 2 2 2 2sin 222221dy y y y y dx y xy xy xy x y '== = = ---

高等数学第二章练习及答案

第二章 一、选择题. 1. 函数1y x =+在0x =处 ( ) A 、无定义 B 、不连续 C 、可导 D 、连续但不可导 2. 设函数221,0(), 0x x f x x x +

7. (arctan 2)d x =________,[]ln(sin 2)d x =__________. 8. 函数32()39f x x ax x =++-,已知()f x 在3x =-时取得极值,则a =______. 9.设需求量q 对价格p 的函数为2e 100)(p p q -=,则需求弹性E p =__________. 三、判断题. 1. 若()f x 在点0x 处可导,则()f x 在点0x 处连续. ( ) 2. dy 是曲线()y f x =在点00(,())x f x 处的切线纵坐标对应于x ?的改变量. ( ) 3. 函数()y f x =在0x 点处可微的充要条件是函数在0x 点可导. ( ) 4. 极值点一定是驻点. ( ) 5. 函数y x =在点0x =处连续且可导. ( ) 四、计算题. 1.求函数y =. 2. 求由方程0e e 2=+-+y x y x 所确定的隐函数()y f x =的导数y '. 3. 设e x y x =,求y '. 4. 求由方程cos()y x y =+所确定的隐函数()y f x =的二阶导数.y '' 五、求下列极限. (1)sin lim sin x x x x x →∞-+, (2)x x x x x x x --+-→4240sin 23lim , (3)11lim 1ln x x x x →??- ?-? ?, (4)1lim(1)(0)x x a x a →∞->, (5)()10lim 1x x x →+, (6)1lim ()x x x x e →+∞+. 六、应用题. 1. 求函数32 ()391f x x x x =--+的单调性、极值与极值点、凹凸区间及拐点. 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求量为100010q p =-(q 为需求量,p 为价格).试求:(1)成本函数,收入函数;(2)产量为多少吨时利润最大?

微积分习题解答(第二章)

微积分习题解答(第二章) 1写出下列数列的一般项,并通过观察指出其中收敛数列的极限值。 ()()11120, ,0, ,0, ,2 4 6 1 112n n u n ??= +-?? 解:一般项 该数列收敛,其极限为零。 () () 1111 3,,,,261220 11n u n n = + 解:一般项 该数列收敛,其极限为零。 ()2 510172642, ,,,,2345 1n n u n += 解:一般项 该数列发散。 3.利用定义证明下列极限;

()n n n n n -11lim 0 60-110661 ln ln 6 1ln 1,ln 6-106-1lim 0 6n n n N n N εε ε εε→∞ →∞ ?? = ? ?? >???? -=< ? ? ???? > ? ???=+>?? ???? ??-< ?????∴= ??? 证明:对于任给,要使 只要 取正整数当时 总有不等式 成立 ( )2 23lim 010111,0lim n n n N n N εε ε εε→∞ →∞ =>-= <> ?? = +>???? -<∴=证明:对于任给,要使 只要 取正整数 当时 总有不等式 成立 4.试判断下列论点断是否正确。

()() ()1, ,lim 1111 1lim 01 n n n n n u A u A n n n n →∞ →∞ -=?--= +=≠-如果越大越接近零则有 错误 例如 随着越大,而越加接近零,但 ()() {}1130lim 0N =N n >N 10lim n n n n n n n u A u A u u u A ε εεε→∞ →∞ >-=∠>-=<∴=如果对于任给,在数列中除有限项外,都满足不等式<, 则有 正确 设N 为题中的‘有限项’中的最大下标,由题意 对于任给,只要取正整数+1,当时, 总有不等式 满足 ()() {}5s in s in n n n u n u n u ?==≤有界数列必定收敛 错误 例如 显然1,但发散 6.利用定义证明下列极限: ()() ()()()()1 1 1lim 312 0312311,3 312lim 312 x x x x x x x x εε ε δδε →→-=>-- =-<= <-<-- <-=证明:对于任意给定的,要使 只需取,则当0时总有 成立,于是,由极限定义可知

微积分习题集带参考答案(2)

微积分习题集带参考答案 一、填空题(每小题4分,本题共20分) ⒈函数x x x f -++=4) 2ln(1 )(的定义域是]4,1()1,2(-?--. ⒉若24sin lim 0=→kx x x ,则=k 2 . ⒊曲线x y e =在点)1,0(处的切线方程是1+=x y . ⒋ =+?e 1 2 d )1ln(d d x x x 0 . ⒌微分方程1)0(,=='y y y 的特解为x y e =. 6函数24)2(2 -+=+x x x f ,则=)(x f 62 -x . 7.当→x 0时,x x x f 1 sin )(=为无穷小量. 8.若y = x (x – 1)(x – 2)(x – 3),则y '(1) = 2-. 9. =+-? -x x x d )135(1 1 32. 10.微分方程1)0(,=='y y y 的特解为x y e =. 11.函数x x x f 2)1(2 +=+,则=)(x f 12 -x . 1⒉=∞ →x x x 1 sin lim 1 . 1⒊曲线x y =在点)1,1(处的切线方程是2 121+= x y . 1⒋若 ?+=c x x x f 2sin d )(,则=')(x f in2x 4s -. 1⒌微分方程x y xy y cos 4)(7) 5(3 =+''的阶数为 5 . 16.函数74)2(2 ++=+x x x f ,则=)(x f 32 +x . 17.若函数???=≠+=0, ,2)(2x k x x x f ,在0=x 处连续,则=k 2 . 18.函数2 )1(2+=x y 的单调增加区间是).1[∞+-. 19. = ? ∞ -dx e x 0 22 1 . 20.微分方程x y xy y sin 4)(5) 4(3 =+''的阶数为 4 . 21.设函数54)2(2 ++=+x x x f ,则=)(x f 12 +x . 22.设函数????? =-≠+=0, 10 ,2sin )(x x k x x x f 在x = 0处连续,则k =1-.

《高等数学二》期末复习题与答案_28171462418361700

《高等数学(二)》期末复习题 一、选择题 1、若向量b 与向量)2,1,2(-=a 平行,且满足18-=?b a ,则=b ( ) (A ) )4,2,4(-- (B )(24,4)--, (C ) (4,2,4)- (D )(4,4,2)--. 2、在空间直角坐标系中,方程组2201x y z z ?+-=?=? 代表的图形为 ( ) (A )直线 (B) 抛物线 (C ) 圆 (D)圆柱面 3、设22 ()D I x y dxdy =+?? ,其中区域D 由222x y a +=所围成,则I =( ) (A) 2240 a d a rdr a π θπ=? ? (B) 2240 2a d a adr a πθπ=?? (C) 2230 023a d r dr a π θπ=? ? (D) 224001 2 a d r rdr a πθπ=?? 4、 设的弧段为:2 30,1≤≤=y x L ,则=? L ds 6 ( ) (A )9 (B) 6 (C )3 (D) 2 3 5、级数 ∑∞ =-1 1 )1(n n n 的敛散性为 ( ) (A ) 发散 (B) 条件收敛 (C) 绝对收敛 (D) 敛散性不确定 6、二重积分定义式∑??=→?=n i i i i D f d y x f 1 0),(lim ),(σηξσλ中的λ代表的是( ) (A )小区间的长度 (B)小区域的面积 (C)小区域的半径 (D)以上结果都不对 7、设),(y x f 为连续函数,则二次积分??-1 010 d ),(d x y y x f x 等于 ( ) (A )??-1 010d ),(d x x y x f y (B) ??-1 010 d ),(d y x y x f y (C) ? ?-x x y x f y 10 1 0d ),(d (D) ??1 01 0d ),(d x y x f y

微积分2答案完整版

2010—2011真题答案 一、 1.答案:14 21sin 2sin 2 x x x x --,易。 学霸解析:()2 1 2 2 4 421(sin )()sin ()sin sin 2sin 2 x x f x t dt x x x x x x x x -''''==-=-? 知识点:原函数求导,易。 2. 答案:1y x =- 学霸解析:22()0y y y xy ''-+= 代入)1,2(,1y '=- 知识点:等式两边同时求导,中。 3. 答案:11(1)(1)1 n n n x n ∞ +=--+∑ 学霸解析:11 (1)ln(1)n n n x x n -∞ =-+=∑ 知识点:对ln(1+x)的应用,中。 4. 答案: 120 (,)y y dy f x y dx -? ? 学霸解析:01, 0x y x ≤≤?? ≤≤?12, 02x y x ≤≤?? ≤≤-? 知识点:x,y 定义域的转换,中。 5.答案:(1cos1)π-

学霸解析:21 22 2 sin()sin (1cos1)D x y dxdy d r rdr πθπ+= =-???? 知识点:二重积分,中。 6.答案:11(ln )21x y c x +=- +- 学霸解析:111 ln 21x c x y +=-+- 11(ln )21x y c x +=-+- 知识点:微分方程求通解,难。 二、 1. 答案:C 学霸解析:绝对收敛:对于级数1n n u ∞=∑,如果级数1n n u ∞=∑收敛的话,则称1 n n u ∞ =∑为绝对收敛。 条件收敛:如果 1 n n u ∞ =∑发散,但 1 n n u ∞ =∑却是收敛的,则称 1 n n u ∞ =∑为条件收敛。 知识点:幂级数收敛性,易。 2. 答案:D 学霸解析:对于A ,2D dxdy =?? 对于B , 4D dxdy =?? 知识点:二重积分,中。 3.

微积分2第十章答案

第十章 无穷级数习题解答 练习 10.1 1. 写出下列级数的一般项: (1) 1 (1) n +- ; (2) 1 1 21 (1)n n n a +-+-; (3) 2 1 n n +; (4) 2 1 n n -+. 2. 用定义判断下列级数的敛散性: (1) 当n 为奇数时, 前n 项和为1; 当为偶数时, 前n 项和为0, 故此级数发散. (2) 前n 项和为ln n , 其极限为+∞, 故此级数发散. (3) 此级数为公比是 1 5 的等比级数, 故此级数收敛. (4) 当1x <时, 此级数为公比是x -的等比级数, 故级数收敛; 当1x ≥时, 此级数为公比是x -的等比级数, 故级数发散. (5) 前n 项和为 11(1)221n -+, 其极限为12 , 故此级数收敛. 练习 10.2 1. 根据级数收敛的性质判断下列级数的敛散性: (1) 此级数通项的极限为10≠, 故此级数发散. (2) 此级数通项的极限为不存在, 故此级数发散 (3) 此级数通项的极限为10≠, 故此级数发散 (4) 此级数通项的极限为10≠, 故此级数发散 (5) 此级数是两个收敛级数的差, 故此级数收敛 (6) 此级数是一个有限数和一个收敛级数的和, 故此级数收敛 (7) 此级数是一个发散级数和一个收敛级数的和, 故此级数发散 2. 若级数 1 n n u ∞ =∑ 收敛, 指出下列哪些级数是一定收敛的, 哪些级数是发散的? 哪些不能确 定? (1) 此级数是两个收敛级数的差, 故此级数收敛 (2) 此级数是由收敛级数删掉有限项后得到, 故此级数收敛 (3) 此级数通项的极限为∞, 故此级数发散 (4) 不一定 (5) 不一定 练习 10.3 1. 用比较判别法判别下列级数的敛散性: (1) 此级数的通项小于 1()2 n , 后者对应的级数收敛, 故此级数收敛 (2) 此级数的通项小于 2 1 n , 后者对应的级数收敛, 故此级数收敛

微积分(曹定华)(修订版)课后题答案第二章习题详解

第二章 习题2-1 1. 试利用本节定义5后面的注(3)证明:若lim n →∞ x n =a ,则对任何 自然数k ,有lim n →∞ x n +k =a . 证:由lim n n x a →∞ =,知0ε?>,1N ?,当1n N >时,有 n x a ε-< 取1N N k =-,有0ε?>,N ?,设n N >时(此时1n k N +>)有 n k x a ε+-< 由数列极限的定义得 lim n k x x a +→∞ =. 2. 试利用不等式A B A B -≤-说明:若lim n →∞ x n =a ,则 lim n →∞ ∣x n ∣=|a|.考察数列x n =(-1)n ,说明上述结论反之不成立. 证: lim 0,,. 使当时,有n x n x a N n N x a εε→∞ =∴?>?>-< 而 n n x a x a -≤- 于是0ε?>,,使当时,有N n N ?> n n x a x a ε-≤-< 即 n x a ε-<

由数列极限的定义得 lim n n x a →∞ = 考察数列 (1)n n x =-,知lim n n x →∞ 不存在,而1n x =,lim 1n n x →∞=, 所以前面所证结论反之不成立。 3. 利用夹逼定理证明: (1) lim n →∞222111 (1) (2)n n n ?? +++ ?+??=0; (2) lim n →∞2! n n =0. 证:(1)因为 22222 2111112 (1) (2)n n n n n n n n n n ++≤+++ ≤≤=+ 而且 2 1lim 0n n →∞ =,2 lim 0n n →∞=, 所以由夹逼定理,得 22211 1lim 0(1)(2)n n n n →∞?? +++ = ?+? ? . (2)因为2222 2240!123 1n n n n n <= <-,而且4 lim 0n n →∞=, 所以,由夹逼定理得 2lim 0! n n n →∞= 4. 利用单调有界数列收敛准则证明下列数列的极限存在.

高等数学2第十章答案

习题10-1 二重积分的概念与性质 1.根据二重积分的性质,比较下列积分的大小: (1)2()D x y d σ+??与3 ()D x y d σ+?? ,其中积分区域D 是圆周22(2)(1)2x y -+-=所围成; (2) ln()D x y d σ+??与2 [ln()]D x y d σ+??,其中D 是三角形闭区域,三顶点分别为(1,0), (1,1),(2,0); 2.利用二重积分的性质估计下列积分的值: (1)22 sin sin D I x yd σ= ??,其中{(,)|0,0}D x y x y ππ=≤≤≤≤; (2)22 (49)D I x y d σ= ++?? ,其中22{(,)|4}D x y x y =+≤ . (3) .D I = ,其中{(,)|01,02}D x y x y =≤≤≤≤ 解 () ,f x y = Q 2,在D 上(),f x y 的最大值

()1 04M x y = == ,最小值()11,25m x y ==== 故0.40.5I ≤≤ 习题10-2 二重积分的计算法 1.计算下列二重积分: (1) 22 ()D x y d σ+??,其中{(,)|||1,||1}D x y x y =≤≤; (2) sin D y d y σ??,其中D 是由2 ,y x y x ==所围成的闭区域. 解:sin D y d y σ??210sin 1sin1y y y dy dx y ==-?? 2.画出积分区域,并计算下列二重积分: (1) x y D e d σ+??,其中{(,)|||1}D x y x y =+≤

微积分2习题答案

一、填空题 1. 2. 设P(x)是x 的多项式,且lim 凡门二6 '—= 2, lim — = 3 ,则P(x) = 0 X 7T lim (arcsin(vx 2+x 一 x))= .YT4-X 6A 3 + 2x 2 + 3x t 3. lim 1 一 — .V — 4. x ) 设lim 一 "" 一 * + 4 = A ,则有"= 5. 6. 7. 8. 9. j X — 1 .? “ \ ? 2 sinx 设 / (A ) = xsm — d ----- X X ? 3 .1 L +sin x-sin — lim ------------ ------ - = t 3* 函数v = 一上]一的间断点是 (x-l)(x + 2) 为使函数/(x) = - ? tanx 在点x = 0处连续,应补充左义/(0)= x 3 设函数y = ^- x )x K 则 lim f (x)= X->X %工°在兀=0处连续,则参数K = x = 0 x + a e x +\ 二、单项选择题 1 ?设x n >Q,且lim x 存在,则 lim x HTX n->x @>0 ② no ③=0 2?极限 lim e 7^ = XT I ①8 ②1 10.函数f(x)= < x < 0 在点x = 0处连续,则“= x>0 ④<0 3. 4. ③不存在 lim(1 + x) x + lim xsiii —= -V — ②": Jx 3 4, -2 ③ €+1: ④』+l y =-——-——-的连续区间是_ (x + lXx + 2) ①(-s,-2)u (- 2,-l)U (- 1,T ③(-oo,-2)U (-2,400) ②[3,T ④ co 厂i)u(_l,+oo) 函数『二二2 耳的不连续点有 ■ X-l .Y+1 ①2个 ②3个 6.下列函数中,?当XT0时,与无穷小量x 相比是髙阶无穷小咼的是. 价 无穷小量的是 ______________ ① l-cosx ?x + X 2 5. ④4个以上 ④ sin 2x __ ■ 疋有 ①,②

第二章测验题(微积分)

上海第二工业大学 2009-2010学年第一学期 微积分(第二章)测验 试卷 姓名: 学号: 班级: 成绩: 一、填空题(每题3分,共30分) 1.设421()tan f x x =,则()__________f x '=; 2 .设y = ,则________________x dy =; 3.若2,0()2,0 x ae x f x bx x ?<=?-≥?,在0x =处可导,则常数_______,_________a b ==; 4.设ln x y x =,则2ln 3________x x y xy x '''++=; 5.27()sin 2x f x x =+,则(28)()__________f π=; 6.若0()f x '存在,则0000 ()()lim _______x x xf x x f x x x →-=-; 7.设(cos )sin[()]y f x f x =+,其中f 可微,则 ______________dy dx =; 8.设函数()f u 可导,函数2()y f x =在点1x =-处取得增量0.1x ?=-时,相应的函数增量y ?的线性 主部为0.1,则(1)_____________f '=; 9.一个正方体的棱长10x m =,如果棱长增加0.1m ,则正方体体积的增加量(要求用微分近似计算)的近似值为3 __________m ; 10.曲线x y e =在(0,1)处的切线方程为______________。 二、选择题(每题3分,共21分) 1.设()f x 可导,常数0a ≠,则lim [()()]n a n f x f x n →∞--( ) (A )a ; (B )a -; (C )()af x '; (D )()a f x '-; 2.下列结论不正确的是( ) (A )若()f x 在0x 处可导,则()f x 在0x 处可微;

微积分习题集带参考答案大全(2)

微积分习题集带参考答案 2(2),求圆的面积为1时,面积变量S 相对于周长l 的变化率。 解 此时S 是l 的函数 πππ4222 l l S = ?? ? ??=。于是S 对周长l 的变化率为 π2l dl dS =。 当1=S 时π2=l ,此时π π 1 2 = =l dl dS 。 5(2). 设a x y ||=,在0=x 点可导,求α的取值范围。 解 设a x x f ||)(=。当0≤α时,0=x 是函数的间断点,此时函数不可导。只讨论0>α。 考虑左导数 ?? ? ??>=<∞===---+ →1,0111 ,0)0()(lim 1 0αααα a x x x x x f x f , 考虑右导数 ?????>=-<∞=--=-=----→1 ,0111,)()(0)0()(lim 1 0ααααa x x x x x f x f , 因此该函数当1>α时在0=x 点可导,导数为0. 6. 设??? ??≥+-<≤+<-=1 ,1)1sin(10,0,1)(x x b x a x x e x f x 。求b a ,使得)(x f 在1,0=x 可导。 解法1 因可导必连续,则 a f x f x ===- →)0(0)(lim 0,则0=a 。这样在1=x 处)(x f 也连续。 此时 110)0()(lim )0(0=-=--='-→-x e x f x f f x x ,1lim 0)0()(lim )0(00==--='+→+→+x x x f x f f x x , 。 1111)1()(lim )1(1=--=--='- →-x x x f x f f x ,b x x b x f x f f x x =--=--='+→+→+1 ) 1sin(lim 1)1()(lim )1(11。 若)1('f 存在,则应有b =1。此时1)1('=f 。 解法2 同理可得0=a 。 1lim )'1(lim )0(00==-='- →- →-x x x x e e f ,11lim )'(lim )0(00==+='+ →+→+x x a x f ,则1)0('=f 。 11lim )'(lim )1(11==+='- →- →-x x a x f ,b x b x b f x x =-=+-='+ →+ →+)1cos(lim ]'1)1sin([lim )1(11。 若)1('f 存在,则应有b =1。此时1)1('=f 。

微积分第二章典型例题

补充知识 一、数列与其子列之间的关系 定义 从数列}u {n 中任意抽取无穷多项,并保持原有次序,这样得到的一个新数列称为数列}u {n 的一个子数列,简称子列.记作 }u {k n : ,u ,,u ,u k 21n n n . 其中k n 表示k n u 在原数列}u {n 中的位置,k 表示k n u 在子列中的位置. 例如 :奇数子列 ,,,,1231-k u u u , 其中12,,3,121-===k n n n k 显然k n k ≥. 下面的定理给出了数列}u {n 与其子列}u {k n 之间的关系. 定理:对于数列}u {n , (1) A u lim n n =→∞ 的充要条件是对}u {n 的任何子数列}u {k n 都有A u lim k n k =∞ →. (2) A u lim n n =→∞ 的充要条件是}u {n 的偶数子列}u {k 2和奇数子列}u {1k 2+满 足 A u lim u lim 1k 2k k 2k ==+∞ →∞ →. (3) 若}u {n 单调,则A u lim n n =→∞ 的充要条件是存在一个子数列}u {k n 满足 A u lim k n k =∞ →. 二、数列极限与函数极限的关系 定理2.18(Heine 定理)A x f x x =→)(lim 0 的充要条件为: 对于任意收敛于0x 的数列}{n x )(0x x n ≠,都有A )x (f lim n n =∞ →. 常用结论:若A x f x =+∞ →)(lim ,则A n f n =∞ →)(lim 。 例如:由1sin lim =→x x x ,可以推出111 sin lim =∞→n n n ,11 1sin lim 22 =++∞→n n n n n 等。

《多元函数微积分》习题解答第二章-15页word资料

习题2-1 1、解:在任意一个面积微元 SKIPIF 1 < 0 上的压力微元 SKIPIF 1 < 0 ,所以,该平面薄片一侧所受的水压力 SKIPIF 1 < 0 2、解:在任意一个面积微元σd 上的电荷微元σμd y x dF ),(=,所以,该平面薄片的电荷总量??=D d y x Q σμ),( 3、解:因为10,10≤≤≤≤y x ,所以1122++≤++y x y x ,又u ln 为单调递增函数,所以()()1ln 1ln 22++≤++y x y x ,由二重积分的保序性得 ( ) ()????≤≤≤≤≤≤≤≤++≤ ++1 01 01 010221ln 1ln y x y x d y x d y x σσ 4、解:积分区域D 如图2-1-1所示,所以该物体的质量 3 4 )384438()()(1 0321 22 2 2 2 =-+-=+=+=??? ??-dy y y y dx y x dy d y x M y y D σ 5、解:(1)积分区域如图2-1-2所示,所以????=1 10010),(),(x y dy y x f dx dx y x f dy (2)积分区域如图2-1-3所示,所以? ???=x x y y dy y x f dx dx y x f dy 2 /4 22 ),(),(2 ( 3 ) 积分 区 域 如图2-1-4所示,所以 ? ???+----=1 1210 2221 22 ),(),(y y x x x dx y x f dy dy y x f dx (4)积分区域如图2-1-5所示,所以????=e e x e y dx y x f dy dy y x f dx ),(),(1 0ln 00 6、解:(1)积分区域如图2-1-6所示,所以 () ? ????=??? ??-=-==1 01 054/1134/310 55 6 5111432322x x dx x x x dy y x dx d y x x x D σ ( 2) 积 分区 域如图2-1-7所示,所以 15 64)4(2122 2240 22 2 2 2 =-==? ? ???--dy y y dx xy dy d xy y D σ

高等数学2答案

习题11-1 对弧长的曲线积分 1.计算下列对弧长的曲线积分: (1) 22 x y L e ds +? ,其中L 为圆周222x y a +=,直线y x =及x 轴在第一象限内所围成的 扇形的整个边界; (2) 2x yzds Γ ? ,其中Γ为折线ABCD ,这里A 、B 、C 、D 依次为点(0,0,0)、(0,0,2)、 (1,0,2)、(1,3,2); (3) 2L y ds ? ,其中L 为摆线的一拱(sin )x a t t =-,(1cos )y a t =-(02)t π≤≤.

2.有一段铁丝成半圆形y ,其上任一点处的线密度的大小等于该点的纵坐标,求其质量。 解 曲线L 的参数方程为()cos ,sin 0x a y a ???π==≤≤ ds ad ??= = 依题意(),x y y ρ=,所求质量22 sin 2L M yds a d a π ??= ==?? 习题11-2 对坐标的曲线积分 1.计算下列对坐标的曲线积分: (1) 2 2()L x y dx -?,其中L 是抛物线2y x =上从点(0,0)到点(2,4)的一段弧; (2) 22()()L x y dx x y dy x y +--+?,其中L 为圆周222 x y a +=(按逆时针方向绕行); (3) (1)xdx ydy x y dz Γ +++-? ,其中Γ是从点(1,1,1)到点(2,3,4)的一段直线;

(4) dx dy ydz Γ -+? ,其中Γ为有向闭折线ABCA ,这里A 、B 、C 依次为点(1,0,0)、 (0,1,0)、(0,0,1); 2.计算 ()()L x y dx y x dy ++-?,其中L 是: (1)抛物线2 y x =上从点(1,1)到点(4,2)的一段弧; (2)从点(1,1)到点(4,2)的直线段; (3)先沿直线从点(1,1)到点(1,2),然后再沿直线到(4,2)的折线;

微积分2习题答案

微积分2习题答案

一、填空题 1.设)(x P 是x 的多项式,且26)(lim 23=-∞→x x x P x ,3) (lim 0=→x x P x ,则=)(x P 2.=-++∞ →))(arcsin(lim 2x x x x 6 π x x x 32623++↑ 3.=??? ??-∞ →3 21lim x x x 3 2-e 4.设A x x ax x x =-+--→14 lim 31,则有=a ,=A 4,-2 5.设x x x x x f sin 2sin )(+=,则=∞→)(lim x f x 2 6.=?+→2 32031 sin sin lim x x x x x 31 7.函数) 2)(1(1+-+=x x x y 的间断点是 1=x 8.为使函数()x x x f tan 1 ?=在点0=x 处连续,应补充定义()=0f 1 9.设函数?????=≠-=00)1(3 x K x x y x 在0=x 处连续,则参数=K 3-e 10.函数???>+≤+=0 10 )(x e x a x x f x 在点0=x 处连续,则=a 2 二、单项选择题 1.设0>n x ,且n n x ∞ →lim 存在,则n n x ∞ →lim ② ①0> ②0≥ ③0= ④0< 2.极限=-→1 11 lim x e x ③ ①∞ ②1 ③不存在 ④0 3.=++∞ →-→x x x x x x 1 sin lim ) 1(lim 10 ④ ①e ; ②1e -; ③1e +; ④1 1e -+

4.()() 213 ++-= x x x y 的连续区间是__________________ ② ①()()()+∞----∞-,11,22, ②[)+∞,3 ③()()+∞--∞-,22, ④()()+∞--∞-,11, 5.函数1 2 111 11+----=x x x x y 的不连续点有 ③ ①2个 ②3个 ③4个 ④4个以上 6.下列函数中,.当0→x 时,与无穷小量x 相比是高阶无穷小量的是 ___________;是等价无穷小量的是__________________ ①,② ①x cos 1- ②2x x + ③x ④x 2sin 7.当+→0x 时,x sin 与||x 相比是 ② ①高阶无穷小量 ②低阶无穷小量 ③同阶但不等价的无穷小量 ④等价无穷小量 8.当0→x 时,x 2cos 1-与2x 相比是 ② ①高阶无穷小量 ②同阶但不等价的无穷小量 ③低阶无穷小量 ④等价无穷小量 9.设()?? ???=≠-=00 ,3sin x k x x x x f 为连续函数,则k =_______________ ② ① 1 ② -3 ③ 0 ④ 3 10.函数()x f 在点0x 处有定义是()x f 当0x x →时极限存在的 ④ ①充分但非必要条件 ②必要但非充分条件 ③充分必要条件 ④既非充分又非必要条件 11.当0→x 时,下列函数中比x 高阶的无穷小量是 ② ①x x sin + ②x x sin - ③()x +1ln ④()x -1ln 12.当0→x 时,下列函数中为无穷小量的是 ② ①x x 1sin + ②x x 1sin ? ③x x sin 1 + ④ x x sin 1 ? 13.当∞→x 时,下列函数中为无穷小量的是 ③ ①x x 1sin + ②x x 1sin ? ③x x sin 1 + ④ x x sin 1 ?

相关文档
最新文档