动量守恒定律弹簧模型

动量守恒定律弹簧模型
动量守恒定律弹簧模型

动量守恒定律 子弹打木块 弹簧 板块 三模型

一、 子弹大木块 【例2】如图所示,质量为M 的木块固定在光滑的水平面上,有一质量为m 的子弹以初速度v 0水平射向木块,并能射穿,设木块的厚度为d ,木块给子弹的平均阻力恒为f .若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件? 【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为v ,把子弹和木块当做一个系统,在它们作用前后系统的动量守恒,即 mv 0=(m +M )v 对系统应用动能定理得 fd =12mv 20-12(M +m )v 2 由上面两式消去v 可得 fd =12mv 20-12(m +M )(mv 0m +M )2 整理得1 2mv 20=m +M M fd 即12mv 20=(1+m M )fd 据上式可知,E 0=12mv 20 就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰 能打穿木块所必须具有的初动能与子弹受到的平均阻力f 和木块的厚度d (或者说与f ·d )有关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能E 0 必须大于(1+m M )f ·d . 72、如图所示,静止在光滑水平面上的木块,质量为、长度为。—颗质量为的 子弹从木块的左端打进。设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚 好从木块的右端打出,则子弹的初速度 应等于多大?涉及子弹打木块的临界问题 分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。由动量守恒定律得: ① 要使子弹刚好从木块右端打出,则必须满足如下的临界条件: ②

动量守恒定律弹簧模型

动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s 的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N和

挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之 和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2

(完整版)动量守恒定律弹簧模型

弹簧模型+子弹打木块模型 弹簧模型 1.两物块A、B用轻弹簧相连,质量均为2kg,初始时弹簧处于原长,A、B两物块都以v=6m/s的速度在光滑的水平地面上运动,质量为4kg的物块C静止在前方,如图4所示.B 与C碰撞后二者会粘在一起运动.则在以后的运动中: (1)当弹簧的弹性势能最大时,物块A的速度为多大? (2)系统中弹性势能的最大值是多少? 2.(多选)光滑水平地面上,A、B两物体质量都为m,A以速度v向右运动,B原来静止,左端有一轻弹簧,如图所示,当A撞上弹簧,弹簧被压缩最短时() A.A、B系统总动量仍然为mv B.A的动量变为零 C.B的动量达到最大值 D.A、B的速度相等 3.如图所示,质量相等的两个滑块位于光滑水平桌面上,其中弹簧两端分别与静止的滑块N 和挡板P相连接,弹簧与挡板的质量均不计;滑块M以初速度v0向右运动,它与档板P碰撞(不粘连)后开始压缩弹簧,最后滑块N以速度v0向右运动。在此过程中( ) A.M的速度等于0时,弹簧的弹性势能最大 B.M与N具有相同的速度时,两滑块动能之和最小 C.M的速度为v0/2时,弹簧的长度最长 D.M的速度为v0/2时,弹簧的长度最短 4.如图甲所示,一轻弹簧的两端与质量分别是m1和m2的两木块A、B相连,静止在光滑水平面上.现使A瞬间获得水平向右的速度v=3 m/s,以此时刻为计时起点,两木块的速度随时间变化规律如图乙所示,从图示信息可知() A.t1时刻弹簧最短,t3时刻弹簧最长 B.从t1时刻到t2时刻弹簧由伸长状态恢复到原长 C.两木块的质量之比为m1:m2=1:2 D.在t2时刻两木块动能之比为E K1:E K2=1:4 5.质量为m的物块甲以3 m/s的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m的物块乙以4 m/s的速度与甲相向运动,如图所示,则()

动量守恒定律中的典型模型.doc

动量守恒定律中的典型模型 1、子弹打木块模型包括木块在长木板上滑动的模型,其实是一类题型,解决方法基本相同。一般要用到动量守恒、动量定理、动能定理及动力学等规律,综合性强、能力要求高,是高中物理中常见的题型之一,也是高考中经常出现的题型。 例1:质量为2m、长为L的木块置于光滑的水平面上,质量为m的子弹以初速度V0水平向右射穿木块后,速度为V0/2。设木块对子弹的阻力F恒定。求: (1)子弹穿过木块的过程中木块的位移 (2)若木块固定在传送带上,使木块随传送带始终以恒定速度u

3、弹簧木块模型 例5、质量为m 的物块甲以3m/s 的速度在光滑水平面上运动,有一轻弹簧固定其上,另一质量也为m 的物体乙以4m/s 的速度与甲相向运动,如图所示。则( ) A .甲、乙两物块在弹簧压缩过程中,由于弹力作用,动量 不守恒 B .当两物块相距最近时,甲物块的速率为零 C .当甲物块的速率为1m/s 时,乙物块的速率可能为2m/s ,也可能为0 D .甲物块的速率可能达到5m/s 例6、如图所示,光滑的水平面上有m A =2kg ,m B = m C =1kg 的三个物体,用轻弹簧将A 与B 连接.在A 、C 两边用力使三个物体靠近,A 、B 间的弹簧被压缩,此过程外力做功72 J ,然后从静止开始释放,求: (1)当物体B 与C 分离时,B 对C 做的功有多少? (2)当弹簧再次恢复到原长时,A 、B 的速度各是多大? 例7、如图所示,光滑水平地面上静止放置两由弹簧相连木块A 和B,一质量为m 子弹,以速度v 0,水平击中木块A,并留在其中,A 的质量为3m,B 的质量为4m. (1)求弹簧第一次最短时的弹性势能 (2)何时B 的速度最大,最大速度是多少? 4、碰撞、爆炸、反冲 Ⅰ、碰撞分类(两物体相互作用,且均设系统合外力为零) (1)按碰撞前后系统的动能损失分类,碰撞可分为弹性碰撞、非弹性碰撞和完全非弹性碰撞. (2)弹性碰撞前后系统动能相等.其基本方程为① m 1v 1+m 2v 2=m 1 v 1'+m 2 v 2' ② 222211222211'2 1'212121v m v m v m v m +=+ . (3)A 、B 两物体发生弹性碰撞,设碰前A 初速度为v 0,B 静止,则基本方程为 ① m A v 0=m A v A +m B v B ,② 2 2202 12121B B A A A v m v m v m += 可解出碰后速度0v m m m m v B A B A A +-=, C B A mv o B A

动量守恒定律弹簧类问题

质量为m 的钢板与直立轻弹簧的上端连接,弹簧下端固定在地上。平衡时,弹簧的压缩量为0x 如图3所示。 一物块从钢板正上方距离为03x 的A 处自由落下,打在钢板上并立刻与钢板一起向下运动,但不粘连。它们到达最底点后又向上运动。已知物块质量也为m 时,它们恰 能回到O 点。若物块质量为2m ,仍从A 处自由落下,则物块与钢板回到O 点时,还具有向上的速度。求物块向上运动到达的最高点与O 点的距离。 在光滑水平导轨上放置着质量均为m 滑块B 和C ,B 和C 用轻质弹簧拴接,且都处于静止状态。在B 的右端有一质量也为m 的滑块A 以速度0v 向左运动,与滑块B 碰撞的碰撞时间极短,碰后粘连在一起,如图4所示,求弹簧可能具有的最大弹性势能和滑块C 可能达到的最大速度。 图3 图4 0v

在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能 (2006年江苏省前黄高级中学检测题)如图4所示,在光滑水平长直轨道上,A 、B 两小球之间有一处于原长的轻质弹簧,弹簧右端与B 球连接,左端与A 球接触但不粘连,已知m m m m B A 22 == ,,开始时A 、B 均静止。在A 球的左边有一质量为 m 2 1的小球C 以初速度0v 向右运动,与A 球碰撞后粘连在一起,成为一个复合球D ,碰撞时间极短,接着逐渐压缩弹簧并使B 球运动,经过一段时间后,D 球与弹簧分离(弹簧始终处于弹性限度内)。 (1)上述过程中,弹簧的最大弹性势能是多少? (2)当弹簧恢复原长时B 球速度是多大? (3)若开始时在B 球右侧某位置固定一块挡板(图中未画出),在D 球与弹簧分离前使B 球与挡板发生碰撞,并在碰后立即将挡板撤走,设B 球与挡板碰撞时间极短,碰后B 球速度大小不变,但方向相反,试求出此后弹簧的弹性势能最大值的范围。

高中物理动量守恒定律题20套(带答案)

高中物理动量守恒定律题20套(带答案) 一、高考物理精讲专题动量守恒定律 1.如图所示,在光滑的水平面上有一长为L 的木板B ,上表面粗糙,在其左端有一光滑的四分之一圆弧槽C ,与长木板接触但不相连,圆弧槽的下端与木板上表面相平,B 、C 静止在水平面上.现有滑块A 以初速度0v 从右端滑上B ,一段时间后,以0 2 v 滑离B ,并恰好能到达C 的最高点.A 、B 、C 的质量均为m .求: (1)A 刚滑离木板B 时,木板B 的速度; (2)A 与B 的上表面间的动摩擦因数μ; (3)圆弧槽C 的半径R ; (4)从开始滑上B 到最后滑离C 的过程中A 损失的机械能. 【答案】(1) v B =04v ;(2)20516v gL μ=(3)2064v R g =(4)20 1532 mv E ?= 【解析】 【详解】 (1)对A 在木板B 上的滑动过程,取A 、B 、C 为一个系统,根据动量守恒定律有: mv 0=m 2 v +2mv B 解得v B = 4 v (2)对A 在木板B 上的滑动过程,A 、B 、C 系统减少的动能全部转化为系统产生的热量 2 220001 11()2()22224 v v mgL mv m m μ?=-- 解得20 516v gL μ= (3)对A 滑上C 直到最高点的作用过程,A 、C 系统水平方向上动量守恒,则有: 2 mv +mv B =2mv A 、C 系统机械能守恒: 22200111 ()()222242 v v mgR m m mv +-?= 解得2 64v R g = (4)对A 滑上C 直到离开C 的作用过程,A 、C 系统水平方向上动量守恒

动量守恒 二 弹簧连接体模型

动量守恒(二)——弹簧连接体模型 1、在如图所示的装置中,木块B与水平面间的接触面是光滑的,子弹A沿水平方向向射入木块后并留在木块内,将弹簧压缩到最短。现将木块、弹簧、子弹合在一起作为研究对象,则此系统在从子弹开始射入到弹簧压缩到最短的过程中[??] A.动量守恒,机械能守恒? B.动量不守恒,机械能不守恒? C.动量守恒,机械能不守恒? D.动量不守恒,机械能守恒 2、如图所示放在光滑水平桌面上的A、B木块中部夹一被压缩的弹簧,当弹簧被放开时,它们 各自在桌面上滑行一段距离后,飞离桌面落在地上.A的落地点与桌边水平距离0.5米,B的落 点距桌边1米,那么 A.A、B离开弹簧时速度比为1 :2??????? B.A、B质量比为2 :1 C.未离弹簧时,A、B所受冲量比为1 :2? D.未离弹簧时,A、B加速度之比为1 :2

3、如图所示,一轻质弹簧两端连着物体A和B,放在光滑的水平面上,物体A被水平速度为v0的子弹射中并且嵌入其中。已知物体B的质量为m,物体A的质量是物体B的质量的3/4,子弹的质量是物体B的质量的1/4 ①A物体获得的最大速度 ②求弹簧压缩到最短时B的速度。 ③弹簧的最大弹性势能。 4、如图所示,质量为m2和m3的物体静止在光滑的水平面上,两者之间有压缩着的弹簧,一个质量为m1的物体以速度v0向右冲来,为了防止冲撞,m2物体将m3物体以一定速度弹射出去,设m1与m3碰撞后粘合在一起,则m3的弹射速度至少为多大,才能使以后m3和m2不发生碰撞? 5、如图所示,在光滑的水平面上,物体A跟物体B用一根不计质量的弹簧相连,另一物体C跟物体B靠在一起,但不与B相连,它们的质量分别为m A=0.2 kg,m B=m C=0.1 kg。现用力将C、B和A压在一起,使弹簧缩短,在这过程中,外力对弹簧做功7.2 J.然后, 由静止释放三物体.求: (1)弹簧伸长最大时,弹簧的弹性势能. (2)弹簧从伸长最大回复到原长时,A、B的速度.(设弹簧在弹性限度内) 6、质量为M的小车置于水平面上,小车的上表面由光滑的1/4圆弧和光滑平面组成,圆弧半径为R,车的右端固定有一不计质量的弹簧。现有一质量为m的滑块从圆弧最高处无

【物理】 物理动量守恒定律专题练习(及答案)

【物理】 物理动量守恒定律专题练习(及答案) 一、高考物理精讲专题动量守恒定律 1.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。某兴趣小组制作了两种火箭模型来探究多级结构的优越性,模型甲内部装有△m=100 g 的压缩气体,总质量为M=l kg ,点火后全部压缩气体以v o =570 m/s 的速度从底部喷口在极短的时间内竖直向下喷出;模型乙分为两级,每级内部各装有2 m ? 的压缩气体,每级总质量均为 2 M ,点火后模型后部第一级内的全部压缩气体以速度v o 从底部喷口在极短时间内竖直向下喷出,喷出后经过2s 时第一级脱离,同时第二级内全部压缩气体仍以速度v o 从第二级底部在极短时间内竖直向下喷出。喷气过程中的重力和整个过程中的空气阻力忽略不计,g 取10 m /s 2,求两种模型上升的最大高度之差。 【答案】116.54m 【解析】对模型甲: ()00M m v mv =-?-?甲 21085=200.5629 v h m m g =≈甲甲 对模型乙第一级喷气: 10022 m m M v v ??? ?=-- ???乙 解得: 130m v s =乙 2s 末: ‘ 11=10m v v gt s -=乙乙 22 11 1'=402v v h m g -=乙乙乙 对模型乙第一级喷气: ‘120=)2222 M M m m v v v ??--乙乙( 解得: 2670= 9 m v s 乙 2 2222445=277.10281 v h m m g =≈乙乙 可得: 129440 += 116.5481 h h h h m m ?=-≈乙乙甲。 2.一质量为的子弹以某一初速度水平射入置于光滑水平面上的木块 并留在其中, 与木块 用一根弹性良好的轻质弹簧连在一起,开始弹簧处于原长,如图所示.已知弹簧 被压缩瞬间 的速度 ,木块 、 的质量均为 .求:

动量守恒之弹簧及圆弧模型

相互作用的两个物体在很多情况下运动特征与碰撞问题类似,可以运用动量、能量守恒来分析,物块弹簧模型是一类典型的问题。我们首先结合下面的例子,说明如何分析物块弹簧模型的运动情景。 【问题】如图所示,物块B 左端固定一轻弹簧,静止在光滑的水平面上, A 物体以速度0v 向 B 运动,假设A 与弹簧接触之后立即与弹簧粘连在一起不再分开,那么此后A 、B 与弹簧相互作用的过程中,运动情景如何呢? 【分析】A 、B 的运动涉及追及相遇问题,重点要把握住:两物体距离最近(弹簧最短)或最远(弹 簧最长)时二者的速度相等。 ⑴ 弹簧刚开始被压缩的过程中,B 受到弹簧的弹力向右做加速运动,A 受到弹力做减速运动,开始时A 的速度大于B 的速度,弹簧一直被压缩;⑵ 当A B 、的速度相等时,弹簧缩短到最短,此时弹簧的弹性势能最大;⑶ 此后由于A 继续减速,B 继续加速,B 的速度开始大于A 的速度,弹簧压缩量逐渐减小;⑷ 当弹簧恢复至原长时,弹性势能为零,A 的速度减至最小,B 的速度增至最大;⑸ 此后弹簧开始伸长,A 做加速运动,B 做减速运动;⑹ 当弹簧伸长至最长时,A B 、的速度再次相等,弹簧的弹性势能最大;⑺ 此后A 继续加速,B 继续减速,弹簧逐渐缩短至原长;⑻ 当弹簧再恢复至原长时,弹性势能为零,A 的速度增至最大,B 的速度减至最小。此后将重复上述过程。 上面我们从受力和运动的角度,分析了弹簧的运动情景。如果两物体是在光滑水平面上运动,系统的动量守恒;在这个过程中只有两物体的动能和弹簧弹性势能的相互转化;因此,我们可以从动量和能量的角度来分析问题。设任意时刻A 、B 的速度分别为A v 、B v ,弹簧的弹性势能为p E 。 由动量守恒可得:0A A A B B m v m v m v =+; 由能量守恒可得:222 0p 111222 A A A B B m v m v m v E =++; 由此可以求解整个运动过程中各种速度及弹性势能的极值问题,具体结果请同学们自己分析。 **************************************************************************************** 例题说明:例1、例2侧重对运动过程的分析,可以利用碰撞模型的结论对结果进行分析;例3结合图象分析运动过程并进行简单计算,此题只要求会读取有用信息即可,不要求学生明白为什么图象是这样的,因此不涉及简谐振动内容;例4计算速度及弹性势能等的极值;例5是简单变式,但本质仍是动量能量双守恒;例6、例7是涉及多物体多过程的问题。挑战极限部分的两道题难度较大,例8设问比较特别,需要通过假设进行推理;例9是竖直方向的弹簧模型,运动情景比较复杂,需要分析清楚 动量 ——弹簧与圆弧轨道问题 知识点睛 例题精讲 对比碰撞模型,我们会发现:从初始到弹簧压缩到最短的过程,实际上是一个完全非弹性碰撞的过程;从初始到弹簧第一次恢复原长过程,实际上是一个弹性碰撞的过程;两个模型所列出的动量、能量守恒方程类似(只是非弹性碰撞过程中损失的能量表现为弹性势能),因此我们可以直接套用上一讲碰撞问题中得出的结果。

物理第67讲-动量定理、动量守恒——弹簧模型

/s o 10 5 4 动量定理、动量守恒—弹簧模型 一、学习目标 (1)掌握弹簧模型的解题思路; (2)灵活应用动量定理,结合机械能守恒知识解决弹簧问题。 二、例题解析 【例1】两个小木块B 、C 中间夹着一根轻弹簧,将弹簧压缩后用细线将两个木块绑在一起,使它们一起在光滑水平面上沿直线运动,这时它们的运动图线如图中a 线段所示,在t=4s 末,细线突然断了,B 、C 都和弹簧分离后,运动图线分别如图中b 、c 线段所示。从图中的信息可知 ( ) A . B 、 C 都和弹簧分离后的运动方向相反 B .B 、C 都和弹簧分离后,系统的总动量增大 C .B 、C 分离过程中B 木块的动量变化较大 D .B 木块的质量是C 木块质量的四分之一 【例2】如图所示,一轻质弹簧两端连着物体A ,B ,放在光滑的水平面上,若物体A 被水平速度为v0的子弹射中,且后者嵌在物体A 的中心,已知物体A 的质量是物体B 质量的3/4,子弹质量是物体B 的1/4,弹簧被压缩到最短时,求物体A 、B 的速度。

【例3】竖直放置的轻弹簧,上端与质量为3.0kg 的物块B 相连接。另一个质量为1.0kg 的物块A 放在B 上。先用竖直向下的力F 压A ,使弹簧被压缩一定量,系统静止。然后突然撤去力F ,A 、B 共同向上运动一段距离后将分离。分离后A 又上升了0.20m 到达最高点,此时B 的速度方向向下,且弹簧恰好为原长。则从A 、B 分离到A 上升到最高点过程中,弹簧对B 的冲量大小为(取g=10m/s2)( ) A .1.2N ?s B .6.0N ?s C .8.0N ?s D .12N ?s 三、课后习题 1.如图所示,两物体A 、B 用轻质弹簧相连,静止在光滑水平面上,现同时对A 、B 两物体施加等大反向的水平力 1 F 、 2 F ,使A 、B 同时由静止开始运动,在运动过程中,对A 、 B 两物体及弹簧组成的系统,下列说法正确的是(整个过程中弹簧不超过其弹性限度)( ) A .机械能始终守恒,动量始终守恒 B .机械能不断增加,动量不断增加 C .当弹簧伸长到最长时,系统的机械能最大 D .当弹簧弹力的大小与1 F 、 2 F 的大小相等时,系统总动能最大

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

————————————————————————————————作者: ————————————————————————————————日期:

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=mv; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物理量,大小关系为E k=错误!或p= 2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量.(2)公式:m v′-m v=F(t′-t)或p′-p=I. 3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变

动量守恒定律子弹打木块弹簧板块三模型

【例2】如图所示,质量为M的木块固定在光滑的水平面上,有一质量为m的子弹以初速 度v o水平射向木块,并能射穿,设木块的厚度为d,木块给子 均阻力恒为f.若木块可以在光滑的水平面上自由滑动,子弹以初速度水平射向静止的木块,假设木块给子弹的阻力与前一情试问在此情况下要射穿该木块,子弹的初动能应满足什么条件? 【解析】若木块在光滑水平面上能自由滑动,此时子弹若能恰好打穿木块,那么子弹穿 出木块时(子弹看为质点),子弹和木块具有相同的速度,把此时的速度记为 v,把子弹和木 块当做一个系统,在它们作用前后系统的动量守恒,即 mv o= (m+ M)v 对系统应用动能定理得 fd = mv—(M + m)v2 由上面两式消去v可得 fd = mv—(m+ M)()2 整理得mv= fd 即mv= (1+ )fd 据上式可知,E o= mv就是子弹恰好打穿木块所必须具有的初动能,也就是说,子弹恰能打穿木块所必须具有的初动能与子弹受到的平均阻力f和木块的厚度d(或者说与f ? d)有 关,还跟两者质量的比值有关,在上述情况下要使子弹打穿木块,则子弹具有的初动能 E o 必须大于(1 + )f ? d. 72、如图所示,静止在光滑水平面上的木块,质量为 "、长度为二。—颗质量为血的子弹从木块的左端打进。设子弹在打穿木块的过程中受到大小恒为弹的平同样的况一样,

;的阻力,要使子弹刚好 从木块的右端打出,则子弹的初速度“应等于多大?涉及子弹打木 块的临界问题 分析:取子弹和木块为研究对象,它们所受到的合外力等于零,故总动量守恒。由动量 守恒定律得: 要使子弹刚好从木块右端打出,贝U必须满足如下的临界条件:'= ' -② Ff L =—畑说——腴才——必弓 根据功能关系得:;③ |2(伙+丛)码-L 解以上三式得: 二、板块 1、如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量为m的物块(可视为质点),以水平初速度V。从木块的左端滑向右端,设物块与木块间的动摩擦因数为,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。 图1 解析:可先根据动量守恒定律求出m和M的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q。 对物块,滑动摩擦力F f做负功,由动能定理得: 即F f对物块做负功,使物块动能减少。 1 对木块,滑动摩擦力F f对木块做正功,由动能定理得F f s -Mv2,即F f对木块做正功, 2 使木块动能增加,系统减少的机械能为:

物理动量守恒定律练习题20篇及解析

物理动量守恒定律练习题20篇及解析 一、高考物理精讲专题动量守恒定律 1.(16分)如图,水平桌面固定着光滑斜槽,光滑斜槽的末端和一水平木板平滑连接,设物块通过衔接处时速率没有改变。质量m 1=0.40kg 的物块A 从斜槽上端距水平木板高度h=0. 80m 处下滑,并与放在水平木板左端的质量m 2=0.20kg 的物块B 相碰,相碰后物块B 滑行x=4.0m 到木板的C 点停止运动,物块A 滑到木板的D 点停止运动。已知物块B 与木板间的动摩擦因数 =0.20,重力加速度g=10m/s 2,求: (1) 物块A 沿斜槽滑下与物块B 碰撞前瞬间的速度大小; (2) 滑动摩擦力对物块B 做的功; (3) 物块A 与物块B 碰撞过程中损失的机械能。 【答案】(1)v 0=4.0m/s (2)W=-1.6J (3)E=0.80J 【解析】试题分析: ①设物块A 滑到斜面底端与物块B 碰撞前时的速度大小为v 0,根据机 械能守恒定律有m 1gh = 12 m 12 0v (1分)v 02gh ,解得:v 0=4.0 m/s(1分) ②设物块B 受到的滑动摩擦力为f ,摩擦力做功为W ,则f =μm 2g(1分) W =-μm 2gx 解得:W =-1.6 J(1分) ③设物块A 与物块B 碰撞后的速度为v 1,物块B 受到碰撞后的速度为v ,碰撞损失的机械能为E ,根据动能定理有-μm 2gx =0-1 2 m 2v 2 解得:v =4.0 m/s(1分) 根据动量守恒定律m 1v 0=m 1v 1+m 2v(1分) 解得:v 1=2.0 m/s(1分) 能量守恒 12m 120v =12m 12 1v +12 m 2v 2+E(1分) 解得:E =0.80 J(1分) 考点:考查了机械能守恒,动量守恒定律 2.人站在小车上和小车一起以速度v 0沿光滑水平面向右运动.地面上的人将一小球以速度v 沿水平方向向左抛给车上的人,人接住后再将小球以同样大小的速度v 水平向右抛出,接和抛的过程中车上的人和车始终保持相对静止.重复上述过程,当车上的人将小球向右抛出n 次后,人和车速度刚好变为0.已知人和车的总质量为M ,求小球的质量m . 【答案】0 2Mv m nv 【解析】

人教版高二物理3-5动量守恒常见模型归类练习(含答案)

动量守恒常见模型练习 班级:__________ 座号:_______ 姓名:_______________ 一、弹性碰撞 1.如图,一条滑道由一段半径R =0.8 m 的14 圆弧轨道和一段长为L =3.2 m 水平轨道MN 组成,在M 点处放置一质量为m 的滑块B ,另一个质量也为m 的滑块A 从左侧最高点无初速度释放,A 、B 均可视为质点.已知圆弧轨道光滑,且A 与B 之间的碰撞无机械能损失(取g =10 m/s 2). (1)求A 滑块与B 滑块碰撞后的速度v A ′和v B ′; (2)若A 滑块与B 滑块碰撞后,B 滑块恰能达到N 点,则MN 段与B 滑块间的动摩擦因 数μ的大小为多少? 二、非弹性碰撞 2.如图所示,质量m =1.0 kg 的小球B 静止在光滑平台上,平台高h =0.80 m .一个质量为 M =2.0 kg 的小球A 沿平台自左向右运动,与小球B 发生正碰,碰后小球B 的速度v B =6.0 m/s ,小球A 落在水平地面的C 点,DC 间距离s =1.2 m .求: (1)碰撞结束时小球A 的速度v A ; (2)小球A 与小球B 碰撞前的速度v 0的大小. 三、完全非弹性碰撞 3.如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R ,MN 为直径 且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R.重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小.

5有关弹簧模型的动量守恒

有关弹簧模型的动量守恒 弹簧类问题的思考重点在于物理过程的分析,即对弹.......................簧压缩或伸长过程有关物理量(特别是速度)的变化要清楚.......................... 。 【1】质量为m 的物块B静止在光滑水平面上,有一个轻质弹簧固定其上, 与B质量相等的物块A,以速度v 0撞击轻弹簧,如图1所示,当弹簧压缩量最大 时,弹簧具有的最大弹性势能等于(A ) A .2 04 1mv B .2081mv C.0 D.2 02 1mv 【2】.如图16所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧 竖直墙.用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E .这时突然撤去F ,关于A 、B 和弹簧组成的系统,下列说法中正确的是( ) A .撤去F 后,系统动量守恒,机械能守恒 B .撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒 C .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E D .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为 E /3 【3】如图3所示,质量都是1kg 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,B靠紧竖直墙.用水平力推A压缩弹簧,这个过程外力做功8J ,待系统静止后突然撤去外力,从撤去外力到弹簧第一次恢复到原长的过程中,墙对B的冲量大小为 ;A的速度最大为 ;B离墙后A 、B 间距第一次最大时弹性势能为 . 图1 A B v 0 图2 A F B 图3 B F A

【4】 如图所示,质量为M 的平板小车静止在光滑的水平地面上,小车左端放一质量为m 的木块,车的右端固定一个轻质弹簧,现给木块一个水平向右的瞬时冲量I ,木块便沿车板向右滑行,在与弹簧相碰后又沿原 路返回,并且恰好能到达小车的左端,试求: (1)弹簧被压缩到最短时平板小车的动量; (2)木块返回到小车左端时小车的动能; (3)弹簧获得的最大弹性势能。 【5】 如图所示,在光滑水平面上有两块木块A 和B ,质量均为m ,B 的左侧固定一轻质弹簧。开始时B 静止,A 以v 0速度向右运动与B 发生无机械能损失的碰撞,那么A 与B 碰撞过程中 ( ) A .任意时刻,A 、 B 系统的总动量应守恒 B .任意时刻,A 、B 系统的总动能恒定不变 C .当弹簧压缩到最短长度时,A 与B 具有相同的速度 D .当弹簧恢复到原长时,A 与B 具有相同的速度 【6】.如图6所示,质量为M 的小车A 右端固定一根轻弹簧,车静止在光滑水平面上,一质量为m 的小物块B 从左端以速度v 0冲上小车并压缩弹簧,然后又被弹回,回到车左端时刚好与车保持相对静止.求整个 过程中弹簧的最大弹性势能E P 和B 相对于车向右运动过程 中系统摩擦生热Q 各是多少? 图4 m M M 图6 m v 0

高中物理选修5——动量守恒(碰撞模型)

模型组合讲解——水平方向上的碰撞+弹簧模型 [模型讲解] 一、光滑水平面上的碰撞问题 例1. 在光滑水平地面上有两个相同的弹性小球A 、B ,质量都为m ,现B 球静止,A 球向B 球运动,发生正碰。已知碰撞过程中总机械能守恒,两球压缩最紧时的弹性势能为E P ,则碰前A 球的速度等于( ) A. m E P B. m E P 2 C. m E P 2 D. m E P 22 解析:设碰前A 球的速度为v 0,两球压缩最紧时的速度为v ,根据动量守恒定律得出mv mv 20=,由能量守恒定律得 220)2(21 21v m E mv P +=,联立解得m E v P 20=,所以正确选项为C 。 二、光滑水平面上有阻挡板参与的碰撞问题 例2. 在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”。这类反应的前半部分过程和下述力学模型类似,两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态,在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度v 0射向B 球,如图1所示,C 与B 发生碰撞并立即结成一个整体D ,在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变,然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连,过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失),已知A 、B 、C 三球的质量均为m 。 图1 (1)求弹簧长度刚被锁定后A 球的速度。 (2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。 解析:(1)设C 球与B 球粘结成D 时,D 的速度为v 1,由动量守恒得10)(v m m mv +=当弹簧压至最短时,D 与A 的速度相等,设此速度为v 2,由动量守恒得2132mv mv =,由以上两式求得A 的速度 023 1 v v = 。 (2)设弹簧长度被锁定后,贮存在弹簧中的势能为E P ,由能量守恒,有 P E mv mv +?=?222132 1221撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转弯成D 的动能,设D 的速度为v 3,则有2 3)2(2 1v m E P ?= 以后弹簧伸长,A 球离开挡板P ,并获得速度,当A 、D 的速度相等时,弹簧伸至最长,设此时的速度为v 4,由动量守恒得4332mv mv =

高考物理专题复习一 动量定理和动量守恒定律 力学中含弹簧的碰撞模型练习题

2008高考物理专题复习一 动量定理和动量守恒定律 力学中含弹簧的 碰撞模型练习题 知识要点: 在有关弹簧类问题中,要特别注意使用如下特点和规律: 1、弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化。 2、只有一端有关联物体,另一端固定的弹簧。其运动过程结合弹簧振子的运动规律去认识,突出过程的周期性、对称性及特殊点的用应。如当弹簧伸长到最长或压缩到最短时,物体的速度最小(为零),弹簧的弹性势能最大,此时,也是联系物体的速度方向发生改变的时刻。若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零。若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零。若关联物同时处在电磁场中,要注重过程分析。 3、两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相同,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零。若物体再受阻力时,弹力与阻力相等时,物体速度最大。针对此类问题,要立足运动和受力分析,在解题方法上以动量定理、动量守恒定律和动能定理等为首选。 1、 如图所示,为水平气垫导轨,滑块A 、B 用轻弹簧相连,今将弹簧压紧后用轻绳系在A 、B 上,然后以恒定的速度v 0向右运动,已知A 、B 质量分别为m 1、m 2,且m 1< m 2,滑动中轻绳突然断开,当弹簧第一次恢复到自然长度时,滑块A 的速度刚好为零。求:(1)绳断开到第一次恢复到自然长度过程中弹簧释放的弹性势能E P ; (2) 在以后运动过程中,滑块B 是否会有速度等于零的时刻?试通过定量分析、讨论,来证明你的结论。 ( E p =m 1(m 1+m 2)v 02 /2m 2 ; 不可能) 2、如图所示,质量为m 2 和m 3的两物体静止在光滑的水平面上,它们之间有压缩的弹簧,一质量为m 1的物体以速度v 0向右冲来,为防止冲撞,弹簧将m 2 、m 3向右、左弹开,m 3与m 1碰后即粘合在一起。问m 3的速度至少应多大,才能使以后m 3和m 2不发生碰撞? ( 032132 1) (υm m m m m m ++ )

动量守恒定律 子弹 弹簧模型

一、子弹大木块 1、如图所示,质量为M的木块固定在光滑的水平面上,有一质量为m的子弹以初速度v0水平射向木块,并能射穿,设木块的厚度为d,木块给子弹的平均阻力恒为f.若木块可以在光滑的水平面上自由滑动,子弹以同样的初速度水平射向静止的木块,假设木块给子弹的阻力与前一情况一样,试问在此情况下要射穿该木块,子弹的初动能应满足什么条件? 2、如图所示,静止在光滑水平面上的木块,质量为、长度为。—颗质量为的子弹 从木块的左端打进。设子弹在打穿木块的过程中受到大小恒为的阻力,要使子弹刚好从木块的右端打出,则子弹的初速度应等于多大?涉及子弹打木块的临界问题

二、板块 3、如图1所示,一个长为L、质量为M的长方形木块,静止在光滑水平面上,一个质量 v从木块的左端滑向右端,设物块与木块间的动为m的物块(可视为质点),以水平初速度 摩擦因数为 ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q。 图1 4、如图所示,—质量为M、长为l的长方形木板B放在光滑的水平地面上,在其右端放一质量为m的小木块A,m<M.现以地面为参照系给A和B以大小相等、方向相反的初速度(如图),使A开始向左运动、B开始向右运动,但最后A刚好没有滑离B板.以地面为参照系, (1)若已知A和B的初速度大小为,求它们最后的速度的大小和方向. (2)若初速度的大小未知,求小木块A向左运动到达的最远处(从地面上看)离出发点的距离.

三、 弹簧 5.(8分)如图2所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.小木块 A 以速度v 0=10 m/s 由滑板 B 左端开始沿滑板B 表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m/s 2.求: (1)弹簧被压缩到最短时木块A 的速度 ; 2 m/s (2)木块A 压缩弹簧过程中弹簧的最大弹性势能. 39 J 6、(09·山东·38)(2)如图所示,光滑水平面轨道上有三个木块,A 、B 、C ,质量分别为m B =m c =2m ,m A =m ,A 、B 用细绳连接,中间有一压缩的弹簧 (弹簧与滑块不栓接)。开始时A 、B 以共同速度v 0运动,C 静止。某时刻细绳突然断开,A 、B 被弹开,然后B 又与C 发生碰撞并粘在一起,最终三滑块速度恰好相同。求B 与C 碰撞前B 的速度。 0v

专题21动量守恒定律(弹簧模型)-2019高考物理一轮复习专题详解(解析版)

1.动量守恒条件. (1)系统不受外力或合外力为零时,动量守恒. (2)若在某一方向合外力为0,则该方动量守恒. 2.规律方法 应用动量守恒定律解题的基本思路(1)分析题意,明确研究对象,确定所研究的系统是由哪些物体组成的.(2)对各阶段所选系统内的物体进行受力分析,区分系统内力和外力,在受力分析的基础上根据动量守恒定律条件判断能否应用动量守恒定律. (3)明确所研究物体间的相互作用的过程,确定过程的初、末状态,即系统内各个物体的初动量和末动量.(4)规定正方向,确定初、末状态的动量的正、负号,根据动量守恒定律列方程求解. 3.在一个多过程、或者比较复杂的运动中,可能存在着同时满足动量守恒和能量守恒以及机械能守恒的问题,那么我们要根据题中的条件判断是否符合动量守恒和机械能守恒的条件,然后利用公式解题。 动量守恒的条件:系统不受外力或者所受合外力为零,则系统机械能是守恒的机械能守恒的条件:只有重力或系统内弹力做功,系统的机械能是守恒的。动量守恒可以说某个方向上守恒,但机械能守恒不能说某个方向上守恒。 解动力学问题的三个基本观点(1)力的观点:运用牛顿定律结合运动学知识解题,可处理匀变速运动问题(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题 (3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题利用动量和能量的观点解题的技巧 (l )若研究对象为一个系统,应优先考虑应用动量守恒定律和能量守恒定律(机械能守恒定律). (2)若研究对象为单一物体,且涉及功和位移问题时,应优先考虑动能定理 (3)因为动量守恒定律、能量守恒定律(机械能守恒定律)、动能定理都只考查一个物理过程的始末两个 状态有关物理量间的关系,对过程的细节不予细究,这正是它们的方便之处,特别对于变力做功问题,就更显示出它们的优越性 例题分析 典例 1 如图所示,轻弹簧的一端固定在竖直墙上,质量为m 的光滑弧形槽静止放在光滑水平面上,弧形槽底端与水平面相切,一个质量也为m 的小物块从槽高h 处开始自由下滑,下列说法正确的是() A .在下滑过程中,物块的机械能守恒

相关文档
最新文档