解析各种检测器原理、用途和作用

解析各种检测器原理、用途和作用
解析各种检测器原理、用途和作用

气相色谱仪-检测系统

1.热导检测器热导检测器

( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果

热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。

2.气相色谱仪氢火焰离子化检测器

氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口

及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量

有机物分析。其缺点是不能检测惰性气体、空气、水、C0,CO2、NO、S02及H2S等。

3.气相色谱仪电子捕获检测器

电子捕获检测器是一种选择性很强的检测器,它只对合有电负性元素的组分产生响应,因此,这种检测器适于分析合有卤素、硫、磷、氮、氧等元素的物质。在电子捕获检测器内一端有一个多放射源作为负极,另一端有一正极。两极间加适当电压。当载气(N2)进入检测器时,受多射线的辐照发生电离,生成的正离子和电子分别向负极和正极移动,形成恒定的基流。合有电负性元素的样品AB进入检测器后,就会捕获电子而生成稳定的负离子,生成的负离子又与载气正离子复合。结果导致基流下降。因此,样品经过检测器,会产生一系列的倒峰。电子捕获检测器是常用的检测器之一,其灵敏度高,选择性好。主要缺点是线性范围较窄。

解析各种检测器的原理、用途和作用:

FID的全称是火焰离子化检测器,因为一般都用的是氢气,所以一般叫氢火焰检测器。它的原理很简单,氢气和空气燃烧生成火焰,当有机化合物进入火焰时,由于离子化反应,在火焰那里会生成比基流高几个数量级的离子,在极化电压的作用下,喷嘴和收集极之间的电流会增大,这些带正电荷的离子和电子分别向负极和正极移动,形成离子流,此离子流经放大器放大后,可被检测。产生的离子流与进入火焰的有机物含量成正比,利用此原理可进行有机物的定量分析。一般的有机化合物在FID上都有响应,一般分子量越大,灵敏度越高。FID是GC最基本的检测器。(仪器信息网)

ECD检测器全称电子捕获检测器,是一种灵敏度高,选择性强的检测器。它有一个放射源,会不间断地发射电子,这个电子流在通常的时间尺度下,可认为是恒定的,我们称为基流。利用镍源发生α射线轰击物质组分,使物质离子逃逸再被检测。当含有强电负性元素如卤素、O还有N等元素的化合物经过检测器时,他们会捕获并带走一部分电子而使基流下降,检测并记录基流信号的变化就可以得到谱图。是分析痕量电负性化合物最有效的检测器,也是放射性离子化检测器中应用最广的一种,被广泛用于生物、医药、环保、金属鳌合物及气象追踪等领域。因此,ECD是一个选择性的检测器,仅对含强电负性元素的化合物有高响应,它的灵敏度很高,比FID要高出2-3个数量级。(仪器信息网)

TCD是根据组分和载气有不同的导热系数研制而成的。组分通过热导池且浓度有变化时,就会从热敏元件上带走不同热量,从而引起热敏元件阻值变化,此变化可用电桥来测量。几乎所有物质的电阻率都随其本身温度的变化而变化,这一蜗箜现象称谓热电阻效应。热导池检测器就是基于气体热传导和热电阻效应的一种检测装置,它检测气体浓度的过程是通过热电阻(钨铼丝元件)与被测气体之间热交换和热平衡来实现的。热导池在结构上就是将电阻率较大的钨铼丝元件置于一个有气体可进出流过的金属块体的气室中,一般多用四个元件,在电路上组成典型的惠斯顿电桥电路。当被测气体组份被载气带入气室时,就发生了一系列的变化:气室中气体组成变化气体导热率变化热电阻温度变化,热电阻阻值变化,电桥平衡

被破坏就输出象应的电讯号,这个讯号与被测气体浓度成一定的线性函数关系。(仪器信息网)

NPD为氮磷检测器。由于NPD 对含N、P 的有机物的检测肯有灵敏度高,选择性强,线性范围宽的优点,它已成为目前测定含N 有机物最理想的气相色谱检测器;对含P 的有机物,其灵敏度也高于FPD,而且结构简单,使用方便;所以广泛用于环境、临床、食品、药物、香料、刑事法医等分析领域,成为最常用的气相色谱检测器,目前几乎所以的商品色谱仪都装备这种检测器。

FPD为火焰光度检测器。是分析S、P 化合物的高灵敏度、高选择性的气相色谱检测器。广泛用于环境、食品中S、P 农药残留物的检测。当含S、P 的化合物进入检测器,在富氢焰(H2 与O2 体积比)中燃烧时,从基态到激发态发出特征光谱,分别发射出(350-480)nm 和(480-600)nm 的一系列特征波长光,其中394nm 和526nm 分别为含S 和含P化合物的特征波长。其特征光透过特征光单色滤光片直接投射在光电倍增管上,通过光电倍增管将光信号转换成电信号,经微电流放大器放大传输给色谱工作站的数据采集卡,数据采集卡将其模拟信号转换成数字信号,便可得到相应的谱峰。以前一直将FPD 作为S 和P 化合物的专用检测器,后由于氮磷检测对P 的灵敏度高于FPD,而且更可靠,因此FPD 现今多只作为S 化合物的专用检测器。

最低检出限:1×10-11g S/sec 1×10-12g P/sec,我们国家制定的《气相色谱检定规程》中注明:FPD检测限测定所用的标准物质为:甲基对硫磷!

各种检测器的最低检出限的数值和单位的由来与计算方法

最小检测限是实际测出来的。不同的检测器设计就会有不同的检测限,并且检测限往往用一种大家共用的试剂,指定的柱子,并不能代表所有物质的最小检测限,最小检测限和信噪比有一定关系。检测限D=2N/S,其中N为噪声,单位m V或A;S为检测器灵敏度,不同检测器灵敏度的表示方式不同,检测限的表示方式也随之不同。一般来讲D的单位随S的不同也分为3种:mg/ml.ml/ml,g/s。先说计算方法:国内一般以物质的峰高为计算依据,要求大于三倍的噪音,安捷伦的要求是三倍的噪音为最低定性指标,10倍的噪音为最低定量指标。判断噪音的方法简单点的话就是放大基线,看下平稳状态下平均噪音的波动范围是多少,或用工作站直接计算。各检测器的最低检测线有两种方法,1是实际测量法,二是理论计算法,当然了,不同的条件,最低检测线也不一样。先说实际测量法,比较简单,色谱的条件保持稳定,然后将配制成一定浓度的样品不断的稀释进样,直到物质峰高小于10倍或国内的3倍峰高时候的浓度就是最低检测线。计算法比较省劲,但是要保证检测器线性良好,如10ppm的物质峰高为1000单位,噪音为1单位,那么10倍的噪音就是10各单位了,1000/10=100倍,然后10ppm/100=0.1ppm,就此我们就可以大致推算出来该条件下,该检测器对该物质的最低检测线为0.1ppm。

(仪器信息网)

解析检测数值的大小对仪器有何作用以及在实际应用的作用,对购买者选择的方向

仪器的最小检测限越小,说明检测器设计较好,灵敏度也越高,但同时也会使仪器的稳定性、重现性降低等等,在使用各种仪器的过程中,不知各位是否发现国产仪器往往比较稳定,但是灵敏度较小;线性范围指的是样品的检测浓度和质量的大小能否线性检测,线性范围小的检测器,对分析方法的要求较高。

电子捕获检测器(ECD)离子源有哪些种类?主要有哪些物质构成的?

ECD的电离源一直为放射源,即α、β、γ射线。其中β射线最适合作为ECD的电离源。3H2和63Ni是最常使用的放射源。(仪器信息网)

解析各种检测器原理、用途和作用

气相色谱仪-检测系统 1.热导检测器热导检测器 ( Thermal coductivity detector,简称TCD ),是应用比较多的检测器,不论对有机物还是无机气体都有响应。热导检测器由热导池池体和热敏元件组成。热敏元件是两根电阻值完全相同的金属丝(钨丝或白金丝),作为两个臂接入惠斯顿电桥中,由恒定的电流加热。如果 热导池只有载气通过,载气从两个热敏元件带走的热量相同,两个热敏元件的温度变化是相同的,其电阻值变化也相同,电桥处于平衡状态。如果样品混在载气中通过测量池,由于样号气和载气协热导系数不同,两边带走的热量不相等,热敏元件的温度和阻值也就不同,从而使得电桥失去平衡,记录器上就有信号产生。这种检测器是一种通用型检测器。被测物质与载气的热导系数相差愈大,灵敏度也就愈高。此外,载气流量和热丝温度对灵敏度也有较大的影响。热丝工作电流增加—倍可使灵敏度提高3—7倍,但是热丝电流过高会造成基线不稳和缩短热丝的寿命。热导检测器结构简单、稳定性好,对有机物和无机气体都能进行分析,其缺点是灵敏度低。 2.气相色谱仪氢火焰离子化检测器 氢火焰离子化检测器(Flame Ionization Detector,FID) 简称氢焰检测器。它的主要部件是一个用不锈钢制成的离子室。离子室由收集极、极化极(发射极)、气体入口 及火焰喷嘴组成。在离子室下部,氢气与载气混合后通过喷嘴,再与空气混合点火燃烧,形成氢火焰。无样品时两极间离子很少,当有机物进入火焰时,发生离子化反应,生成许多离子。在火焰上方收集极和极化极所形成的静电场作用下,离子流向收集极形成离子流。离子流经放大、记录即得色谱峰。有机物在氢火焰中离子化反应的过程如下:当氢和空气燃烧时,进入火焰的有机物发生高温裂解和氧化反应生成自由基,自由基又与氧作用产生离子。在外加电压作用下,这些离子形成离子流,经放大后被记录下来。所产生的离子数与单位时间内进入火焰的碳原子质量有关,因此,氢焰检测器是一种质量型检测器。这种检测器对绝大多数有机物都有响应,其灵敏度比热导检测器要高几个数量级,易进行痕量

热导检测器工作原理、结构组成及检测条件

热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温 Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1R3=R2R4, 或写成R1/R4=R2/R3。M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N 二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。(1)热敏电阻热敏电阻由锰、镍、钴等氧化物半导体制成直径约为~1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为和,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作。③、④是为了获得高稳定性。表 3 -2-3 列出了商品TCD中常用的热丝性能。 钨丝电阻率低,相同长度之阻值只有铁铼丝的一半,灵敏度难以提高。另外,钨丝强度差,高温下易氧化,致使噪声增加、信!噪比下降。

移相整流变压器设计与试验

移相整流变压器设计与试验 汪明伟 摘 介绍36 相整流变压器设计,试验,六边型自耦移相调压和共轭铁心要: 应用。 关键词:谐波;移相;自耦调压;共轭铁心;半成品、成品试验 2016.10.10

1 1. 前言 由于电网对谐波的限制越来越严格,并制定了国家标准 GB/T14549-93 《电能质量 公用电网谐波》,对整流变压器抑制谐波措 施要求越来越高。 消除低次谐波的办法之一就是增加变压器输出相数, 即直流脉波数。 本文就有关 36 相整流变压器设计, 制造及试验等问题 做一些探讨。 原公司 2005 年接到氯碱化工行业电解整流变压器订单,由三台 ZHSPTZ-12500/10 整流变压器组成, 单机组等效 12 脉波,三机组合成 36 脉波。整流方式为桥式整流,冷却方式为强油循环水冷,变压器为 主调合一式免吊心结构。 网侧电压: 10KV 直流工作电压: 400V 直流电流: 2×13000A 调压范围: 10%~105% 调压级数 40 级 短路阻抗: 10% 主要参数确定 空载直流电压 U do =43~450V 额定容量 S N =1.05U do I d =1.05×450×26=12285KVA 一次额定电流 I = SN = 12285 = 709.3A I 1N = = = 709.3A 10 3 10 3 2. 设计方案 2.1 移相方案选择 变压器由调压变压器和整流变压器两部分组成,为便于设计和制 造,三

台调压变压器分别移相+10 °、0°、-10 °,三台整流变为同一形式即有星、角绕组桥式整流回路。因整流变压器短路阻抗为10%,所以低压星角输出经整流元件后并联,不需另加平衡电抗器。单台整流变提供12 脉波直流电流,接调变后三台变压器可提供36 脉波直流电流。 2.2 调压变压器设计方案目前,一般采用自耦移相调压于一身,来达到移相和调压目的。如按用法较普遍的曲折移相方式,有载开关通过的网侧线电流大于600A,超出三相有载开关使用范围;如为了满足开关电流要求去自耦升压,还是会增加调压变的电磁容量。 我们反复研究多方求证,采用的是六边型自耦移相调压方案,有载开关电流相当于角接相电流,是曲折接法的1/ 3 倍,满足了40 级粗细调开关要求。 采用此方案的优点还有:调压变额定档阻抗电压很小,计算时可忽略,这样三台机组的阻抗一致,均流效果好。而且调压变压器绕组结构简约,材料节省,负载损耗低。但引线结构相对复杂,设计制造时有一定难度。 调压变接线原理如图1: 图1 六边型自耦移相调压接线原理图图中A、B、C 为调变输入端子, A m、X m 为调变输出端子(以A 相为例)为简化起见,细调部分未画

各种仪器分析的基本原理

紫外吸收光谱UV 分析原理:吸收紫外光能量,引起分子中电子能级的跃迁 谱图的表示方法:相对吸收光能量随吸收光波长的变化 提供的信息:吸收峰的位置、强度和形状,提供分子中不同电子结构的信息 荧光光谱法FS 分析原理:被电磁辐射激发后,从最低单线激发态回到单线基态,发射荧光 谱图的表示方法:发射的荧光能量随光波长的变化 提供的信息:荧光效率和寿命,提供分子中不同电子结构的信息 红外吸收光谱法IR 分析原理:吸收红外光能量,引起具有偶极矩变化的分子的振动、转动能级跃迁 谱图的表示方法:相对透射光能量随透射光频率变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 拉曼光谱法Ram 分析原理:吸收光能后,引起具有极化率变化的分子振动,产生拉曼散射 谱图的表示方法:散射光能量随拉曼位移的变化 提供的信息:峰的位置、强度和形状,提供功能团或化学键的特征振动频率 核磁共振波谱法NMR 分析原理:在外磁场中,具有核磁矩的原子核,吸收射频能量,产生核自旋能级的跃迁 谱图的表示方法:吸收光能量随化学位移的变化 提供的信息:峰的化学位移、强度、裂分数和偶合常数,提供核的数目、所处化学环境和几何构型的信息 电子顺磁共振波谱法ESR 分析原理:在外磁场中,分子中未成对电子吸收射频能量,产生电子自旋能级跃迁 谱图的表示方法:吸收光能量或微分能量随磁场强度变化 提供的信息:谱线位置、强度、裂分数目和超精细分裂常数,提供未成对电子密度、分子键特性及几何构型信息质谱分析法MS 分析原理:分子在真空中被电子轰击,形成离子,通过电磁场按不同m/e分离 谱图的表示方法:以棒图形式表示离子的相对峰度随m/e的变化 提供的信息:分子离子及碎片离子的质量数及其相对峰度,提供分子量,元素组成及结构的信息

移相器

目录 一、概述 (2) 二、用途和适用范围 (2) 三、主要技术指标 (2) 四、基本原理 (3) 五、使用方法 (3) 六、注意事项 (6) 七、保养、维修 (6) 八、运输、贮存 (7) 九、装箱清单 (7)

一、概述 移相器是由变压器式移相器,数字式相位显示仪,电压电流数显表、输出电压调节、移相细调及电源等单元组成注新一代便携式电工仪器,本产品将变压器移相技术与数字测量技术进行了有机结合,移相调节精度高,读数准确直观、电压输出可调。本机结构牢固可靠,全密封、携带方便,便于在野外和现场使用。 二、用途和适用范围 移相器能在0~360度范围内达到任意角度的超前或滞后移相目的。 本移相器华天电力采用三相三芯柱变压器,Y0接线方法,每相均有四个等边绕组,交叉连线形成不同夹角,形成对角线相连的六边形,六个边共高十二个抽头,即十二档,每档30度,三相同步调节,细调由三只同轴自耦变压器与电容组成,使输出三相在0~360度范围内同步调节,以保证三相输出的平衡。 本移相器具有操作方便、体积小、噪音低、输出波形好等特点,能满足较高国度的单相及三相交流功率、相位等仪表的测试校验,也能用于电度表的检定装置之中。 三、主要技术指标 1.输入电压:三相四线3×380(220)V 50Hz 2. 输出电压:三相四线3×(0~380) / (0~220),三位半数字显示,精度:3级 3.最大输出容量3×300VA 4.三相粗调:00 ~3600,每步300进移相 5.三相细调:-30~180,120~330,四位数字显示,精度1.0级 6. 电压波动:粗调≤1.5%,细调≤2.0% 7. 波形失真:输出波形失真度≤输入波形失真度 8. 温升:<60 ℃

《服务器基础知识》

基本常识 服务器租用 服务器租用是指用户无须自己购买服务器,只需根据自己业务的需要,提出对硬件配置的要求。主机服务器由IDC服务商配置。用户采取租用的方式,安装相应的系统软件及应用软件以实现用户独享专用高性能服务器,实现WEB+全部网络服务功能,用户的初期投资减轻了,可以更专著于自己业务的研发。目前主机提供商提供的主机租用服务的主机类型主要是基于Intel CPU的服务器,用户可以自行安装操作系统及相应的应用软件,并完全自行管理,也可由本公司代用户安装系统、应用软件,免费提供服务器监测服务。IDC服务商一般会将连续租用1年或者2年服务器产权归客户所有。 服务器托管 托管服务器是指用户委托具有完善机房、良好网络和丰富运营经验的服务商管理其计算机系统,使其更安全、稳定、高效的运行。即用户把自己的网络设备(服务器、交换机等等)放在IDC服务商提供的专业服务器机房中,享受高品质的带宽、不断增加的增值服务和24×7的各方面专人维护以及监控服务。 虚拟主机 虚拟主机,是在网络服务器上划分出一定的磁盘空间供用户放置站点、应用组件等,提供必要的站点功能与数据存放、传输功能。 所谓虚拟主机,也叫“网站空间”就是把一台运行在互联网上的服务器划分成多个“虚拟”的服务器,每一个虚拟主机都具有独立的域名和完整的Internet服务器(支持、E-mail 等)功能。一台服务器上的不同虚拟主机是各自独立的,并由用户自行管理。但一台服务器主机只能够支持一定数量的虚拟主机,当超过这个数量时,用户将会感到性能急剧下降。虚拟主机技术是互联网服务器采用的节省服务器硬体成本的技术,虚拟主机技术主要应用于HTTP服务,将一台服务器的某项或者全部服务内容逻辑划分为多个服务单位,对外表现为多个服务器,从而充分利用服务器硬体资源。如果划分是系统级别的,则称为虚拟服务器。服务器租用和服务器托管的区别 随着网络资源服务市场的成熟,现在发展起来的共有三种基本的网站系统方式:虚拟主机,整机租用以及服务器托管。 整机租用是由数据中心提供服务器,只能有一个客户或者是网站通过租用方式使用它,并且由Internet数据中心替客户进行管理维护。您轻松享受从设备、环境到维护的一整套服务。服务器托管是客户自身拥有一台服务器,并把它放置在Internet数据中心的机房,由客户自己进行维护,或者是由其它的签约人进行远程维护 两者相比,整机租用在成本和服务方面的优势更为显著。它让您起步更轻松,不仅综合性价比更优良,且有很好的可扩展性和多样化的选择服务器品牌和操作系统。 5、主机托管和虚拟主机的区别 1、主机托管是用户独享一台服务器,而虚拟主机是多个用户共享一台服务器; 2、主机托管用户可以自行选择操作系统,而虚拟主机用户只能选择指定范围内的操作系统; 3、主机托管用户可以自己设置硬盘,创造数十G以上的空间,而虚拟主机空间则相对狭小;主机托管业务主要是针对ICP(电信运营商)和企业用户,他们有能力管理自己的服务器,提供诸如WEB、EMAIL、数据库等服务。但是他们需要借助IDC提升网络性能,而不必建设自己的高速骨干网的连接。托管主机提供的基本服务就是网站 WEB服务和FTP(文传协议)

幼儿园:大班科学《按物体的用途分类》教学设计

新修订幼儿园阶段原创精品配套教材 大班科学《按物体的用途分类》教材定制 / 提高课堂效率 /内容可修改 Big class science "Classification by object use" 教师:风老师 风顺第二幼儿园 编订:FoonShion教育

大班科学《按物体的用途分类》 活动目标 1.能将物品按用途进行分类。 2.能正确表述自己的分类理由。活动准备 1.经验准备:幼儿已掌握物品用途的相关经验。 2.物质准备:若干实物,图谱标记、实物图片,分类盒,分类板等。活动过程一、以认识物品导入活动,激发幼儿的兴趣。二、整理物品,让幼儿初步学习按物品的用途分类。 1.引导幼儿将篮子里的物品,按照它们的特点分到篮子里的三个格子中,想想看可以怎么分。 2.分好后和同伴说说你的分类理由。 三、师观察幼儿操作并个别指导。四、师幼互动交流。师:谁来说说他是怎么分,为什么要把它们分在一起?五、运用图谱标记帮助幼儿梳理分类经验。 1.师:出示嘴巴、手、苹果、积木、汽车等标记卡,引导幼儿从中选出分别代表“吃的”“玩的”“用的”的标记。 2.师引导幼儿根据标记,将自己篮子里的物品按标记摆放好。六、分组练习,巩固按物品的用途分类。 1.介绍操作材料。 2.提出要求。 3.幼儿操作,师巡视指导。 4.师小结。教学反思在本次活动中主要是让幼儿能将物品按用途进行分类,并且

能正确表达自己的分类理由。在活动中,我首先以“认识物品”导入活动,并让幼儿“整理物品”,学习按物品的用途分类,幼儿个个都能将物品按食物、日用品和玩具等不同用途进行分类,也能说出分类的理由。接着引导幼儿运用图谱标记“送物品回家”,幼儿也都能将自己篮子里的物品按标记摆放好。可是在接下来的操作材料中,幼儿在给物品按标记分类中产生很大的分歧,有的标记相差非常细微,有很多小朋友容易看错,虽然在操作之前我有提示过了,但了解是一回事,真正做时有很大一部分幼儿不仔细观察标记,都分类错了。而这一切都反应出幼儿对画面的观察不够细心,做事太过于急促。进入大班以后,我发现有许多小朋友都对自己的行为缺乏信心,具体表现在:操作时总喜欢看别人的答案,甚至有的小朋友刚刚拿到操作材料就看别人是怎么做的,自己不爱动脑筋。要想从根本上增强幼儿的自信心,我觉得我们教师必须注意让幼儿真正掌握我们所要让他们掌握的,因为只有当他们真正懂了,学会了,才能做到心中有数,才能对自己产生认同感。另外,每节课结束以后,教师要做到及时反思、小结,及时的修改,累积经验,寻找幼儿更能接受的讲解方法,做到完善以及更好,让幼儿从兴趣开始培养,从根基开始打起,从基本习惯开始抓起,让幼儿喜爱上数学,喜爱上学习。 FoonShion教育研究中心编制

常见的化学成分分析方法及其原理98394

常见的化学成分分析方法 一、化学分析方法 化学分析从大类分是指经典的重量分析和容量分析。重量分析是指根据试样经过化学实验反应后生成的产物的质量来计算式样的化学组成,多数是指质量法。容量法是指根据试样在反应中所需要消耗的标准试液的体积。容量法即可以测定式样的主要成分,也可以测定试样的次要成分。 重量分析 指采用添加化学试剂是待测物质转变为相应的沉淀物,并通过测定沉淀物的质量来确定待测物的含量。 容量分析 滴定分析主要分为酸碱滴定分析、络合滴定分析、氧化还原滴定分析、沉淀滴定分析。 酸碱滴定分析是指以酸碱中和反应为原理,利用酸性标定物来滴定碱性物质或利用碱性标定物来滴定酸性待测物,最后以酸碱指示剂(如酚酞等)的变化来确定滴定的终点,通过加入的标定物的多少来确定待测物质的含量。 络合滴定分析是指以络合反应(形成配合物)反应为基础的滴定分析方法。如EDTA与金属离子发生显色反应来确定金属离子的含量等。络合反应广泛地应用于分析化学的各种分离与测定中,如许多显色剂,萃取剂,沉淀剂,掩蔽剂等都是络合剂,因此,有关络合反应的理论和实践知识,是分析化学的重要内容之一。 氧化还原滴定分析:是以溶液中氧化剂和还原剂之间的电子转移为基础的一种滴定分析方法。氧化还原滴定法应用非常广泛,它不仅可用于无机分析,而且可以广泛用于有机分析,许多具有氧化性或还原性的有机化合物可以用氧化还原滴定法来加以测定。通常借助指示剂来判断。有些滴定剂溶液或被滴定物质本身有足够深的颜色,如果反应后褪色,则其本身就可起指示剂的作用,例如高锰酸钾。而可溶性淀粉与痕量碘能产生深蓝色,当碘被还原成碘离子时,深蓝色消失,因此在碘量法中,通常用淀粉溶液作指示剂。 沉淀滴定分析:是以沉淀反应为基础的一种滴定分析方法,又称银量法(以

简述热导检测器方法1234

简述热导检测器技术 陈洋洋 (安徽建筑工业学院土木工程学院安全工程(1)班09201040116) 摘要:热导检测器是一种安全检测方法,它是气相色谱法最常用的一种检测器,它具有结构简单,性能稳定,灵敏度适宜,线性范围宽,对各种能作色谱的物质都有响应。本文将介绍一下它的工作原理、使用条件、结构组成、使用范围和一些注意事项。 关键词:热导;检测;注意事项 随着科学检测技术的发展,出现了很多更灵敏、更高效的检测器产品。热导检测器作为一种常见的检测器,尽管在许多方面它已被更灵敏更专属性的各种检测器所取代,但是由于它具有结构简单,性能稳定,灵敏度适宜,线性范围宽,对各种能作色谱的物质都有响应,最适合作微量分析(ppm级)。在分析测试在中,热导检测器不仅用于分析有机污染物,而且用于分析一些用其他检测器无法检测的无机气体,如氢、氧、氮、一氧化碳、二氧化碳等。 1.工作原理 热导检测器又称热导池或热丝检热器,是气相色谱法最常用的一种检测器。基于不同组分与载气有不同的热导率的原理而工作的热传导检测器。敏感元件为热丝,如钨丝、铂丝、铼丝,并由热丝组成电桥。在通过恒定电流以后,钨丝温度升高,其热量经四周的载气分子传递至池壁。当被测组分与载气一起进入热导池时,由于混合气的热导率与纯载气不同(通常是低于载气的热导率),钨丝传向池壁的热量也发生变化,致使钨丝温度发生改变,其电阻也随之改变,进而使电桥输出端产生不平衡电位而作为信号输出。热导检测器是气象色谱法中最早出现和应用最广的检测器。 热导检测器的工作原理是基于不同气体具有不同的热导率。热丝具有电阻随温度变化的特性。当有一恒定直流电通过热导池时,热丝被加热。由于载气的热传导作用使热丝的一部分热量被载气带走,一部分传给池体。当热丝产生的热量与散失热量达到平衡时,热丝温度就稳定在一定数值。此时,热丝阻值也稳定在一定数值。由于参比池和测量池通入的都是纯载气,同一种载气有相同的热导率,因此两臂的电阻值相同,电桥平衡,无信号输出,记录系统记录的是一条直线。当有试样进入检测器时,纯载气流经参比池,载气携带着组分气流经测量池,由于载气和待测量组分二元混合气体的热导率和纯载气的热导率不同,测量池中散热情况因而发生变化,使参比池和测量池孔中热丝电阻值之间产生了差异,电桥失去平衡。检测器有电压信号输出,记录仪画出相应组分的色谱峰。载气中待测组分的浓度越大,测量池中气体热导率改变就越显著,温度和电阻值改变也越显著,电压信号就越强。此时输出的电压信号与样品的浓度成正比,这正是热导检测器的定量基础。 2.热导检测器的使用条件 2.1载气种类 常用的载气有He和H2,因为其热导系数远大于其他化合物,且其具有较高的灵敏度和稳定的响应因子,便于定量,较宽的线性范围。其中,氦气较氢气安全,但氦气较贵,所以许多地区多用氢气作为载气。

整流变压器原理

整流变压器工作原理及特点介绍 整流变压器的原理 整流变压器和普通变压器的原理相同。变压器是根据电磁感应原理制成的一种变换交流电压的设备。变压器一般有初线和次级两个互相独立绕组,这两个绕组共用一个铁芯.变压器初级绕组接通交流电源,在绕组内流过交变电流产生磁势,于是在闭合铁芯中就有交变磁通。初、次级绕组切割磁力线,在次级就能感应出相同频率的交流电。变压器的初,次级绕组的匝数比等于电压比。如一个变压器的初级绕组是440匝,次级是220匝。初级输入电压为220V,在变压器的次就能得到110V的输出电压。有的变压器可以有多个次级绕组和抽头,这样就可以获得多个输出电压了。 整流变压器的特点 与整流器组成整流设备以便从交流电源取得直流电能的变压器。整流设备是现代工业企业最常用的直流电源,广泛用于直流输电、电力牵引、轧钢、电镀、电解等领域。 整流变压器的原边接交流电力系统,称网侧;副边接整流器,称阀侧。整流变压器的结构原理和普通变压器相同,但因其负载整流器与一般负载不同而有以下特点: (1)整流器各臂在一个周期内轮流导通,导通时间只占一个周期一部分,所以,流经整流臂的电流波形不是正弦波,而是接近于断续的矩形波;原、副绕组中的电流波形也均为非正弦波。图中所示为三相桥式Y/Y接法时的电流波形。用晶闸管整流时,滞后角越大,电流起伏的陡度也越大,电流中谐波成分也越多,这将使涡流损耗增大。由于副绕组的导电时间只占一个周期的一部分,故整流变压器利用率降低。与普通变压器相比,在相同条件下,整流变压器的体积和重量都较大。 1

(2)普通变压器原、副边功率相等(忽略损耗),变压器的容量就是原绕组(或副绕组)的容量。但对于整流变压器,其原、副绕组的功率有可能相等,也可能不等(当原、副边电流波形不同时,例如半波整流),故整流变压器的容量是原、副边视在功率的平均值,称为等值容量,即式中S1为原边视在功率,S2为副边视在功率。 (3)与普通变压器相比,整流变压器的耐受短路电动力的能力必须严格符合要求。因此,如何使产品具有短路动稳定性,是设计、制造中的重要课题。 电化学工业----这是应用整流变最多的行业,电解有色金属化合物以制取铝、镁、铜及其它金属;电解食盐以制取氯碱;电解水以制取氢和氧。 牵引用直流电源----用于矿山或城市电力机车的直流电网。由于阀侧接架空线,短路故障较多,直流负载变化辐度大,电机车经常起动,造成不同程度的短时过载。为此这类变压器的温升限值和电流密度均取得较低。阻抗比相应的电力变压器大30%左右。 传动用直流电源----主要用来为电力传动中的直流电机供电,如轧钢机的电枢和励磁。 直流输电用----这类整流变压器的电压一般在110kV以上,容量在数万千伏安。需特别注意对地绝缘的交、直流叠加问题。 此外还有电镀用或电加工用直流电源,励磁用直流电源,充电用及静电除尘用直流电源等。 整流变压器的使用原因 应用整流变最多的化学行业中,大功率整流装置也是二次电压低,电流很大,因此很大,因此它们在很多方面与电炉变是类似的,即前所述的结构特征点,整流变压器也同样具备。整流变压器最大的特点是二次电流不是正弦交流了,由于后续整流元件的单向导通特征,各 2

仪器分析简答题

11.原子吸收谱线变宽的主要因素有哪些? 一方面是由激发态原子核外层电子决定,如自然宽度;一方面是由于外界因素,多普勒变宽,碰撞变宽,场致变宽,压力变宽、自吸变宽、电场变宽、磁场变宽等。 1.自然宽度:谱线固有宽度,与原子发生能级间跃迁的激发态原子的有限寿命有关。可忽 略 2.多普勒变宽:由于无规则的热运动而变化,是谱线变宽主要因素。 3.压力变宽:由于吸光原子与蒸汽中原子相互碰撞而引起能级的微小变化,使发射或吸收的光量子频率改变而变宽。与吸收气体的压力有关。包括洛伦兹变宽和霍尔兹马克变宽。场致变宽:在外界电场或磁场作用下,原子核外层电子能级分裂使谱线变宽。 自吸变宽:光源发射共振谱线被周围同种原子冷蒸汽吸收,使共振谱线在V0 处发射强度 减弱所产生的谱线变宽。 原子吸收谱线变宽主要原因是受多普勒变宽和洛伦兹变宽的影响 12.说明荧光发射光谱的形状通常与激发波长无关的原因。 由于荧光发射是激发态的分子由第一激发单重态的最低振动能级跃迁回基态的各振动能级所产生的,所以不管激发光的能量多大,能把电子激发到哪种激发态,都将经过迅速的振动弛豫及内部转移跃迁至第一激发单重态的最低能级,然后发射荧光。因此除了少数特殊情况,如S1 与S2 的能级间隔比一般分子大及可能受溶液性质影响的物质外,荧光光谱只有一个发射带,且发射光谱的形状与激发波长无关。 13.有机化合物产生紫外-可见吸收光谱的电子跃迁有哪些类型? 在有机分子中存在σ、π、n三种价电子,它们对应有σ-σ*、π-π*及n 轨道,可以产 生以下跃迁: 1.σ-σ* 跃迁:σ-σ*的能量差大所需能量高,吸收峰在远紫外(<150nm)饱和烃只有σ- σ*轨道,只能产生σ-σ*跃迁,例如:甲烷吸收峰在125nm;乙烷吸收峰在135nm ( < 150nm) 2.π-π*跃迁:π-π*能量差较小所需能量较低,吸收峰紫外区(200nm左右)不饱和烃类分子中有π电子,也有π* 轨道,能产生π-π*跃迁:CH2=CH2,吸收峰165nm。(吸收系数大,吸收强度大,属于强吸收) 1.n-σ*跃迁:n-σ*能量较低,收峰紫外区(200nm左右)(与π-π*接近)含有杂原子团如:-OH,-NH2 ,-X,-S 等的有机物分子中除能产生π-π*跃迁外,同时能产生n-σ*跃迁4. n-π*跃迁:n-π*能量低吸收峰在近紫外可见区(200 ~ 700nm)含杂原子的不饱和基团,如- C=O,-CN 等 各种跃迁所需能量大小次序为:σ-σ*> n-σ*>π-π*>n-π* 除外分子内部还有电荷迁移跃迁,指用电磁辐射照射化合物时,电子从给予体向接受体相 联系的轨道上跃迁,实质是氧化还原过程,相应的光谱最大特点是摩尔吸光系数较大。14、简单说明紫外-可见吸收光谱法、荧光光谱法、原子吸收光谱法的定量原理和依据是什么?请画出紫外分光光度法仪器的组成图(即方框图),并说明各组成部分的作用? 答:作用: 光源:较宽的区域内提供紫外连续电磁辐射。 单色器:能把电磁辐射分离出不同波长的成分。 试样池:放待测物溶液 参比池:放参比溶液

热导检测器(TCD)原理及操作注意事项

【资料】-热导检测器(TCD)原理及操作注意事项 热导检测器 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD)或热导计、卡他计(katherometer或Catherometer),它是知名的整体性能检测器,属物理常数检测方法。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 当调节载气流速、桥电流及TCD温度至一定值后,TCD处于工作状态。从电源E 流出之电流I 在A 点分成二路i1、i2 至 B 点汇合,而后回到电源。这时,两个热丝均处于被加热状态,维持一定的丝温Tf,池体处于一定的池温Tw。一般要求Tf与Tw差应大于100℃以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R1?R3=R2?R4, 或写成R1/R4=R2/R3。M、N二点电位相等,

电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1 热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1)热敏电阻 ....热敏电阻由锰、镍、钴等氧化物半导体制成直径约为0.1~1.0mm 的小珠,密封在玻壳内。 热敏电阻有三个优点 ..:①热敏电阻阻值大(5~50kΩ),温度系数亦大,故灵敏度相当高。可直接作μg/g级的痕量分析;②热敏电阻体积小,可作成0.25mm直径的小球,这样池腔可小至50μL;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点 ..:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120℃以下使用。使用范围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60℃时,池温改变1℃,热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝 ..一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数大,以便通桥流加热后得到高 阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度 ....,同时丝体积小 ,可缩小池体积,制作微TCD。③、④是为了获得高稳定性 ....。表 3 -2-3 列出了商品TCD中常用的热丝性能。

移相变压器安装使用规范

移相变压器安装使用规范 1.总则 本说明书适用于电压等级为10kV级及以下,额定容量为6300kV A及以下50Hz,绝缘耐热等级为B、F、H级,户内空气自冷或风冷,干式移相变压器(以下简称变压器)。 2.一般规则 2.1不论使用何种运输工具,变压器在运输过程中必须牢靠的紧固,防止雨淋、防止颠簸和强烈震动。变压器运到安装地点后,应仔细地进行外观检查,确信未受损害。 2.2变压器上铁轭夹件设有吊拌,供吊装变压器使用。起吊变压器时,起吊绳与垂直线之间夹角不得大于30度。 3.验收 3.1用货单位收到变压器以后,应立即按铭牌查对所收到的产品规格是否与订货合同相符。随之按出厂文件查对技术文件及产品附件是否齐全并完好。 3.2检查变压器经长途运输紧固件是否松动,若有松动应立即加以紧固。 4.贮存 4.1产品应在室内存放,并能防止潮湿和的腐蚀性气体和尘埃的侵蚀。还要防止小动物及飞虫钻入变压器的器身。长期贮存的变压器(超过6个月)或已受潮的变压器在投运前必须干燥处理后才可投入运行。 4.2注意不要让金属异物掉入变压器的线圈气道内。 4.3产品存放室应采取有效的防尘措施。 5.不经干燥投入运行的条件 5.1用2500V兆欧表,在温度不低于+10o C时测量线圈的绝缘电阻值不得小于工厂出厂技术文件所测定值的70%,换标系数按表1 21 换标系数之倒数。 5.2变压器的绝缘电阻值,如无出厂资料时,在相应的温度下不低于表2所列的最低允许值。 表2 线圈绝缘电阻允许值(kV)

6.交接验收绝缘试验及产品检修后的重复绝缘试验标准標(参照GB6450-86之规定)见表3 绝缘试验。 注2:用户如有需要对变压器的变比和移相角进行测试,其测试方法见附录。7.安装 7.1变压器应安装于通风干燥的室内。 7.2变压器底座上设有定位孔,供变压器安装定位使用,低压侧A相下垫脚处有一接地螺栓(带标志)供变压器接地用,接地要求可靠,接地电阻≤4? 7.3检查高压侧金属压板缺口处的六只钉绝缘垫是否松动,检查铁轭垫块是否松动。 7.4变压器所有紧固螺母必须全部紧固一遍。 7.5检查器身各部件表面不得有金属和非金属异物。 7.6安装接线请看清绕组标志,绕组线端标志如下: 三线圈时双线圈时 高压绕组:A、B、C 高压绕组:A、B、C 低压绕组:a、b、c 低压绕组:a、b、c 低压控制绕组:a、b、c、o 移相角标志在低压接线板上 7.7接线板上引出螺栓,已充分考虑实际过流面积,接线时应拧紧螺母,保证压接时可靠的接触。 8.变压器的日常维护 8.1变压器有下列情况之一者,应立即停下检修: a. 变压器内部声响很大,很不均匀,有爆裂声劈啪声等异常噪音。 b. 在正常冷却条件下,变压器温度不正常并不断上升。 c. 套管接线板和绝缘件有严重破损和放电痕迹。 d. 线圈端部有爬电现象及出现焦臭气味和冒烟现象。

幼儿园大班《按物品的用途分类》优秀数学教案

幼儿园大班《按物品的用途分类》优秀数学教 案 WTT为大家收集的幼儿园大班《按物品的用途分类》优秀数学教案,仅供参考,希望能够帮助到大家。 活动目标: 1.能将物品按用途进行分类。 2.能正确表述自己的分类理由。 3.培养幼儿的尝试精神,发展幼儿思维的敏捷性、逻辑性。 4.喜欢数学活动,乐意参与各种操作游戏,培养思维的逆反性。 活动准备: 1、经验准备:幼儿已掌握物品用途的相关经验。 2、物质准备:若干实物,图谱标记、实物图片,分类盒,分类板等。 活动过程: 一、以认识物品导入活动,激发幼儿的.兴趣。 二、整理物品,让幼儿初步学习按物品的用途分类。 1.引导幼儿将篮子里的物品,按照它们的特点分到篮子里的三个格子中,想想看可以怎么分。 2.分好后和同伴说说你的分类理由。

三、师观察幼儿操作并个别指导。 四、师幼互动交流。 师:谁来说说他是怎么分,为什么要把它们分在一起? 五、运用图谱标记帮助幼儿梳理分类经验。 1.师:出示嘴巴、手、苹果、积木、汽车等标记卡,引导幼儿从中选出分别代表“吃的”“玩的”“用的”的标记。 2.师引导幼儿根据标记,将自己篮子里的物品按标记摆放好。 六、分组练习,巩固按物品的用途分类。 1.介绍操作材料。 2.提出要求。 3.幼儿操作,师巡视指导。 活动反思: 一、活动开始我用为“小白兔”搬家作为引入让我们班的孩子自由去探索“小白兔”家的物品,这样不但可以加深他们的印象,还能更有兴趣学习。虽然有兴趣,但是可能我想的不够周到,我只考虑孩子的兴趣,却完全没有去考虑孩子们的能力水平,我提供的搬家物品(桌面玩具)类型太多了,如果我先2.3样再慢慢增加,我想就会更完美了。 二、我在让幼儿第一次探索时候,孩子刚开始很有兴趣,也有积极参与在活动中,这让我表示很欣慰,但是在探索活动的过程中,我发现能力强的孩子和能力弱的孩子有差别,能力强的孩

各种探测器介绍说明资料讲解

报警系统由哪几部分组成? 简单的报警系统由前端探测器、中间传输部分和报警主机组成。大一些的系统也可将探测器和报警主机看做是前端部分,从报警主机到接警机之间是传输部分,中心接警部分看做是后端部分。 报警系统按信息传输方式不同,可分哪几种? 按信息传输方式不同,从探测器到主机之间可分为有线和无线2种。从主机到中心接警机之间也可分为有线和无线2种,其中有线系统还可分为基于电话线传输和基于总线传输2种类型。 探测器分为哪几种类型?市面上常见的有哪些类型? 红外、微波、震动、烟感、气感、玻璃破碎、压力、超声波等等。其中红外探测器还可分为主动红外和被动红外,烟感还可分为离子式和光电式。市面上常见的有红外探测器(被动红外)、对射、栅栏(主动红外)、双鉴探测器、震动探测器、玻璃破碎探测器。 主动红外探测器的工作原理? 主动红外探测器由红外发射器和红外接收器组成。红外发射器发射一束或多数经过调制过的红外光线投向红外接收器。发射器与接收器之间没有遮挡物时,探测器不会报警。有物体遮挡时,接收器输出信号发生变化,探测器报警。 被动红外探测器工作原理? 被动红外探测器中有2个关键性元件,一个是菲涅尔透镜,另一个是热释电传感器。自然界中任何高于绝对温度(-273o)的物体都会产生红外辐射,不同温度的物体释放的红外能量波长也不同。人体有恒定的体温,与周围环境温度存在差别。当人体移动时,这种差别的变化通过菲涅尔透镜被热释电传感器检测到,从而输出报警信号。 微波探测器工作原理? 微波探测器应用的是多普勒效应原理。在微波段,当以一种频率发送时,发射出去的微波遇到固定物体时,反射回来的微波频率不变,即f发=f收,探测器不会发出报警信号。当发射出去的微波遇到移动物体时,反射回来的微波频率就会发生变化,即f发≠f收,此时微波探测器将发出报警信号。 什么是双元红外探测器?什么是四元红外探测器?

热导检测器的原理

热导检测器的原理 热导检测器的原理及注意事项 热导检测器(TCD)是利用被测组分和载气的热导系数不同而响应的浓度型检测器,有的亦称热丝检测器(HWD )或热导计、卡他计(k atherometer或Catherometer ),它是知名的整体性能检测器,属物理常数检测方法。热导检测器的原理及注意事项从以下几个方面给 予阐述。 一、工作原理 TCD由热导池及其检测电路组成。图3-2-1下部为TCD与进样器及色谱柱的连接示意图,上部为惠斯顿电桥检测电路图。载气流经参考池腔、进样器、色谱柱,从测量池腔排出。 R1、R2为固定电阻;R3、R4分别为测量臂和参考臂热丝。 图3-2-1 TCD工作原理图 1-**池IE 妙样器:*一色谱柱:4一测B池腔

当调节载气流速、桥电流及 TCD温度至一定值后,TCD处于工作状态。从电源 E流出之电流I在A点分成二路i i、i2至B点汇合,而后回到电源。这时,两个热丝均处于被加热状态, 维持一定的丝温T f,池体处于一定的池温 T w。一般要求T f与T w差应大于1 00 C以上,以保证热丝向池壁传导热量。当只有载气通过测量臂和参考臂时,由于二臂气体组成相同,从热丝向池壁传导的热量相等,故热丝温度保持恒定;热丝的阻值是温度的函数,温度不变,阻值亦不变;这时电桥处于平衡状态:R i R3 = R2 R4,或写成R l/R4 = R2/R M、N二点电位相等,电位差为零,无信号输出。当从2进样,经柱分离,从柱后流出之组分进入测量臂时,由于这时的气体是载气 3。 和组分的混合物,其热导系数不同于纯载气,从热丝向池壁传导的热量也就不同,从而引起两臂热丝温度不同,进而使两臂热丝阻值不 同,电桥平衡破坏。M、N二点电位不等,即有电位差,输出信号。 二、热导池由热敏元件和池体组成 1热敏元件 热敏元件是TCD的感应元件,其阻值随温度变化而改变,它们可以是热敏电阻或热丝。 (1 )热敏电阻热敏电阻由锰、镍、钻等氧化物半导体制成直径约为0.1?1.0mm的小珠,密封在玻壳内。 热敏电阻有三个优点:①热敏电阻阻值大( 5?50k Q),温度系数亦大,故灵敏度相当高。可直接作口g/g级的痕量分析;②热敏 电阻体积小,可作成 0.25mm直径的小球,这样池腔可小至50此;③热敏电阻对载气流的波动不敏感,它耐腐蚀性和抗氧化。 热敏电阻也有三个缺点:①热敏电阻#$%的响应值随温度的增加而快速下降,因此,通常热敏电阻要在120 C以下使用。使用范 围受到极大的限制;②与热丝相比,热敏电阻的温度系数大,表现为其响应值对于温度的变化十分敏感。例如在60 C时,池温改变1C, 热敏电阻和热丝的基线漂移分别为10.4mV和5.0mV ,前者比后者大一倍多,因此,热敏电阻的稳定性差,特别是在程升操作时,尤为 突出;③热敏电阻对还原条件十分敏感,故不能用氢气作载气。 目前,只有下二情况可用热敏电阻作热敏元件;一是低温痕量分析;二是需小池体积配毛细管柱。其他情况很少用热敏电阻,而 多用热丝。而且,近年热敏电阻可作成小池体积的优势也在逐渐下降。 (2)热丝一个性能优异的TCD,对热丝的要求主要考虑四点:①电阻率高,以便可在相同长度内得到高阻值;②电阻温度系数 大,以便通桥流加热后得到高阻值;③强度好;④耐氧化或腐蚀。①、②是为了获得高灵敏度,同时丝体积小,可缩小池体积,制作微T

移相变压器的原理与用途

移相变压器的原理与用 途 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

变压器中移相的形成及工作原理 由于干式变压器的无油污染问题,防潮、耐热、阻燃、防腐蚀等特性,广泛应用于工业、生活的各个方面。目前主要存在两种主流类型的干式变压器:一种是以欧洲为代表的树脂浇注式干式变压器(简称ordt),另一种是以美国为代表的浸漆式干式变压器(简称ovdt)。而作为h级绝缘的干式整流变压器,以c级绝缘材料nomex纸作为绝缘介质,具有更高的可靠性和环保特性,而且具有更好的经济性,受到广泛的欢迎。 干式移相整流变压器是一种专门为中高压变频器提供多相整流电源的装置,采用延边三角形移相原理,通过多个不同的移相角二次绕组,可以组成等效相数为9相、12相、15相、18相、24相以及27相等整流变压器。变压器的一次侧直接入高压电网,其二次侧有多个三相绕组,它按0°、θ°、…、(60-θ)°等表示延边三角连接变压器二次侧的各低压三相绕组,同时表示各低压三相绕组线电压相对对应绕组的移相角。当每相由n个h桥单元串联时,θ=60°/n,实现了输入的多重化,形成6n脉波整流。这样,如果各h桥单元功率平衡,电流幅值相同,理论上一次侧输入电流中不含有6n±1以下各次谐波,并可提高功率因数,一般不需再配备无功补偿和谐波滤波装置。最适宜用于防火要求高、负荷波动大的环境中,如海上石油平台、火力发电厂、自来水厂、冶金化工、矿山建材等特殊的工作环境中。 多绕组干式移相整流变压器是根据不同的用户而设计,容量从200kva~10000kva不等,一次阻抗较大,变压器的效率>98%,采用h级绝缘系统,绕组温升限值120k。为了提高电能质量,整流变压器的输出波形不像电力变压器在一个周期内只有三个正弦脉波,而是根据一次侧电压和装机容量,确定每台变压器在一个周期内的脉波数。高压变频调速技术目前呈现多样化,以西门子技术为代表的级联式多重化技术,基本可以做到完美无谐波,它采用整流变压器将多个低压模块叠加(串联)而形成高压输出,功率器件采用igbt,目前国内绝大多数高压变频器厂家都是采用这种技术。abb的acs5000系列变频器是三电平的拓朴结构,36脉波的整流变压器共有6个移相组,每两个移相组为一个变频单元供电,功率器件为igct,abb还有一种变频器采用12脉波整流逆变技术,其变压器采用三绕组形式。以ab(rockwell)为代表的18脉波整流逆变技术,其需要整流变压器采用三分裂形式。 整流变压器作为这一技术的重要构成,是伴随高压变频器的技术而出现并迅速发展的。根据变频器单元数和电压等级的不同,移相整流变压器输出绕组数和电压也不同,3kv的多采用3级,移相分为0°、±20°,每移相组电压为630v;6kv的多采用6级,移相分为±5°、±15°、±25°,每移相组电压为630v,也有采用5级或7级,5级时移相角为0°、±12°、±24°,电压为710v,7级时移相角为0°、±°、±°、±°,电压为490v;10kv的多采用8级,移相分为±°、±°、±°、±°,每移相组电压为720v,也有采用9级和10级。理论上讲,级数越多,变压器输入侧的谐波越少,对电网的污染越小,但级数多,变频器的功率单元就多,增加了制造成本,所以上述级数是各变频器厂家普遍采用的。

相关文档
最新文档