第五节外力作用下的振动

第五节外力作用下的振动

教学目标:

(一)知识与技能

1、知道什么是阻尼振动;知道在什么情况下可以把实际发生的振动看作简谐运动。

2、知道什么叫驱动力,什么叫受迫振动,能举出受迫振动的实例。

3、知道受迫振动的频率等于驱动力的频率,跟物体的固有频率无关。

4、知道什么是共振以及发生共振的条件。

(二)过程与方法

1、通过演示实验,了解阻尼振动的特点,明确受迫振动的频率决定于驱动力的频率。

2、通过分析实际例子,得到什么是受迫振动和共振现象,培养学生理论联系实际的能力。

(三)情感、态度与价值观

1、振动有多种不同类型说明各种运动形式都是普遍性下的特殊性的具体体现。

2、通过共振产生条件的教学,认识内因和外因的关系

教学重点:

受迫振动的概念以及共振及产生共振的条件。

教学难点:

共振及产生共振的条件。

教学方法:

观察、对比、讨论、阅读、实验演示、多媒体展示。

教学用具:

单摆、受迫振动演示仪、共振演示仪、两个相同的带有共鸣箱的音叉、橡皮槌、CAI课件

教学过程:

(一)引入新课

教师:通过前面的学习,我们知道做简谐运动的物体都要受到回复力的作用。

回复力是振动系统内部的相互作用,是内力。如果振动系统不受外力的作用。此时的振动叫固有振动,其振动频率叫做固有频率。而实际的振动系统不可避免地要受到摩擦阻力和其他因素的影响,系统的机械能要不断损耗,在这种情况下,

它将怎样运动呢?本节课我们来学习这方面的问题。

(二)新课教学

1、阻尼振动

前面我们研究了简谐运动中能量的转化,对简谐运动而言,当供给振动系统一定的能量使它开始振动后,由于机械能守恒,它就以一定的振幅永不停息地振动下去,简谐运动是一种理想化的振动。下面我们来观察两个实际振动:演示:

(1)实际的单摆发生的振动;

(2)敲击音叉后音叉的振动。

现象:单摆和音叉的振幅越来越小,最后停下来。

解释:在单摆和音叉的振动过程中,不可避免地要克服摩擦及其他阻力做功,系统的机械能就要损耗,振动的振幅就会逐渐减小,机械能耗尽之时,振动就会停下来了。

①阻尼振动:振幅逐渐减小的振动,叫做阻尼振动。

所谓“阻尼”是指消耗系统能量的因素,它主要分两类:一类是摩擦阻尼,例如单摆运动时的空气阻力等;另一类是辐射阻尼,例如音叉发声时,一部分机械能随声波辐射到周围空间,导致音叉振幅减小。

由于振动系统受到摩擦和其他阻力,即受到阻尼作用,系统的机械能随着时间而减少,同时振幅也逐渐减小。阻尼越小,振幅减小得越慢。阻尼过大时,系统将不能发生振动。

当阻尼很小时,在一段不太长的时间内,看不出振幅有明显的减小,就可以把它作为理想振动来处理。

②阻尼振动的图象:

(要求学生画出上述单摆和音叉的运动图象,在实物投影仪上展示,并给予讲评)

2、受迫振动

演示:用如图所示的实验装置,向下拉一下振子,观察它的振动情况。

现象:振子做的是阻尼振动,振动一段时间后停止振动。

演示:请一位同学匀速转动把手,观察振动物体的振动情况。

现象:现在振子能够持续地振动下去。

分析:使振子能够持续振动下去的原因,是把手给了振动系统一个周期性的外力的作用,外力对系统做功,补偿系统的能量损耗。

(1)驱动力:使系统持续地振动下去的外力,叫驱动力。

(2)受迫振动:物体在外界驱动力作用下所做的振动叫受迫振动。

要想使物体能持续地振动下去,必须给振动系统施加一个周期性的驱动力作用。

受迫振动实例:发动机正在运转时汽车本身的振动;正在发声的扬声器纸盒的振动;飞机从房屋上飞过时窗玻璃的振动;我们听到声音时耳膜的振动等。

(多媒体展示几个受迫振动的实例)

①电磁打点计时器的振针;②工作时缝纫机的振针;③扬声器的纸盒;④跳水比赛时,人在跳板上走过时,跳板的振动;⑤机器底座在机器运转时发生的振动。

(3)受迫振动的特点

做简谐运动的弹簧振子和单摆在振动时,按振动系统的固有周期和固有频率振动。通过刚才的学习,我们知道物体在周期性的驱动力作用下所做的振动叫受迫振动;那么周期性作用的驱动力的频率、受迫振动的频率、系统的固有频率之间有什么关系呢?

演示:用前面的装置实验。用不同的转速匀速地转动把手,观察振子的振动快慢情况。

现象:当把手转速小时,振子振动较慢;当把手转速大时,振子振动较快。物体做受迫振动时,振动物体振动的快慢随驱动力的周期而变化。

总结:

①物体做受迫振动时,振动稳定后的频率等于驱动力的频率;

②受迫振动的频率跟物体的固有频率没有关系。

3、共振

(1)共振摆实验

受迫振动的频率等于驱动力的频率,与物体的固有频率无关,但是如果驱动

力的频率接近或等于物体的固有频率时又会发生什么现象呢?

演示:(共振演示仪)在一根张紧的绳上挂了几个摆,其中A 、B 、C 的摆长相等。先让A 摆摆动,观察在摆动稳定后的现象。

现象:A 摆动起来后,B 、C 、D 、E 也随之摆动,但是它们摆动的振幅不同,A 、B 、C 摆动的振幅差不多,而D 摆动的振幅最小。

分析:A 、B 、C 摆长相同,据和得到,A 、B 、C 三摆的固有g

L T π2=T f 1=频率相同。D 摆的摆长与A 摆相差最多,两者的固有频率相差最大。A 摆振动后通过张紧的绳子给其它各摆施加驱动力,使B 、C 、D 、E 各摆做受迫振动,它们振动的频率都等于A 摆的固有频率。

结论:驱动力的频率f 等于振动物体的固有频率f ′时,振幅最大;驱动力的频率f 跟固有频率f ′相差越大,振幅越小。

(2)共振

驱动力频率接近物体的固有频率时,受迫振动的振幅最大,这种现象叫做共振。

(3)发生共振的条件

驱动力频率与物体的固有频率相等或接近。

(4)共振曲线

通过上述实验我们知道,受迫振动的振幅A 与驱动力的

频率f 及振动物体的固有频率f '之间的关系有关,它们之

间的这种关系可用图象来表示,这个图象叫共振曲线,如

图:

纵轴:表示受迫振动的振幅。

横轴:表示驱动力的频率。

特点:当驱动力频率等于物体固有频率时,物体振动的振幅最大;驱动力频率与固有频率相差越大,物体的振幅越小。

(5)共振的实例:声音的共鸣

演示:两个频率相同的带有共鸣箱的音叉,放在实验台上。先用小槌打击音叉A 的叉股,使它发声,过一会儿,用手按住音叉A 的叉股,使

A 停止发声,观受迫振动的振幅

察发生的现象。

现象:可以听到没被敲打的音叉B发出了声音。

演示:在其中的一只音叉的叉股上套上一个套管,重新做上面的实验,观察发生的现象。

现象:音叉B不再发出声音了。

分析:音叉A的叉股被敲时发生振动,在空气中激起声波,声波传到音叉B,给音叉B以周期性的驱动力。第一次实验时,A、B的固有频率相同,符合产生共振的条件,于是B的振幅最大,就可以听到B发出的声音;第二次实验时,由于给B的音叉套上了套管,使A、B的固有频率不再相同,此时B不能产生共振,发出的声音很小,甚至听不到。

声音的共振现象叫共鸣。共鸣箱所起的作用是使音叉的声音加强。

(6)共振的应用和防止

①利用共振时,应使驱动力的频率接近或等于物体的固有频率

实例:共振筛、音箱、小提琴与二胡等乐器设置共鸣箱、建筑工地上浇铸混凝土时使用的振捣器、跳水运动员做起跳动作的“颠板”过程等。

②防止共振时,应使驱动力的频率与振动物体的固有频率不同,而且相差越大越好

实例:火车过桥时要放慢速度、军队过桥时用便步行走、轮船航行时要看波浪的打击方向而改变轮船的航向和速度、机器运转时为了防止共振要调节转速等。

(三)课堂小结

1、实际的振动系统由于受到外界阻尼作用,振动系统的机械能逐渐减小,振幅逐渐减小,这种振动叫阻尼振动,实际的振动系统如果没有能量补充都是阻尼振动,简谐运动只是一种理想的模型。

2、物体在外界驱动力作用下所做的振动叫受迫振动,受迫振动的频率取决于驱动力的频率。

3、共振是受迫振动的特殊情况,当驱动力的频率接近或等于物体固有频率时,受迫振动振幅最大的现象,叫做共振。

(四)布置作业

完成“问题与练习”的题目,阅读“科学漫步”中的材料。

附:课后练习

1、火车在铁轨上匀速行驶,每根铁轨长12.5cm,某旅客在小桌上放了一杯水,杯中水晃动的固有频率是2Hz,当火车行驶速度是多少km/h时,杯中水的晃动最厉害?

(参考答案:90km/h)

2、家用洗衣机的甩干机关闭后转速逐渐减小为零的过程中,会发现有一小段时间洗衣机抖动得最厉害。这一现象应如何解释?

π2(参考答案:洗衣机的固有频率f0小于甩干机的正常转动圆频率n,关

π2

机后,驱动力频率n 减为0的过程中总有某一时刻等于f0,于是发生共振,使洗衣机抖动最厉害)

3、一只酒杯,用手指弹一下发出清脆的声音,测得其振动的固有频率为300Hz,将它放在两只大功率的音箱中间,调整音箱发音的频率,能使酒杯碎掉,这是______现象,这时音箱所发出声音的频率为______Hz.

(参考答案:共振;300)

4、A、B两弹簧振子,A固有频率为f,B固有频率为4f,若它们均在频率为3f的驱动力作用下做受迫振动,则( B )

A.A的振幅较大,振动频率为f B.B的振幅较大,振动频率为3f C.A的振幅较大,振动频率为3f D.B的振幅较大,振动频率为4f

5、某振动系统的固有频率f1,该振动系统在频率为f2的驱动力作用下做受迫振动,系统的振动频率为( B )

A.f1B.f2C.f1+f2D.(f1+f2)/2

6、如图为一单摆的共振曲线,则该单摆的摆长约为多少?共振时单摆的振幅多大?共振时摆球的最大加速度和最大速度大小各为多少?

(参考答案:摆长:L=1m;共振时的振幅为A=8 cm;共振时的最大加速度为0.08m/s2,最大速度为0.28 m/s

相关文档
最新文档