磁控溅射法制备的纳米金薄膜的工艺条件和结构分析_许小亮

磁控溅射法制备的纳米金薄膜的工艺条件和结构分析_许小亮
磁控溅射法制备的纳米金薄膜的工艺条件和结构分析_许小亮

磁控溅射法制备的纳米金薄膜的工艺条件和结构分析*

许小亮1,2,王 烨1,2,赵亚丽1,2,牟威圩1,2,施朝淑1,2

(1.中国科学院中国科学技术大学结构分析重点实验室,安徽合肥230026;

2.中国科学技术大学物理系,安徽合肥230026)

摘 要: 通过直流溅射沉积法在玻璃衬底上制备了不同生长条件下的纳米金薄膜,利用X射线衍射(XRD)和原子力显微镜(AFM)对其进行表面形貌分析。XRD图显示Au膜具有(111)面择优取向;AFM 图显示,在不同的生长阶段Au膜具有不同的表面微结构。总结了不同的工艺条件对薄膜晶粒生长的影响,这项研究对实现金属薄膜的可控性生长有重要意义。

关键词: 晶粒生长;纳米金;表面形貌;磁控溅射

中图分类号: O782.9文献标识码:A 文章编号:1001-9731(2006)08-1216-04

1 引 言

纳米金颗粒薄膜的非线性光学研究在国际上引起高度重视,这是因为入射光可在金属颗粒间产生的很强的近场表面等离子激元(SP)共振增强效应[1,2],具备102~106倍的局域增强效果[3,4]。但既往研究中的金薄膜是处于高度无序状态的准连续颗粒薄膜,而没有开展对有序微晶体系薄膜的研究。这是因为技术上还没有做到对薄膜取向度和晶粒尺寸的可控性生长[5]。根据已有的SP理论,组成薄膜的颗粒大小及其结晶度对SP有很大的影响,因此实现纳米金颗粒薄膜的可控性生长对于推动SP的研究是十分重要的。

从一般理论模拟的结果[6~14]来看,薄膜的生长可分为3个阶段:晶粒的成核与核生长过程、正常晶粒生长过程和反常晶粒生长过程[6]。这3个阶段之间并没有严格的界限,只是在特定阶段时某种过程占主导地位。各晶粒相互接触,晶界形成后,晶粒开始柱状生长,横向直径由早期在衬底表面上发生的成核过程决定[7,8]。随着薄膜厚度的增加,柱状晶粒的平均直径不断增加,这就是薄膜的正常晶粒生长过程[9]。当晶粒半径可以和薄膜厚度相比拟时,正常晶粒生长将会停滞,这被称为厚度效应[10]。整体上所有晶粒的平均尺寸将继续增长,主要是反常晶粒的生长[11,12],速率更快,这是吸收了周边的正常晶粒所致,这种生长状态将持续到正常晶粒全部被吸收。薄膜晶粒的优势取向生长是由晶粒间自由表面能和接触面能的差异造成的[13]。晶粒的正常生长过程对晶粒的优势取向生长及薄膜的织相结构并没有影响;而在反常生长阶段,具有优势取向的晶粒边界迁移能力更强,会以相对更快的速度生长,并吸收周围的晶粒,生长成为大晶粒,形成薄膜的最优取向和织相结构[14]。

2 实 验

本实验采用直流磁控溅射仪制备Au膜,用洁净的载玻片作为衬底,靶材为纯度5N的金靶,本底真空控制在10-3~10-2Pa,起辉电压0.26kV,电流25mA。溅射过程中,功率控制在6.5~10W,所生长的薄膜厚度分别为3、6、12和24nm。本实验的目的是总结不同的工艺条件对薄膜生长的影响,而影响纳米金属颗粒的可控性生长的主要因素有:溅射气体压强,衬底温度,薄膜厚度以及溅射功率和溅射电流等,我们将实验样品分组,进行组合式分析。具体的实验参数见表1。

表1 纳米金薄膜的不同生长条件

Table1Different grow th conditions of the nano-Au film s

样品号

厚度

(nm)

A r气压

(Pa)

温度

( )

功率

(W) 13,6,12,24 3.02008.7

212

0.5, 1.0,

3.0, 6.0

200 6.5 312 3.0

RT,150,200,

250,300

10.0

利用XRD和AFM对各种样品进行了结构和表面形貌分析。

3 实验结果及分析

对3组样品分别作了X射线衍射谱研究(图1~ 3)。谱中的4个峰分别对应于Au薄膜的(111)、(200)、(220)、(311)面。研究指出:具有面心立方结构(f.c.c.)的金属薄膜,其晶粒的自由表面和底部的表面自由能在(111)面上达到最小值[13],这表明金膜本身的性质决定它有(111)的优势取向。结合本实验的XRD测试结果,薄膜厚度为24nm(3.0Pa,200 ,8.7 W)时,各特征峰的相对强度比为I(111) I(200) I(220)

*基金项目:国家自然科学基金资助项目(50472008);安徽省人才开发基金资助项目(2003Z021);安徽省高新技术基金资助项目(04022001)

收到初稿日期:2005-11-09收到修改稿日期:2006-04-12通讯作者:许小亮

作者简介:许小亮 (1960-),男,江苏南京人,教授,博士,主要从事纳米光电功能材料的研究。

I (311)=9.2 2.5 1.3 1,而金膜在没有优势取向生长时(r ando m orientation)各特征峰的相对强度比应为I (111) I (200) I (220) I (311)= 3.2 1.6 1 1.1,由此金膜样品有比较明显的(111)

面取向优势。

图1 第1组样品XRD 图

Fig 1XRD patterns of series 1

samples

图2 第2组样品XRD 图

Fig 2XRD patterns of series 2

samples

图3 第3组样品XRD 图

Fig 3XRD patterns of series 3samples

由此得到(111)峰半高宽(FWH M )B 的值,通过谢乐公式:

D =0.94

B cos

计算出薄膜晶粒直径。表2、3、4列出了不同厚度,不同Ar 气压以及不同沉积温度所制备薄膜的晶粒大小情况。

表2 不同厚度金薄膜的晶粒直径

Table 2Crystal diameter o f Au films at different

thickness

厚度(nm)

B (F WH M )( )

D (nm)3 2.3590 3.55936 1.12397.4777120.604213.912224

0.5228

16.0843

表3 不同Ar 气压下制备的金薄膜的晶粒直径Table 3Crystal diameter o f Au films at differ ent Ar

pressures

气压(Pa)B (FWH M )( )

D (nm)0.50.713511.78311.00.601213.78743.00.569714.75476.0

0.6451

13.0275

表4 不同衬底温度下制备的金薄膜的晶粒直径Table 4Cry stal diameter of A u films at different

g row th tem peratures

温度( )B (FWH M )( )

D (nm)RT 1.19417.04461500.698812.02942000.691012.1671300

0.6575

12.7804

为了得出晶粒尺寸D 随薄膜厚度H 、工作气压P 、

衬底温度T 和溅射功率W 的变化,对这些数据进行Bo ltzmann 拟合,从图4可以看到,在薄膜晶粒生长初期,晶粒尺寸大小D 和薄膜厚度H 相当,近似为线性增大,在薄膜较厚的情况下,晶粒尺寸D 的变化率随薄膜厚度H 的增加而逐渐变小,并且逐步趋向一个稳定的值(约16nm),这说明此时从底层晶粒延续的纵向生长已经停止,在旧晶粒顶上由于核化而生长出新的晶粒,新晶粒的生长过程和底层晶粒相同。

图4 晶粒尺寸与薄膜厚度的拟合曲线

Fig 4Simulatio n of crystal diameter and film thick -ness

由图5,薄膜晶粒尺寸D 随溅射Ar 气压P 的增大是先增大后减小,在3Pa 左右达到最大值。这种变化规律主要受两个相互制约的因素影响:(1)工作Ar

气压P 升高,粒子之间的碰撞增多,Ar +

对Au 原子的散射作用增强,A u 颗粒损耗的能量大,到达衬底的几率变小却粒子能量低,导致溅射沉积速率下降,Au 原子有足够的时间结晶,结晶度高,晶粒平均尺寸D 增

大;(2)继续升高工作Ar 气压P ,Ar +

数增多,它们的影响超过了粒子间相互碰撞的影响,使溅射率和沉积速率提高,导致薄膜结晶度降低,晶粒平均尺寸D 也相应地减小。

图5 晶粒尺寸与工作气压的拟合曲线

Fig 5Simulation of cr ystal diam eter and Ar pressure 由图6,随着衬底温度T 升高,薄膜晶粒的平均尺寸D 也增大。这是因为当衬底温度较高时,Au 原子轰击到玻璃衬底上后,过剩的能量较衬底温度低时增加,因此Au 原子在衬底基片表面更容易移动到平衡位置,有利于Au 颗粒的生长,晶粒尺寸D 增大。另一方面,因为薄膜的最大厚度为20nm 左右,由吸附原理,以化学吸附为主,薄膜内部有化学势垒,需要热激发,当衬底温度T 升高时,薄膜的化学吸附性越好,因此结晶也越好,有利于晶粒的生长,晶粒尺寸D 随之

增大。

图6 晶粒尺寸与衬底温度的拟合曲线

Fig 6Sim ulation of cry stal diam eter and temperature 当其它条件不变时,随着溅射功率的增大(由6.5W 变化到8.7和10.0W),晶粒变小(由14.7547nm 变为13.9122和12.1671nm)。因为溅射功率越大时,Au 颗粒溅射速率越高;溅射速率较高时,薄膜处于非稳定态,在表面出现结构缺陷的几率较大,因此薄膜的结构特性相对较差,结晶度较低,导致薄膜晶粒平均尺寸D 较小;反之,当Au 颗粒溅射速率较低时,薄膜更接近于稳定态,成膜的结构特性相对较好,薄膜的结晶度较高,则薄膜晶粒平均尺寸D 较大。不过,和前面几项影响因素相比较,溅射功率对薄膜晶粒尺寸D 的影响并不显著。

用原子力显微镜(AFM)观察衬底温度为200 时生长的不同厚度的Au 膜的表面形貌(如图7),当薄膜厚度还是6nm 时,Au 膜基本上已经处于连续的状态,此时晶粒已经开始相互接触,并呈柱状生长(如图7(a))。这时的晶粒顶端呈球缺状,薄膜表面凸凹有致,粗糙度较大,晶粒呈纤维状,横向直径远小于纵向高度,除了个别晶粒外,大多数晶粒的截面都显得比较小,这表明自由表面积(顶部的面积)和晶界面积的比值还很小,此时晶粒生长主要驱动力为晶界表面能

gb ,薄膜正处于正常晶粒生长过程中。当膜厚增加到12nm 时,Au 膜的晶粒排列变的非常紧凑,自由表面更加平整,横向直径较6nm 厚的薄膜样品大了很多,此时的自由表面积和晶界面积比值显然比图7(a)所示样品要大。晶界和自由表面接触处的沟槽非常清晰,根据M ullins [15]的分析,自由表面能和晶界表面能需满足张力平衡。也有个别晶粒间的晶界不明显,拥有这种晶界的两晶粒将要融为一体,长成更大的晶粒。晶粒尺度随厚度明显增加,截面呈各种形态(如图7(b)),大多为多边形。此时有个别晶粒相对较大,但相差不是很悬殊。这和Fro st 对晶粒生长停滞过程的模

拟结果是一致的[10]

。此时由于自由表面起到越来越显著的影响,金膜正处于晶粒生长停滞的过程。图7(c)显示的是更厚的薄膜,厚度为24nm ,这时薄膜表面又变得高低不平,仔细观察可见,较高的都是大晶粒,较低的都是小晶粒,而且晶粒大小相差十分显著。大晶粒上有不明显的晶界痕迹,可见它们是由多个较小的晶粒合并而来的。此时发生的是反常晶粒生长。这个生长过程很容易在薄膜沉积实验中观察到,如,Wong 等也观察到SiO 2衬底上沉积的A u 膜的反常晶粒生长

[16]

图7 Au 膜的AFM 图Fig 7AFM imag es o f Au film s

4 结 论

由实验分析可知,薄膜厚度为5nm 左右时,Au 膜的晶粒开始呈柱状生长,横向直径不断增大,在不同的生长阶段,薄膜具有不同的表面形貌。随着薄膜厚度的增加,在旧晶粒顶上由于核化而生长出新的晶粒,新晶粒的生长过程和底层晶粒相同,因此晶粒平均尺寸逐步趋向一个稳定值。XRD 图片结果显示,金膜具有比较明显的(111)面取向优势。衬底温度,薄膜厚度,

功率,工作气压是影响晶粒尺度的因素,且都符合Bo-ltzmann关系,通过研究上述规律,可以实现(111)优势取向纳米Au薄膜的可控性生长,研究人员可以根据需要选取相应的工艺条件。

参考文献:

[1] G resillo n S,Aigo uy L,Bo ccar a A C,et al.[J].P hys R ev

L ett,1999,82(22):4520.

[2] Sary chev A K,Shubin V A,Shalaev V M.[J].Phy s R ev

E,1999,59(6):7239.

[3] Duco urtieux S,Po do lskiy V A,Shalaev V M,et al.[J].

P hy s Rev B,2001,64:165403-1.

[4] Sary chev A K,Shubin V A,Shalaev V M.[J].P hys R ev

B,1999,60(24):16389.

[5] L yo n L A,M usick M D,Smith P C,et al.[J].Senso rs

A ctuators B,1999,54:118.

[6] F rost H J.[J].M ater Char act erizatio n,1994,32:257.[7] M o vchan B A,D emchishin A V.[J].F iz M etal M etal-l

ov ed,1969,28:83.

[8] T ho rnton J A.[J].J Vac Sci T echnol,1974,11:666.

[9] Smith C S.M etal Interfaces[M].O H:Special V o lume,

1952.65-113.

[10] F ro st H J,T hompso n C V,W alto n D T.[J].A cta

M eta ll et M ater,1990,38:1455.

[11] T hompso n C V.[J].J A ppl Phy s,1985,58:763.

[12] Ro llert A D,Srolov itz D J,A nderso n M P,et al.[J].

A cta M etall,1989,37:1227.

[13] Adamik M,Bar na P B,T omo v I.[J].T hin Solid F ilm,

2000,359:33.

[14] T hor nto n J A.[J].J V ac Sci T echnol,1974,11:666.

[15] M ullins W W.[J].Acta M et all,1958,6:414.

[16] Wong C C,Smit h H I,T ho mpso n C V.[J].A ppl Phys

L ett,1986,48:335.

Growth conditions and structure analysis of nano-Au

films prepared by magnetron sputtering

XU Xiao-liang1,2,WANG Ye1,2,ZHAO Ya-li1,2,M OU We-i w ei1,2,SHI Chao-shu1,2

(1.Structure Research Laborato ry,University of Science and T echno log y o f China,H efei230026,China;

2.Department of Phy sics,U niv ersity o f Science and T echnolo gy of China,H efei230026,China) Abstract:A ser ies of Au nanometer films w ere deposited on glass substrates in different condition by m agnetron sputtering.T he surface morpholog y of the Au films w as observed using the atom ic force m icrosco py(AFM) and the tex ture w as detected by X-r ay diffr actio n(XRD).The favo red or ientation(111)o f the films w as cert-i fied by XRD patterns.A ccording to the AFM microg raphs,m icrostructure of Au film is different in different courses o f film g rain g row th.T o generalize the effect o f different preparing conditio ns on the grow th of thin film s by date processing,is o f great sig nificatio n to r ealize the co ntro llable g row th of m etal films.

Key words:crystal growth;Au film;surface morphology;magnetron sputtering

(上接第1215页)

Study on synthesis of Nd3+doped lead airconate titanate

nanopowders by so-l gel methods

ZHA NG De-qing1,2,LIU Ha-i tao1,2,CAO M ao-sheng1,3

(1.Departm ent of M aterial Science and Eng ineering,H arbin Engineering Univer sity,H arbin150001,China;

2.Co lleg e of Chem ical Engineering,Qiqihar U niv ersity,Qiqihar161006,China;

3.Co lleg e of M aterial Science and Eng ineer ing,Beijing Institute of T echno logy,Beijing100081,China) Abstract:Nd3+doped Lead zirconate titanate nanopow ders Pb1-3x/2Nd x Zr0.52T i0.48O3(PN ZT)w ere pr epared by the m odified so-l g el m ethods.Ethy lene g lycol w as used as solv ent,neodymium nitrate w as used as Nd3+source. The reaction mechanisms of nanopo wder pr epar ing pro cess fr om the Sol w ere discussed throug h using FT IR, XRD,T G-DTA,and it w as pr oved that the heating tem perature o f PNZT w as50~100 higher than PZT. PNZT lattice str ucture w as char acter ized by XRD,SEM and TEM.Results show that the lattice aberrance of PNZT w as increased w ith N d3+doping.Co mparing w ith PZT,the constant a and V of PNZT w ere decreasing w ith the addition o f Nd3+,but the c and c/a w ere increasing w ith a few Nd3+doping and then w ere decreasing gradually w ith the addition of Nd3+.If Nd3+% 9%(m ol),perovskite PNZT nano pow ders w hich particle size is about20~50nm could be formed.Nd3+replaced Pb2+of PZT and fo rmed steady perov skite crystal w ith Ti4+and O2+.

Key words:neodymium;doping;so-l gel;PZT;nanopowder

磁控溅射法制备薄膜材料综述

磁控溅射法制备薄膜材料综述 摘要薄膜材料的厚度是从纳米级到微米级,具有尺寸效应,在国防、通讯、航空、航天、电子工业等领域有着广泛应用,其有多种制造方法,目前使用较多的是溅射法,其中磁控溅射的应用较为广泛。本文主要介绍了磁控溅射法的原理、特点,以及制备过程中基片温度、溅射功率、溅射气压和溅射时间等工艺条件对所制备薄膜性能的影响。 关键字磁控溅射;原理;工艺条件;影响 Brief Introduction to Thin Films by Magnetron Sputtering Abstract: The thickness of thin films is from the nano to the micron level.With its size effect, the films are widely used in the defense, telecommunication, aviation, aerospace, electronics and other fields.It can be prepared by many ways,of which the sputtering is used mostly.And magnetron sputtering is popular.The principle and characteristics of magnetron sputtering, and how substrate temperature, sputtering power, sputtering pressure and sputtering time influence the the properties of the films during the preparing process are introduced in this paper. Key Words: magnetron sputtering; principles; conditions; lnfluence 1 引言 薄膜是指尺度在某个一维方向远远小于其他二维方向,厚度可从纳米级到微 米级的材料,由于薄膜的尺度效应,它表现出与块体材料不同的物理性质,有广 泛应用。薄膜的制备大致可分为物理方法和化学方法两大类[1]。物理方法主要包 括各种不同加热方式的蒸发,溅射法等,化学方法则包括各种化学气相沉积 (CVD)、溶胶-凝胶法(sol-gel)等。 溅射沉积法由于速率快、均一性好、与基片附着力强、比较容易控制化学剂 量比及膜厚等优点,成为制备薄膜的重要手段。溅射法根据激发溅射离子和沉积 薄膜方式的不同又分直流溅射、离子溅射、射频溅射和磁控溅射,目前多用后两 种。本文主要介绍磁控溅射制备薄膜材料的原理及影响因素。 2 磁控溅射法 2.1磁控溅射基本原理

磁控溅射法制备的纳米金薄膜的工艺条件和结构分析_许小亮

磁控溅射法制备的纳米金薄膜的工艺条件和结构分析* 许小亮1,2,王 烨1,2,赵亚丽1,2,牟威圩1,2,施朝淑1,2 (1.中国科学院中国科学技术大学结构分析重点实验室,安徽合肥230026; 2.中国科学技术大学物理系,安徽合肥230026) 摘 要: 通过直流溅射沉积法在玻璃衬底上制备了不同生长条件下的纳米金薄膜,利用X射线衍射(XRD)和原子力显微镜(AFM)对其进行表面形貌分析。XRD图显示Au膜具有(111)面择优取向;AFM 图显示,在不同的生长阶段Au膜具有不同的表面微结构。总结了不同的工艺条件对薄膜晶粒生长的影响,这项研究对实现金属薄膜的可控性生长有重要意义。 关键词: 晶粒生长;纳米金;表面形貌;磁控溅射 中图分类号: O782.9文献标识码:A 文章编号:1001-9731(2006)08-1216-04 1 引 言 纳米金颗粒薄膜的非线性光学研究在国际上引起高度重视,这是因为入射光可在金属颗粒间产生的很强的近场表面等离子激元(SP)共振增强效应[1,2],具备102~106倍的局域增强效果[3,4]。但既往研究中的金薄膜是处于高度无序状态的准连续颗粒薄膜,而没有开展对有序微晶体系薄膜的研究。这是因为技术上还没有做到对薄膜取向度和晶粒尺寸的可控性生长[5]。根据已有的SP理论,组成薄膜的颗粒大小及其结晶度对SP有很大的影响,因此实现纳米金颗粒薄膜的可控性生长对于推动SP的研究是十分重要的。 从一般理论模拟的结果[6~14]来看,薄膜的生长可分为3个阶段:晶粒的成核与核生长过程、正常晶粒生长过程和反常晶粒生长过程[6]。这3个阶段之间并没有严格的界限,只是在特定阶段时某种过程占主导地位。各晶粒相互接触,晶界形成后,晶粒开始柱状生长,横向直径由早期在衬底表面上发生的成核过程决定[7,8]。随着薄膜厚度的增加,柱状晶粒的平均直径不断增加,这就是薄膜的正常晶粒生长过程[9]。当晶粒半径可以和薄膜厚度相比拟时,正常晶粒生长将会停滞,这被称为厚度效应[10]。整体上所有晶粒的平均尺寸将继续增长,主要是反常晶粒的生长[11,12],速率更快,这是吸收了周边的正常晶粒所致,这种生长状态将持续到正常晶粒全部被吸收。薄膜晶粒的优势取向生长是由晶粒间自由表面能和接触面能的差异造成的[13]。晶粒的正常生长过程对晶粒的优势取向生长及薄膜的织相结构并没有影响;而在反常生长阶段,具有优势取向的晶粒边界迁移能力更强,会以相对更快的速度生长,并吸收周围的晶粒,生长成为大晶粒,形成薄膜的最优取向和织相结构[14]。 2 实 验 本实验采用直流磁控溅射仪制备Au膜,用洁净的载玻片作为衬底,靶材为纯度5N的金靶,本底真空控制在10-3~10-2Pa,起辉电压0.26kV,电流25mA。溅射过程中,功率控制在6.5~10W,所生长的薄膜厚度分别为3、6、12和24nm。本实验的目的是总结不同的工艺条件对薄膜生长的影响,而影响纳米金属颗粒的可控性生长的主要因素有:溅射气体压强,衬底温度,薄膜厚度以及溅射功率和溅射电流等,我们将实验样品分组,进行组合式分析。具体的实验参数见表1。 表1 纳米金薄膜的不同生长条件 Table1Different grow th conditions of the nano-Au film s 样品号 厚度 (nm) A r气压 (Pa) 温度 ( ) 功率 (W) 13,6,12,24 3.02008.7 212 0.5, 1.0, 3.0, 6.0 200 6.5 312 3.0 RT,150,200, 250,300 10.0 利用XRD和AFM对各种样品进行了结构和表面形貌分析。 3 实验结果及分析 对3组样品分别作了X射线衍射谱研究(图1~ 3)。谱中的4个峰分别对应于Au薄膜的(111)、(200)、(220)、(311)面。研究指出:具有面心立方结构(f.c.c.)的金属薄膜,其晶粒的自由表面和底部的表面自由能在(111)面上达到最小值[13],这表明金膜本身的性质决定它有(111)的优势取向。结合本实验的XRD测试结果,薄膜厚度为24nm(3.0Pa,200 ,8.7 W)时,各特征峰的相对强度比为I(111) I(200) I(220) *基金项目:国家自然科学基金资助项目(50472008);安徽省人才开发基金资助项目(2003Z021);安徽省高新技术基金资助项目(04022001) 收到初稿日期:2005-11-09收到修改稿日期:2006-04-12通讯作者:许小亮 作者简介:许小亮 (1960-),男,江苏南京人,教授,博士,主要从事纳米光电功能材料的研究。

关于磁控溅射发展历程的综述

磁控溅射 1852年,格洛夫(grove)发现阴极溅射现象,自此以后溅射技术就开始建立起来了!磁控溅射沉积技术制取薄膜是上世纪三四十年代发展起来的,由于当时的溅射技术刚刚起步,其溅射的沉积率很低,而且溅射的压强基本上在1pa以上,因此溅射镀膜技术一度在产业话的竞争中处于劣势。1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置。1974年,j.chapin发现了平衡磁控溅射。这些新兴发展起来的技术使得高速、低温溅射成为现实,磁控溅射更加快速地发展起来了,如今它已经成为在工业上进行广泛的沉积覆层的重要技术,磁控技术在许多应用领域包括制造硬的、抗磨损的、低摩擦的、抗腐蚀的、装潢的以及光电学薄膜等方面具有重要的影响。 磁控溅射的发展历程: 溅射沉积是在真空环境下,利用等离子体中的荷能离子轰击靶材表面,使靶材上的原子或离子被轰击出来,被轰击出的粒子沉积在基体表面生长成薄膜。 溅射沉积技术的发展历程中有几个具有重要意义的技术创新应用,现在归结如下: (1)二级溅射: 二级溅射是所有溅射沉积技术的基础,它结构简单、便于控制、工艺重复性好主要应用于沉积原理的研究,由于该方法要求工作气压高(>1pa)、基体温升高和沉积速率低等缺点限制了它在生产中的应用。 (2)传统磁控溅射(也叫平衡磁控溅射): 平衡磁控溅射技术克服了二级溅射沉积速率低的缺点,使溅射镀膜技术在工业应用上具有了与蒸发镀膜相抗衡的能力。但是平衡磁控溅射镀膜同样也有缺点,它的缺点在于其对二次电子的控制过于严密,使等离子体被限制在阴极靶附近,不利于大面积镀膜。 (3)非平衡磁控溅射: B.Window在1985年开发出了“非平衡磁控溅射技术”,它克服了平衡磁控溅射技术的缺陷,适用于大面积镀膜。并且在上世纪90年代前期,在非平衡磁控溅射的基础上发展出了闭合非平衡系统(CFUBMS),采用多个靶以及非平衡结构构成的闭合磁场可以对电子进行有效地约束,使整个真空室的等离子体密度得以提高。这样可以使磁控溅射技术更适合工业生产。 (4)脉冲磁控溅射: 由于在通过直流反应溅射来制得高密、无缺陷的绝缘膜(尤其是氧化物薄膜)时,经常存在不少的问题。其结果会严重的影响膜的结构和性能。但是通过脉冲磁控溅射可以与制得金属薄膜同样的效率来制得高质量的绝缘体薄膜。近年来,随着脉冲中频电源的研发成功,使镀膜工艺技术又上了一个新的台阶;利用中频电源,采用中频对靶或者孪生靶,进行中频磁控溅射,有效地解决了靶中毒严重的现象,特别是在溅射绝缘材料的靶时,克服了溅射过程中,阳极消失的现象。 (5)磁控溅射技术新型应用: 磁控溅射技术的新型应用是指在以上基础上,再根据应用的需要,对磁控溅射系统进行改进而衍生出的多种多样的设备和装置。这些改进主要是在系统内磁力线的分布上以及磁控溅射靶的设置和分布上。

磁控溅射金属薄膜的制备

磁控溅射薄膜金属的制备 黎明 烟台大学环境与材料工程学院山东烟台111 E-mail:1111111@https://www.360docs.net/doc/0d5840274.html, 摘要: 金属与金属氧化物在气敏、光催化与太阳能电池等方面有着极为重要的应用,通过磁控溅射法制备的金属氧化物薄膜,具有纯度高、致密性好、可控性强、与基底附着性好等优点,因此磁控溅射技术被广泛应用于工业化生产制备大面积、高质量的薄膜。我们通过磁控溅射法制备了氧化铜纳米线阵列薄膜,并研究了其气敏性质;除此之外,我们还通过磁控溅射法制备了TiO2/WO3复合薄膜,研究了两者之间的电荷传输性质 关键词:磁控溅射;气敏性质;光电性质 Magnetron sputtering metal film preparation LiMing Environmental and Materials Engineering, Yantai UniversityShandong Yantai111 E-mail:1111111@https://www.360docs.net/doc/0d5840274.html, Abstract:GAasMetal and metal oxide have important applications in gas-sensing, photocatalyst and photovoltaics, etc. The metal oxide film prepared by magnetron sputtering technique possesses good qualities, such as high purity, good compactness, controllability and excellent adhesion. Therefore magnetron sputtering technique is widely used to prepare large area and high quality films in industrial production. In our work, CuOnanowires (NWs) array films were synthesized by magnetron sputtering. Their gas-sensing properties were also investigated. Except this, WO3/ TiO2nanocomposite films were synthesized by magnetron sputtering and their dynamic charge transport properties were investigated by the transient photovoltage technique. KeyWords :Gmagnetron Sputtering, Photo-electric Properties, Gas-sensing Properties 1绪论 磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅射技术与也取得了进一步的发展!非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述 1.引言 溅射技术属于PVD(物理气相沉积)技术的一种,是一种重要的薄膜材料制备的方法。它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并最终在衬底上沉积成膜的方法。磁控溅射是把磁控原理与普通溅射技术相结合利用磁场的特殊分布控制电场中的电子运动轨迹,以此改进溅射的工艺。磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。 2.溅射技术的发展 1852年,格洛夫(Grove)发现阴极溅射现象,从而为溅射技术的发展开创了先河。采用磁控溅射沉积技术制取薄膜是在上世纪三四十年代开始的,但在上世纪70年代中期以前,采蒸镀的方法制取薄膜要比采用磁控溅射方法更加广泛。这是凶为当时的溅射技术140刚起步,其溅射的沉积率很低,而且溅射的压强基本上在lpa以上但是与溅射同时发展的蒸镀技术由于其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术一度在产业化的竞争中处于劣势溅射镀膜产业化是在1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。在1974年,由J.Chapin发现了平衡磁控溅射后,使高速、低温溅射成为现

实,磁控溅射更加快速地发展起来。 溅射技术先后经历了二级、三级和高频溅射。二极溅射是最早采用,并且是目前最简单的基本溅射方法。二极溅射方法虽然简单,但放电不稳定,而且沉积速率低。为了提高溅射速率以及改善膜层质量,人们在二极溅射装置的基础上附加热阴极,制作出三极溅射装置。 然而像这种传统的溅射技术都有明显的缺点: 1).溅射压强高、污染严重、薄膜纯度差 2).不能抑制由靶产生的高速电子对基板的轰击,基片温升高、淀积速率低 3).灯丝寿命低,也存在灯丝对薄膜的污染问题 3.磁控溅射的原理: 磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。具有低温、高速两大特点。 电子在加速的过程中受到磁场洛仑兹力的作用,被束缚在靠近靶面的等离子体区域内: F=-q(E+v×B) 电子的运动的轨迹将是沿电场方向加速,同时绕磁场方向螺旋前进的复杂曲线。即磁场的存在将延长电子在等离子体中的运动轨迹,提高了它参与原子碰撞和电离过程的几率,因而在同样的电流和气压下可以显著地提高溅射的效率和沉积的速率。 具体地说来磁控溅射系统在真空室充入0.1~1OPa压力的惰性气

磁控溅射镀膜技术的发展

第46卷第2期2009年3月 真空VACUUM Vol.46,No.2Mar.2009 收稿日期:2008-09-03 作者简介:余东海(1978-),男,广东省广州市人,博士生 联系人:王成勇,教授。 *基金项目:国家自然科学基金(50775045);东莞市科技计划项目(20071109)。 磁控溅射镀膜技术的发展 余东海,王成勇,成晓玲,宋月贤 (广东工业大学机电学院,广东 广州 510006) 摘 要:磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅 射技术与也取得了进一步的发展。 非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。 关键词:镀膜技术;磁控溅射;磁控溅射靶中图分类号:TB43 文献标识码:A 文章编号:1002-0322(2009)02-0019-07 Recent development of magnetron sputtering processes YU Dong-hai,WANG Cheng-yong,CHENG Xiao-ling,SONG Yue-xian (Guangdong Universily of Technology,Guangzhou 510006,China ) Abstract:Magnetron sputtering processes have been widely appleed to thin film deposition nowadays in various industrial fields due to its outstanding advantages,and the technology itself is progressing further.The unbalanced magnetron sputtering process can improve the plasma distribution in deposition chamber to make film quality better.The medium -frequency and pulsed magnetron sputtering proceses can efficiently avoid the hysteresis during reactive sputtering to eliminate target poisoning and arcing,thus improving the stability and depositing rate in preparing thin compound films.Higher utilization of target can be obtained by improved target design,and the high -speed sputtering and self -sputtering provide a new field of applications in magnetron sputtering coating processes. Key words:coating technology;magnetron sputtering;magnetron sputtering target 溅射镀膜的原理[1]是稀薄气体在异常辉光 放电产生的等离子体在电场的作用下,对阴极靶材表面进行轰击,把靶材表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向基体表面,在基体表面形成镀层。 溅射镀膜最初出现的是简单的直流二极溅射,它的优点是装置简单,但是直流二极溅射沉积速率低;为了保持自持放电,不能在低气压(<0.1Pa )下进行;不能溅射绝缘材料等缺点限制了其应用。在直流二极溅射装置中增加一个热阴极和辅助阳极,就构成直流三极溅射。增加的热阴极和辅助阳极产生的热电子增强了溅射气体原子的电离,这样使溅射即使在低气压下 也能进行;另外,还可降低溅射电压,使溅射在低 气压,低电压状态下进行;同时放电电流也增大,并可独立控制,不受电压影响。在热阴极的前面增加一个电极(栅网状),构成四极溅射装置,可使放电趋于稳定。但是这些装置难以获得浓度较高的等离子体区,沉积速度较低,因而未获得广泛的工业应用。 磁控溅射是由二极溅射基础上发展而来,在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,成为目前镀膜工业主要方法之一。磁控溅射与其它镀膜技术相比具有如下特点:可制备成靶的材料广,几乎所有金属,合金和陶瓷材料都可以制成靶材;在适当条件下多元靶材共溅射方式,可沉积

磁控溅射镀膜简介

磁控溅射镀膜简介 溅射薄膜靶材按其不同的功能和应用可大致分为机械功能膜相物理功能膜两大类。前者包括耐摩、减摩、耐热、抗蚀等表面强化薄膜材料、固体润滑薄膜材料, 后者包括电、磁、声、光等功能薄膜材料靶材等, 具体应用在玻璃涂层(各种建筑玻璃、ITO透明导电玻璃、家电玻璃、高反射后视镜及亚克力镀膜), 工艺品装饰镀膜, 高速钢刀具镀膜, 切削刀具镀膜, 太阳能反光材料镀膜, 光电、半导体、光磁储存媒体、被动组件、平面显示器、微机电、光学组件、及各类机械耐磨、润滑、生物医学, 各种新型功能镀膜(如硬质膜、金属膜、半导体膜、介质膜、碳膜、铁磁膜和磁性薄膜等) 采用Cr,Cr-CrN等合金靶材或镶嵌靶材,在N2,CH4等气氛中进行反应溅射镀膜,可以在各种工件上镀Cr,CrC,CrN等镀层。纯Cr的显微硬度为425~840HV,CrN为1000~350OHV,不仅硬度高且摩擦系数小,可代替水溶液电镀铬。电镀会使钢发生氢脆、速率慢,而且会产生环境污染问题。 用TiN,TiC等超硬镀层涂覆刀具、模具等表面,摩擦系数小,化学稳定性好,具有优良的耐热、耐磨、抗氧化、耐冲击等性能,既可以提高刀具、模具等的工作特性,又可以提高使用寿命,一般可使刀具寿命提高3~10倍。 TiN,TiC,Al2O3等膜层化学性能稳定,在许多介质中具有良好的耐蚀性,可以作为基体材料保护膜。溅射镀膜法和液体急冷法都能制取非晶态合金,其成分几乎相同,腐蚀特性和电化学特性也没有什么差别,只是溅射法得到的非晶态膜阳极电流和氧化速率略大。

在高温、低温、超高真空、射线辐照等特殊条件下工作的机械部件不能用润滑油,只有用软金属或层状物质等固体润滑剂。常用的固体润滑剂有软金属(Au,Ag,Pb,Sn等),层状物质(MoS2,WS2,石墨,CaF2,云母等),高分子材料(尼龙、聚四氟乙烯等)等。其中溅射法制取MoS2膜及聚四氟乙烯膜十分有效。虽然MoS2膜可用化学反应镀膜法制作,但是溅射镀膜法得到的MoS2膜致密性好,附着性优良。MoS2溅射膜的摩擦系数很低,在0.02~0.05范围内。MoS2在实际应用时有两个问题:一是对有些基体材料如Ag,Cu,Be等目前还不能涂覆;二是随湿度增加,MoS2膜的附着性变差。在大气中使用要添加Sb2O3等防氧化剂,以便在MoS2表面形成一种保护膜。 溅射法可以制取聚四氟乙烯膜。试验表明,这种高分子材料薄膜的润滑特性不受环境湿度的影响,可长期在大气环境中使用,是一种很有发展前途的固体润滑剂。其使用温度上限为5OoC,低于-260oC时才失去润滑性。 MoS2、聚四氟乙烯等溅射膜,在长时间放置后性能变化不大,这对长时间备用、突然使用又要求可靠的设备如防震、报警、防火、保险装置等是较为理想的固体润滑剂。 内容来源:宝钢代理商https://www.360docs.net/doc/0d5840274.html, 欢迎多多交流!!!

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄 膜材料 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉

光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流 气体放电体系,在阴阳两极之间 由电动势为的直流电源提供电压 和电流,并以电阻作为限流电 阻。在电路中,各参数之间应满 足下述关系: V=E-IR 使真空容器中Ar气的压力保持一定,并逐渐提高两个电极之间的电压。在开始时,电极之间几乎没有电流通过,因为这时气体原子大多仍处于中性状态,只有极少量的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。

磁控溅射法制备薄膜材料综述

磁控溅射法制备薄膜材料综述 材料化学张召举 摘要薄膜材料的厚度是从纳米级到微米级,具有尺寸效应,在国防、通讯、航空、航天、电子工业等领域有着广泛应用,其有多种制造方法,目前使用较多的是溅射法,其中磁控溅射的应用较为广泛。本文主要介绍了磁控溅射法的原理、特点,以及制备过程中基片温度、溅射功率、溅射气压和溅射时间等工艺条件对所制备薄膜性能的影响。 关键字磁控溅射;原理;工艺条件;影响 正文 薄膜是指尺度在某个一维方向远远小于其他二维方向,厚度可从纳米级到微米级的材料,由于薄膜的尺度效应,它表现出与块体材料不同的物理性质,有广泛应用。薄膜的制备大致可分为物理方法和化学方法两大类。物理方法主要包括各种不同加热方式的蒸发,溅射法等,化学方法则包括各种化学气相沉积(CVD)、溶胶-凝胶法(sol-gel)等。 溅射沉积法由于速率快、均一性好、与基片附着力强、比较容易控制化学剂量比及膜厚等优点,成为制备薄膜的重要手段。溅射法根据激发溅射离子和沉积薄膜方式的不同又分直流溅射、离子溅射、射频溅射和磁控溅射,目前多用后两种。本文主要介绍磁控溅射制备薄膜材料的原理及影响因素。 磁控溅射是70年代迅速发展起来的新型溅射技术,目前已在工业生产中实际应用。这是由于磁控溅射的镀膜速率与二极溅射相比提高了一个数量级。具有高速、低温、低损伤等优点。高速是指沉积速率快;低温和低损伤是指基片的温升低、对膜层的损伤小。1974年Chapin发明了适用于工业应用的平面磁控溅射靶,对进人生产领域起了推动作用。 磁控溅射基本原理 磁控溅射是20世纪70年代迅速发展起来的一种高速溅射技术。对许多材料,利用磁控溅射的方式溅射速率达到了电子术蒸发的水平,而且在溅射金属时还可避免二次电子轰击而使基板保持冷态,这对使用怕受温度影响的材料作为薄膜沉

磁控溅射镀膜技术的发展_余东海

第46卷第2期2009年3月 真 空 VACUUM Vol.46,No.2Mar.2009 收稿日期:2008-09-03 作者简介:余东海(1978-),男,广东省广州市人,博士生 联系人:王成勇,教授。 *基金项目:国家自然科学基金(50775045);东莞市科技计划项目(20071109)。 磁控溅射镀膜技术的发展 余东海,王成勇,成晓玲,宋月贤 (广东工业大学机电学院,广东 广州 510006) 摘 要:磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅 射技术与也取得了进一步的发展。 非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。 关键词:镀膜技术;磁控溅射;磁控溅射靶中图分类号:TB43 文献标识码:A 文章编号:1002-0322(2009)02-0019-07 Recent development of magnetron sputtering processes YU Dong-hai,WANG Cheng-yong,CHENG Xiao-ling,SONG Yue-xian (Guangdong Universily of Technology,Guangzhou 510006,China ) Abstract:Magnetron sputtering processes have been widely appleed to thin film deposition nowadays in various industrial fields due to its outstanding advantages,and the technology itself is progressing further.The unbalanced magnetron sputtering process can improve the plasma distribution in deposition chamber to make film quality better.The medium -frequency and pulsed magnetron sputtering proceses can efficiently avoid the hysteresis during reactive sputtering to eliminate target poisoning and arcing,thus improving the stability and depositing rate in preparing thin compound films.Higher utilization of target can be obtained by improved target design,and the high -speed sputtering and self -sputtering provide a new field of applications in magnetron sputtering coating processes. Key words:coating technology;magnetron sputtering;magnetron sputtering target 溅射镀膜的原理[1]是稀薄气体在异常辉光 放电产生的等离子体在电场的作用下,对阴极靶材表面进行轰击,把靶材表面的分子、原子、离子及电子等溅射出来,被溅射出来的粒子带有一定的动能,沿一定的方向射向基体表面,在基体表面形成镀层。 溅射镀膜最初出现的是简单的直流二极溅射,它的优点是装置简单,但是直流二极溅射沉积速率低;为了保持自持放电,不能在低气压(<0.1Pa )下进行;不能溅射绝缘材料等缺点限制了其应用。在直流二极溅射装置中增加一个热阴极和辅助阳极,就构成直流三极溅射。增加的热阴极和辅助阳极产生的热电子增强了溅射气体原子的电离,这样使溅射即使在低气压下 也能进行;另外,还可降低溅射电压,使溅射在低 气压,低电压状态下进行;同时放电电流也增大,并可独立控制,不受电压影响。在热阴极的前面增加一个电极(栅网状),构成四极溅射装置,可使放电趋于稳定。但是这些装置难以获得浓度较高的等离子体区,沉积速度较低,因而未获得广泛的工业应用。 磁控溅射是由二极溅射基础上发展而来,在靶材表面建立与电场正交磁场,解决了二极溅射沉积速率低,等离子体离化率低等问题,成为目前镀膜工业主要方法之一。磁控溅射与其它镀膜技术相比具有如下特点:可制备成靶的材料广,几乎所有金属,合金和陶瓷材料都可以制成靶材;在适当条件下多元靶材共溅射方式,可沉积 DOI:10.13385/https://www.360docs.net/doc/0d5840274.html,ki.vacuum.2009.02.026

磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料 一、实验目的 1、详细掌握磁控溅射制备薄膜的原理和实验程序; 2、制备出一种金属膜,如金属铜膜; 3、测量制备金属膜的电学性能和光学性能; 4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。 二、实验仪器 磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。 三、实验原理 1、磁控溅射镀膜原理 (1)辉光放电 溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为的 Ne 为例,其关系如图 5 -1 所示。 图 5-1 气体直流辉光放电的形成 当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。随后继续增加电压,当电流密度增加到~cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。 (2)溅射

电化学方法制备纳米材料

电化学方法制备纳米材料 Mcc 引言:诺贝尔奖获得者Feyneman在六十年代曾经预言:如果我们对物体微小规模上的排列加以某种控制的话,我们就能使物体得到大量的异乎寻常的特性,就会看到材料的性能产生丰富的变化。他所说的材料就是现在的纳米材料。 纳米材料和纳米科技被广泛认为是二十一世纪最重要的新型材料和科技领域之一。1992年,《Nanostructured Materials》正式出版,标志着纳米材料学成为一门独立的科学。自1991年Iijima首次制备了碳纳米管以来,一维纳米材料由于具有许多独特的性质和广阔的应用前景而引起了人们的广泛关注。由于纳米材料的形貌和尺寸对其性能有着重要的影响,因此,纳米材料形貌和尺寸的控制合成是非常重要的。作为高级纳米结构材料和纳米器件的基本构成单元,纳米颗粒的合成与组装是纳米科技的重要组成部分和基础。而电化学方法制备纳米材料的研究,经历了早期的纳米薄膜、纳米微晶的制备,直至现在的电化学制备纳米金属线、金属氧化物等过程,为纳米材料的研究做出了极大的贡献。 摘要:纳米是指特征维度尺寸介于1-100 nm范围内的粒子微小粒子,又称作超微粒子。当粒子尺寸小至纳米级时,其本身将具有表面与界面效应、量子尺寸效应、小尺寸效应和宏观量子隧道效应,这些效应使得纳米材料具有很多奇特的性能。本文简单综述了纳米材料的合成与制备中常用的几种方法以及简单的一些应用,着重综述了

纳米材料的电化学制备方法并对其影响因素和发展情景做以简单探究。 关键词:纳米材料电化学制备特征应用 Electrochemical preparation of nano materials Mcc Introduction:Nobel Prize winner in the s Feyneman prophecy: if we tiny scale of objects arranged to some control of words, we can make the object have a lot of unusual characteristics, you will see the properties of materials have a wealth of change. What he said is the material of the nanometer material now. Nano materials and nanotechnology is widely thought to be the 21 st century the most important new materials and one of the areas of science and technology. In 1992, the Nanostructured Materials "the official publication, marked the nanometer material science into an independent scientific < https://www.360docs.net/doc/0d5840274.html,/gongxue/ >. Since 1991, the first time the Iijima preparation since carbon nanotubes, a one-dimensional nanomaterials due to the nature of the has many special and broad application prospects and caused the people's attention. Because the morphology of nanometer material and size of its performance has the important influence, therefore, the size

磁控溅射制备铝薄膜毕业论文

磁控溅射制备铝薄膜毕业论文 目录 第1章绪论 (1) 1.1 引言 (1) 1.1.2 薄膜研究的发展概况 (1) 1.1.3 薄膜的制备方法 (4) 1.1.4 薄膜的特征 (5) 1.1.5 薄膜的应用 (7) 第2章射频反应磁控溅射制备方法机理分析 (8) 2.1 射频反应磁控溅射法原理 (8) 2.1.1 直流辉光放电 (8) 2.1.2 射频辉光放电 (9) 2.1.3 射频原理 (9) 2.1.4 磁控原理 (11) 2.1.5 反应原理 (12) 2.2. 溅射机理 (13) 2.2.1 基本原理 (13) 2.2.2 基本装置 (13) 2.3 溅射的特点和应用 (15) 2.3.1 溅射的特点 (15) 2.3.2 溅射的应用 (16) 第3章实验 (17) 3.1 课题的研究线路 (17) 3.2 实验材料以及设备 (17) 3.3 实验仪器的原理 (18) 3.3.1 磁控溅射镀膜仪的原理 (18) 3.3.2 椭圆偏振测厚仪的原理 (19) 3.3.3 原子力显微镜的原理 (23) 3.3.4 表面预处理 (27) 3.3.5 薄膜制备 (28) 第4章实验结果及数据分析 (30) 4.1 薄膜测试与分析 (30) 4.1.1 衬底温度对于铝薄膜属性的影响 (30) 4.1.2 衬底温度对于铝薄膜生长的影响 (31)

4.1.3 不同的气压对于铝薄膜生长的影响 (34) 结论 (40) 致 (41) 参考文献 (42) 附录X 译文 (43) 利用CO/SiC衬底上制备单层石墨薄膜 (43) 附录Y 外文原文 (48)

第一章绪论 1.1 薄膜概述 1.1.1 引言 人工薄膜的出现是20世纪材料科学发展的重要标志。自70年代以来,薄膜材料、薄膜科学、与薄膜技术一直是高新技术研究中最活跃的研究领域之一,并已取得了突飞猛进的发展。薄膜材料与薄膜技术属于交叉学科,其发展几乎涉及所有的前沿学科,其应用与推广渗透到了各相关技术领域。正是由于薄膜材料和薄膜技术的发展才极促进了微电子技术、光电子技术、计算机技术、信息技术、传感器技术、航空航天技术和激光技术的发展,也为能源、机械、交通等工业部门和现代军事国防部门提供了一大批高新技术材料和器件。 薄膜是不同于其它物质(气态、液态、固态和等离子态)的一种新的凝聚态,有人称之为物质的第五态。顾名思义,薄膜就是薄层材料。它可以理解为气体薄膜,如吸附在固体表面的气体薄层;也可理解为液态薄膜,如附着在液体和固体表面的油膜。我们这里所指的薄膜是固体薄膜,即使是固体薄膜,也可分为薄膜单体和附着在某种基体上的另一种材料的固体薄膜,这里所指的薄膜属于后者[1]。 薄膜的基底材料有绝缘体,如玻璃、瓷等;也有半导体,如硅、锗等;也各种金属材料。薄膜材料也可以是各种各样的,如从导电性来分,可以是金属、半导体、绝缘体或超导体。从结构上来分,它可以是单晶、多晶、非晶(无定形)、微晶或超晶格的。从化学组成上来看,它可以是单质,也可以是化合物,它可阻是无机材料,也可以是有机材料。 1.1.2 薄膜研究的发展概况 薄膜科学是由多个学科交叉、综合、以系统为特色,逐步发展起来的新兴学科,以“表面”及“界面”为研究核心,在有关学科的基础上,应用表面技术及其复合表面技术为特点,逐步形成了与其他学科密切相关的薄膜科

磁控溅射金属薄膜的制备

磁控溅射金属薄膜的制 备 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

磁控溅射薄膜金属的制备 黎明 烟台大学环境与材料工程学院山东烟台 111 E-mail 摘要: 金属与金属氧化物在气敏、光催化与太阳能电池等方面有着极为重要的应用,通过磁控溅射法制备的金属氧化物薄膜,具有纯度高、致密性好、可控性强、与基底附着性好等优点,因此磁控溅射技术被广泛应用于工业化生产制备大面积、高质量的薄膜。我们通过磁控溅射法制备了氧化铜纳米线阵列薄膜,并研究了其气敏性质;除此之外,我们还通过磁控溅射法制备了 TiO2/WO3复合薄膜,研究了两者之间的电荷传输性质 关键词:磁控溅射;气敏性质;光电性质 Magnetron sputtering metal film preparation LiMing Environmental and Materials Engineering, Yantai University Shandong Yantai 111 E-mail Abstract: GAas Metal and metal oxide have important applications in gas-sensing, photocatalyst and photovoltaics, etc. The metal oxide film prepared by magnetron sputtering technique possesses good qualities, such as high purity, good compactness, controllability and excellent adhesion. Therefore magnetron sputtering technique is widely used to prepare large area and high quality films in industrial production. In our work, CuO nanowires (NWs) array films were synthesized by magnetron sputtering. Their gas-sensing properties were also investigated. Except this, WO3/ TiO2 nanocomposite films were synthesized by magnetron sputtering and their dynamic charge transport properties were investigated by the transient photovoltage technique. Key Words : Gmagnetron Sputtering, Photo-electric Properties, Gas-sensing Properties 1绪论

相关文档
最新文档