磁控溅射金属薄膜的制备

磁控溅射金属薄膜的制备
磁控溅射金属薄膜的制备

磁控溅射薄膜金属的制备

黎明

烟台大学环境与材料工程学院山东烟台111

E-mail:1111111@https://www.360docs.net/doc/3d13722598.html,

摘要: 金属与金属氧化物在气敏、光催化与太阳能电池等方面有着极为重要的应用,通过磁控溅射法制备的金属氧化物薄膜,具有纯度高、致密性好、可控性强、与基底附着性好等优点,因此磁控溅射技术被广泛应用于工业化生产制备大面积、高质量的薄膜。我们通过磁控溅射法制备了氧化铜纳米线阵列薄膜,并研究了其气敏性质;除此之外,我们还通过磁控溅射法制备了TiO2/WO3复合薄膜,研究了两者之间的电荷传输性质

关键词:磁控溅射;气敏性质;光电性质

Magnetron sputtering metal film preparation

LiMing

Environmental and Materials Engineering, Yantai UniversityShandong Yantai111

E-mail:1111111@https://www.360docs.net/doc/3d13722598.html,

Abstract:GAasMetal and metal oxide have important applications in gas-sensing, photocatalyst and photovoltaics, etc. The metal oxide film prepared by magnetron sputtering technique possesses good qualities, such as high purity, good compactness, controllability and excellent adhesion. Therefore magnetron sputtering technique is widely used to prepare large area and high quality films in industrial production. In our work, CuOnanowires (NWs) array films were synthesized by magnetron sputtering. Their gas-sensing properties were also investigated. Except this, WO3/ TiO2nanocomposite films were synthesized by magnetron sputtering and their dynamic charge transport properties were investigated by the transient photovoltage technique. KeyWords :Gmagnetron Sputtering, Photo-electric Properties, Gas-sensing Properties

1绪论

磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅射技术与也取得了进一步的发展!非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。

随着科技的发展,器件的小型化、智能化、集成化、高密度存储和超快传输对材料尺寸的要求越来越小,对器件的制造技术提出了更高的要求,新材料的产生与新技术的发展对今后社会发展、经济振兴、国力增强具有强有力的影响。而纳米材料由于具有特殊的物理和化学性能,对其的研究从上世纪 80 年代末逐渐兴起,并成为当今新材料领域中最富活力,对未来经济和社会发展有着重要影响的研究对象。特别是金属氧化物纳米材料由于在在电子、食品、生物、医学等行业有着广阔的应用而倍受关注[1]。

基于磁控溅射法,我们主要开展了以下三个方面的工作:(1)采用磁控溅射法在掺氟二氧化锡导电玻璃(FTO)衬底上溅射金属铜薄膜,所制备的Cu 薄膜通过在管式炉中退火氧化生长,可得到CuO纳米线阵列薄膜。用X 射线衍射仪(XRD)、扫描电子显微镜(SEM)、高分辨透射电子显微镜(HRTEM)对其形貌和结构进行了表征,并研究了这种通过磁控溅射法得到的CuO纳米线阵列薄膜对CO和H2S 的气敏性质,研究结果表明:CuO纳米线阵列薄膜在250℃时对CO 气体具有最强的气敏响应[2],并且当CO 浓度增大时其气敏响应明显增强;而对于H2S 气体,在常温下CuO纳米线阵列薄膜能够对低浓度的H2S 气体响应,说明这种CuO纳米线阵列薄膜可以在常温、低浓度下探测H2S 气体;与CO 气体不同的是:当测试温度升高时,其电阻值在H2S 气体氛围中迅速减小,我们对这种异常的电阻变化现象进行了解释。

(2)采用双极脉冲磁控溅射法制备了TiO2、WO3与TiO2/WO3复合薄膜,我们采用瞬态光电压谱技术研究了三种薄膜在光照下光生电荷的动态传输特性,对于TiO2/WO3异质结薄膜,其瞬态光电压信号与TiO2、WO3的信号相反,其瞬态光电压值几乎为TiO2、WO3的 3 倍[3]。这些现象说明TiO2与WO3之间形成的界面对光生电荷的分离起着重要的作用。我们对TiO2与WO3界面间的电荷传输与分离过程作了详细的讨论和解释。

(3)利用磁控溅射法在硅基底上制备超薄金属铜薄膜,通过严格控制沉积时间从而实现控制膜厚的目的,探索磁控溅射法制备金属超薄膜的工艺和条件。研究结果表明:对于铜薄膜,溅射10 秒未形成完整的薄膜,30 秒后可形成致密、完整的薄膜;并且随着溅射电压的增大,粒径增大[4];同时我们也对电流、气压及靶基距对薄膜的影响作了分析;通过对这些金属超薄膜进行后期热氧化处理可以制备出金属铜与金属锌的氧化物薄膜。

1.1金属氧化物纳米材料的制备

(一)气相法

气相法是把欲制备的物质通过某些方法变成气体,使之在气体状态下发生物理变化或化学变化,最终在冷却过程中凝聚长大形成纳米微粒的方法。气相法的特点是组分纯度高,粒径小,易控制,成膜性好等。气相法分为物理气相沉积法(PVD)与化学气相沉积法。物理气相沉积是在真空条件下,采用物理方法,将材料源(固体或液体)表面气化成气态原子、分子或部分电离成离子,并通过低压气体(或等离子体)过程,在基体表面沉积具有某种特殊功能的薄膜的技术。主要包括溅射镀膜、真空蒸镀、离子镀膜,电弧等离子体镀以及分子束外延等[5]。

(1)溅射镀膜:在真空条件下,使氩气中的氩原子电离成氩离子,在电场加速下,氩离子轰击靶材,从靶材轰击出来的小颗粒沉积到基底上而形成一定厚度的薄膜。

(2)真空蒸镀:在真空条件下,利用加热、电子束或离子束使金属或金属化合蒸发为气相后沉积在基底上形成一定厚度的薄膜。

(3)离子镀:在真空条件下,采用等离子体电离技术,使镀料原子部分电离成离子,同时产生许多高能量的中性原子,在被镀基体上加负偏压。在深度负偏压作用下,离子沉积于基底形成薄膜。

(4)电弧等离子体镀:在真空条件下,用引弧针引弧,使真空金壁(阳极)和镀材(阴极)之间进行弧光放电,阴极表面快速移动着多个阴极弧斑,不断迅速蒸发镀料,使之电离成以镀料为主要成分的电弧等离子体,并能迅速将镀料沉积于基体。因为有多弧斑,所以也称多弧蒸发离化过程化学气相沉积利用气态的先驱反应物,通过原子、分子间化学反应,使得气态前驱体中的某些成分分解,而在基体上形成薄膜。主要有等离子体辅助化学沉积、常压化学气相沉积、金属有机化合物沉积、激光辅助化学沉积等。

(二)液相法

液相法是一种比较成熟的技术,该方法比较容易成核,从而容易控制颗粒的化学份、形状与大小,不过此方法容易引入杂质,造成样品纯度不高,其方法是把可溶性金属盐按所需比例配成溶液,加入一种合适的沉淀剂,使金属离子均匀沉淀出来,最后将沉淀的样品经过干燥、退火而得到所需纳米材料。在制备过程中,以沉淀法、水热法、溶胶-凝胶法为主,方法介绍如下:

(1)沉淀法

沉淀法是合成纳米材料经常采用的方法之一,它是将沉淀物加入到金属盐溶液中进行处理,再将沉淀物加热分解,沉淀法又可分为直接沉淀法、还原法、共沉淀法和均匀沉淀法。

(2)水热法

通过在高温高压条件下在水溶液中或蒸汽等流体中合成物质,再经过分离和热处得到纳米材料的一种方法[6]。水热条件下粒子反应和水解反应得到加速和促进,使一些在常温常压下反应速度很慢的热力学反应在水热条件下可以实现快速反应。该方法可以大量获得在常温常压下得不到或难以得到的、粒径从几纳米到几百个纳米的金属氧化物[7]。

(3)溶胶-凝胶法

该法是利用易于水解的金属醇盐的在水溶液中分解或聚合反应生成金属氧化物或金属氢氧化物的溶胶,再浓缩成透明凝胶,凝胶经干燥和热处理后可得到所需金属氧化物材料。

(三)固相法

固相法是一种传统的将金属盐和金属氢氧化物按一定的比例充分混合,发生复分解反应生成前驱物,多次洗涤后充分研磨进行煅烧,然后再研磨得到纳米粒子工艺,采用固相法制备的纳米颗粒具有无团聚、成本较低、产量比较大、制备工艺比较简单等优点,现也是一种常用的方法,但固相法也存在很多缺点,反应温度高,消耗能量大、并且效率很低、得到的纳米材料颗粒较大、纯度不高. [8]

2磁控溅射法制膜的应用

由于磁控溅射已成为工业生产中不可缺少的制膜技术,现被用于器件、能源、电化学腐蚀、生物等多种领域。

(1)在纺织方面的应用Mejia等人[9]利用直流磁控溅射法在棉纺织品上沉积银的高分辨与透射图,从图中可以看出纺织品上已形成了连续的银薄膜,颗粒大小约4.7纳米,从右下图可以看到,通过此方法可以有效抑制细菌的生长,因此可以起到杀菌、抗菌的作用。现在,关于抗菌、杀菌与治疗皮肤疾病的纳米纺织引起了人们极大的关注[10]。

(2)磁控溅射在太阳能方面的应用Kim小组[11]2008年报道的利用磁控溅射法在PS球上溅射一层TiO2薄膜,然后退火制备出的半球壳结构的二氧化钛薄膜,此结构提高了电了扩散系数,增大了比表面积,能够吸附更多的染料,为提高染料敏化太阳能电池效率提供了很好的材料。Grimes小组[12]用溅射方法在FTO上溅射了20微米的金属钛薄膜,然后用阳极氧化法制备的透明的TiO2纳米管,此种结构对染料敏化太阳能电池效率的提高起到了很好的作用。

(3)在电子元件方面的应用Zareie小组[13]利用磁控溅射法在PS球上溅射Au-Al2O3-Au结构后,用酒精去除PS球,退火后得到的纳米电容,此装置电量存储量大,可用于纳米级电路,由于此种电容体积小,在当今电子器件的小型化发展中,具有很好的应用前景。

3磁控溅射原理及其分类应用

1842年,Grove在实验中发现了阴极溅射现象后[14],溅射技术逐渐被人们关注,经过一百多年的不断的发展,现在已被广泛用于器件、原子力刻蚀、电化学腐蚀、生物、透明导电膜等多种领域,已成为工业生产中重要的技术之一。

(一)磁控溅射基本原理

在溅射技术中,磁控溅射是最新的溅射技术[15],是在射频溅射基础上,在靶材周围施加磁场而形成的一种新型的镀膜方法。其基本原理如图2-1所示:在溅射过程中通入的气体一般为氩气,氩气在低气压下辉光放电,而形成氩离子与电子,由于靶材为负阴极,所以氩离子在电场加速下高速撞向靶材,从靶材上溅射出的原子(溅射原子)沉积在基底上而形成薄膜。在碰撞过程中,会发生如下现象:(1)入射离子在碰撞过程在吸收电子形成原子被反射出来,(2)从靶材表面激发出电子(二次电子),(3)入射离子注入靶材(离子注入)。在电离或碰撞而产生的电子如果不加以控制将以高速撞向基底而损坏基底并且使基底温度过高,磁场的运用可以使电子在磁场

力的作用下回旋运动,这样不但可以保护基底,而且还可以增加与原子的碰撞形成碰撞电离,提高了氩原子的离化率,即提高了溅射速度。

磁控溅射主要有以下优点:

(1)由于氩原子的利用率高,所以溅射速度快。

(2)溅射过程中基底温度低,不需要对基底加热太高的温度

(3)性能稳定,成膜性好。

(4)可溅射各种靶材(金属与非金属)

(5)磁控溅射能够制备出大面积的薄膜,适合工业化生产N S N基底靶材[16]

(二)磁控溅射的分类与应用

磁控溅射根据电源类型不同可分为直流磁控溅射、射频磁控溅射与脉冲磁控溅射。直流磁控溅射:直流磁控溅射是在靶材与基底之间直接接上高压直流,靶材为阴极,氩气电离后在电场加速下对靶材轰击,轰击的粒子沉积于基底面形成所需薄膜。由于在溅射过程中容易形成电荷积累,而导致电位升高,当电位升高到一定程度时,会导致辉光放电停止,这种现象被称为靶材“中毒”现象[17]。对于直流溅射,由于不能改变极性,经常会出现这种现象,这种现象导致了等离子体不稳定,便溅射的膜不均匀,且缺陷较多,因此限制了其运用。射频磁控溅射:在溅射过程中,通入的电压为对称正弦波的信号,这种方法可以防止直流磁控溅射容易出现的阴极“中毒”现象,此种方法沉积速率高,膜均匀,适用于工业化大规模生产。脉冲磁控溅射:在溅射过程中,通入的电压为非对称性的矩形波。此种溅射方法可以消除靶表面积累的荷,与射频磁控溅射相同具有防止靶材“中毒”现象,脉冲溅射在制备绝缘材料上具有很大优越性[18]。

由二极溅射发展而来的磁控溅射技术由于其显著的优点成为工业镀膜主要技术之一!非平衡磁的溅射改善了等离子体区的分布,同时沉积磁控溅射镀膜技术的发展过程中的离子轰击作用提高了薄膜的质量;多靶闭合式[19]非平衡磁控溅射大大提高薄膜的沉积速率!中频溅射和脉冲溅射的发展有效避免反应溅射过程中的靶中毒和打弧现象,稳定镀膜过程,减少薄膜结构缺陷,提高了化合物薄膜的沉积速率!不断改进的靶源设计,提高镀膜过程稳定性的同时还提高了靶材的利用率,降低了镀膜成本!新的高速溅射和自溅射技术为溅射镀膜开辟了新的应用领域[20]。

参考文献

[1] CominiE.FagliaG.Sberveglieri G.,etal.Stableandhighly sensitive gas sensors based on semiconducting oxide nanobelts[J]. Appl. Phys. Lett., 2002, 81:1869.

[2] Liao L., Lu H. B.Li J. C.,etal.The sensitivity of gas sensor based on single ZnO nanowire modulated by helium ion radiation[J]. Appl. Phys. Lett., 2007, 91: 173110.

[3] LiaoL.,ZhangZ.,YanB.,etal.MultifunctionalCuO nanowire devices: p-type field effect transistors and CO gas sensors[J]. Nanotechnology, 2009, 20: 085203.

[4] 陈秀琴, 苏雅玲, 张兴旺等. 可见光响应型S, F共掺杂TiO2纳米管的制备[J]. 科学通报, 2008, 53 (11): 1274–1278.

[5] 刘扬,嵇天浩,周吉等. 由钛酸盐纳米带水热制备锐钛矿型TiO2纳米带[J]. 高等学校化学学报, 2010, 31:1297–1302.

[6]Kolmakov A., Klenov D. O.,Lilach Y.,etal. Enhanced gas sensing by individual SnO2nanowiresandnanobelts functionalized withPd catalyst particles[J]. Nano. Lett.,2005, 5: 667–673.

[7]Chang S. J., HsuehT.J.,ChenI. C., etal. Highly sensitive ZnOnanowireCOsensorswiththeadsorptionofAunanoparticles[J]. Nanotechnology, 2008, 19: 175502.

[8]Liao L., Lu H. B., Shuai M., et al. A novel gas sensor based on field ionization from ZnO nanowires: moderate working voltage and high stability[J]. Nanotechnology, 2008, 19 : 175501.

[9]Hsueh T. J., Hsu C. L., Chang S. J., etal. Laterally grownZnO nanowire ethanol gas sensors[J]. Sensors and Actuators B, 2007, 126: 473–477.

[10]Jiang X. C., Herricks T., Xia Y. N., CuO nanowires can be synthesized by heating copper substrates in air[J]. Nano.Lett., 2002, 2: 1333.

[11]Cheng G., Wang S. J., Cheng K., etal.The current image of a singlCuO nanowire studied by conductive atomic force microscopy[J]. Appl. Phys. Lett., 2008, 92: 223116.

[12]Wang L. X., Cheng G., Jiang X. H., et al. Modulating the surface states of electric field assembled CuO nanowires by electrochemical deposition method[J]. Appl. Phys. Lett., 2009, 95: 083107.

[13]陈鹏. 粉煤灰的利用[J]. 辽宁工程技术大学学报, 2002, 21(4):517-519.

[14]王蕾, 马鸿文, 聂轶苗, 等. 利用制备高比表面积二氧化硅的实验研究[J]. 硅酸盐通报, 2006(2):1-3.

[15]Gubbuk IH, GuP R, Kara H, Ersoz M. Adsorption of Cu(II) onto silica gel-immobilized Sehiff base derivative[J]. Desalination, 2009, 249(3):1243-1248.

[16]徐晓楠, 马良, 张辛亥, 等. 硅凝胶在消防灭火中的应用研究[J]. 化学研究与应用, 2004, 16(1):118-119.

[17]李国斌, 苏毅, 胡亮, 等. 白炭黑的制备技术研究进展[J]. 华工科技, 2014, 22(5):57-60.

[18]宋远明, 钱觉时, 王智, 等. 固硫灰渣的微观结构与火山灰反应特性[J]. 硅酸盐学报, 2006, 34(12):1543-1545.

[19]贾光耀, 邓育新. 硅溶胶凝胶化过程的研究[J]. 硅酸盐通报, 2004, 23(6): 91-93.

[20]吴艳, 李来时, 王佳东, 等. 新酸碱联合法以粉煤灰制备高纯氧化铝和超纯二氧化硅[J]. 轻金属, 2007(9):3-9.

磁控溅射法制备薄膜材料综述

磁控溅射法制备薄膜材料综述 摘要薄膜材料的厚度是从纳米级到微米级,具有尺寸效应,在国防、通讯、航空、航天、电子工业等领域有着广泛应用,其有多种制造方法,目前使用较多的是溅射法,其中磁控溅射的应用较为广泛。本文主要介绍了磁控溅射法的原理、特点,以及制备过程中基片温度、溅射功率、溅射气压和溅射时间等工艺条件对所制备薄膜性能的影响。 关键字磁控溅射;原理;工艺条件;影响 Brief Introduction to Thin Films by Magnetron Sputtering Abstract: The thickness of thin films is from the nano to the micron level.With its size effect, the films are widely used in the defense, telecommunication, aviation, aerospace, electronics and other fields.It can be prepared by many ways,of which the sputtering is used mostly.And magnetron sputtering is popular.The principle and characteristics of magnetron sputtering, and how substrate temperature, sputtering power, sputtering pressure and sputtering time influence the the properties of the films during the preparing process are introduced in this paper. Key Words: magnetron sputtering; principles; conditions; lnfluence 1 引言 薄膜是指尺度在某个一维方向远远小于其他二维方向,厚度可从纳米级到微 米级的材料,由于薄膜的尺度效应,它表现出与块体材料不同的物理性质,有广 泛应用。薄膜的制备大致可分为物理方法和化学方法两大类[1]。物理方法主要包 括各种不同加热方式的蒸发,溅射法等,化学方法则包括各种化学气相沉积 (CVD)、溶胶-凝胶法(sol-gel)等。 溅射沉积法由于速率快、均一性好、与基片附着力强、比较容易控制化学剂 量比及膜厚等优点,成为制备薄膜的重要手段。溅射法根据激发溅射离子和沉积 薄膜方式的不同又分直流溅射、离子溅射、射频溅射和磁控溅射,目前多用后两 种。本文主要介绍磁控溅射制备薄膜材料的原理及影响因素。 2 磁控溅射法 2.1磁控溅射基本原理

实验一 真空蒸发和磁控溅射制备薄膜

实验一 真空蒸发和磁控溅射制备薄膜 姓名:许航 学号:141190093 姓名:王颖婷 学号:141190083 系别:材料科学与工程系 专业:材料物理 组号:A9 实验时间:3月16号 本实验主要介绍真空蒸发、磁控溅射两种常用而有效的制备薄膜的工艺,以便通过实际操作对典型的薄膜工艺的原理和基本操作过程有初步的了解。 一、 实验目的 1、 通过实验掌握磁控溅射、真空蒸发制备薄膜的基本原理,了解磁控溅射、真空蒸发制备薄膜的过程 2、 独立动手,学会利用磁控溅射、真空蒸发技术制备薄膜 3、 通过本实验对真空系统、镀膜系统以及辉光放电等物理现象有更深层次的了解 二、 实验原理 薄膜作为一种特殊形状的物质,与块状物质一样,可以是非晶态的,多晶态的和单晶态的。它既可用单质元素或化合物制作,也可用无机材料和有机材料制作。近年来随着薄膜工艺的不断进步和完善,复合薄膜和功能材料薄膜也又很大的发展,因此薄膜技术和薄膜产品已在机械、电子、光学、航天、建材、轻工等工业部门得到了广泛的应用,特别是在电子工业中占有极其重要的地位。例如光电极摄像器件、各种集成电路器件、各种显示器、太阳能电池及磁带、磁头等各种转化器、传感和记录器、电阻器、电容器等都是应用薄膜。目前,薄膜工艺不仅成为一门独立的应用技术,也是改善材料表面性能和提高某些工艺水品的重要手段。 1、 真空蒸发制备薄膜原理 真空蒸发镀膜是把待镀膜的衬底或工件置于高真空室内,通过加热使成膜材料气化(或升华)而淀积到衬底上,从而形成一层薄膜的工艺过程。 因为真空蒸发镀膜的膜层质量与真空室的真空度、膜料蒸发温度和衬底的温度都有很大的关系,因而在实验过程务必严格控制各个环节。下面讨论一下影响蒸发镀膜质量的主要因素和成膜的原理。 (1)、真空度 为了同时保证膜层的质量和生产效率及成本,通常要选择合理的真空度。在镀膜过程中,抽真空后处在同一温度下的残余气体分子相对于蒸发出的膜料分子(原子)可以视作静止,可以得到膜料分子(原子)在残余分子中运动的平均自由程: '2 1()n r r λπ=+ p n k T = n 为残余气体分子的密度,r’为残余气体分子半径,r 为蒸发膜料分子的半径,p 为残余气体的压强,k 为玻尔兹曼常数。若蒸发源到衬底的距离为L (cm ),为使得膜料分子中的大部分不与残余气体分子碰撞而直接到达衬底表面,则一般可以取平均自由程10L λ≥,这样:

磁控溅射镀膜原理和工艺设计

磁控溅射镀膜原理及工艺 摘要:真空镀膜技术作为一种产生特定膜层的技术,在现实生产生活中有着广泛的应用。真空镀膜技术有三种形式,即蒸发镀膜、溅射镀膜和离子镀。这里主要讲一下由溅射镀 膜技术发展来的磁控溅射镀膜的原理及相应工艺的研究。 关键词:溅射;溅射变量;工作气压;沉积率。 绪论 溅射现象于1870年开始用于镀膜技术,1930年以后由于提高了沉积速率而逐渐用于工业生产。常用二极溅射设备如右图。 通常将欲沉积的材料制成板材-靶,固定在阴 极上。基片置于正对靶面的阳极上,距靶一定距 离。系统抽至高真空后充入(10~1)帕的气体(通 常为氩气),在阴极和阳极间加几千伏电压,两极 间即产生辉光放电。放电产生的正离子在电场作 用下飞向阴极,与靶表面原子碰撞,受碰撞从靶 面逸出的靶原子称为溅射原子,其能量在1至几十 电子伏范围内。溅射原子在基片表面沉积成膜。 其中磁控溅射可以被认为是镀膜技术中最突出的 成就之一。它以溅射率高、基片温升低、膜-基结 合力好、装置性能稳定、操作控制方便等优点, 成为镀膜工业应用领域(特别是建筑镀膜玻璃、透 明导电膜玻璃、柔性基材卷绕镀等对大面积的均 匀性有特别苛刻要求的连续镀膜场合)的首选方 案。 1磁控溅射原理 溅射属于PDV(物理气相沉积)三种基本方法:真空蒸发、溅射、离子镀(空心阴极离子镀、热阴极离子镀、电弧离子镀、活性反应离子镀、射频离子镀、直流放电离子镀)中的一种。 磁控溅射的工作原理是指电子在电场E的作用下,在飞向基片过程中与氩原子发生碰撞,使其电离产生出Ar正离子和新的电子;新电子飞向基片,Ar正离子在电场作用下加速飞向阴极靶,并以高能量轰击靶表面,使靶材发生溅射。在溅射粒子中,中性的靶原子或分子沉积在基片上形成薄膜,而产生的二次电子会受到电场和磁场作用,产生E(电场)×B(磁场)所指的方向漂移,简称E×B漂移,其运动轨迹近似于一条摆线。若为环形磁场,则电子就以近似摆线形式在靶表面做圆周运动,它们的运动路径不仅很长,而且被束缚在靠近靶表面的等离子体区

磁控溅射金属薄膜的制备

磁控溅射薄膜金属的制备 黎明 烟台大学环境与材料工程学院山东烟台111 E-mail:1111111@https://www.360docs.net/doc/3d13722598.html, 摘要: 金属与金属氧化物在气敏、光催化与太阳能电池等方面有着极为重要的应用,通过磁控溅射法制备的金属氧化物薄膜,具有纯度高、致密性好、可控性强、与基底附着性好等优点,因此磁控溅射技术被广泛应用于工业化生产制备大面积、高质量的薄膜。我们通过磁控溅射法制备了氧化铜纳米线阵列薄膜,并研究了其气敏性质;除此之外,我们还通过磁控溅射法制备了TiO2/WO3复合薄膜,研究了两者之间的电荷传输性质 关键词:磁控溅射;气敏性质;光电性质 Magnetron sputtering metal film preparation LiMing Environmental and Materials Engineering, Yantai UniversityShandong Yantai111 E-mail:1111111@https://www.360docs.net/doc/3d13722598.html, Abstract:GAasMetal and metal oxide have important applications in gas-sensing, photocatalyst and photovoltaics, etc. The metal oxide film prepared by magnetron sputtering technique possesses good qualities, such as high purity, good compactness, controllability and excellent adhesion. Therefore magnetron sputtering technique is widely used to prepare large area and high quality films in industrial production. In our work, CuOnanowires (NWs) array films were synthesized by magnetron sputtering. Their gas-sensing properties were also investigated. Except this, WO3/ TiO2nanocomposite films were synthesized by magnetron sputtering and their dynamic charge transport properties were investigated by the transient photovoltage technique. KeyWords :Gmagnetron Sputtering, Photo-electric Properties, Gas-sensing Properties 1绪论 磁控溅射由于其显著的优点应用日趋广泛,成为工业镀膜生产中最主要的技术之一,相应的溅射技术与也取得了进一步的发展!非平衡磁控溅射改善了沉积室内等离子体的分布,提高了膜层质量;中频和脉冲磁控溅射可有效避免反应溅射时的迟滞现象,消除靶中毒和打弧问题,提高制备化合物薄膜的稳定性和沉积速率;改进的磁控溅射靶的设计可获得较高的靶材利用率;高速溅射和自溅射为溅射镀膜技术开辟了新的应用领域。

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄 膜材料 GE GROUP system office room 【GEIHUA16H-GEIHUA GEIHUA8Q8-

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉

光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流 气体放电体系,在阴阳两极之间 由电动势为的直流电源提供电压 和电流,并以电阻作为限流电 阻。在电路中,各参数之间应满 足下述关系: V=E-IR 使真空容器中Ar气的压力保持一定,并逐渐提高两个电极之间的电压。在开始时,电极之间几乎没有电流通过,因为这时气体原子大多仍处于中性状态,只有极少量的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。

用磁控溅射制备薄膜材料的概述

用磁控溅射制备薄膜材料的概述 1.引言 溅射技术属于PVD(物理气相沉积)技术的一种,是一种重要的薄膜材料制备的方法。它是利用带电荷的粒子在电场中加速后具有一定动能的特点,将离子引向欲被溅射的物质制成的靶电极(阴极),并将靶材原子溅射出来使其沿着一定的方向运动到衬底并最终在衬底上沉积成膜的方法。磁控溅射是把磁控原理与普通溅射技术相结合利用磁场的特殊分布控制电场中的电子运动轨迹,以此改进溅射的工艺。磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。 2.溅射技术的发展 1852年,格洛夫(Grove)发现阴极溅射现象,从而为溅射技术的发展开创了先河。采用磁控溅射沉积技术制取薄膜是在上世纪三四十年代开始的,但在上世纪70年代中期以前,采蒸镀的方法制取薄膜要比采用磁控溅射方法更加广泛。这是凶为当时的溅射技术140刚起步,其溅射的沉积率很低,而且溅射的压强基本上在lpa以上但是与溅射同时发展的蒸镀技术由于其镀膜速率比溅射镀膜高一个数量级,使得溅射镀膜技术一度在产业化的竞争中处于劣势溅射镀膜产业化是在1963年,美国贝尔实验室和西屋电气公司采用长度为10米的连续溅射镀膜装置,镀制集成电路中的钽膜时首次实现的。在1974年,由J.Chapin发现了平衡磁控溅射后,使高速、低温溅射成为现

实,磁控溅射更加快速地发展起来。 溅射技术先后经历了二级、三级和高频溅射。二极溅射是最早采用,并且是目前最简单的基本溅射方法。二极溅射方法虽然简单,但放电不稳定,而且沉积速率低。为了提高溅射速率以及改善膜层质量,人们在二极溅射装置的基础上附加热阴极,制作出三极溅射装置。 然而像这种传统的溅射技术都有明显的缺点: 1).溅射压强高、污染严重、薄膜纯度差 2).不能抑制由靶产生的高速电子对基板的轰击,基片温升高、淀积速率低 3).灯丝寿命低,也存在灯丝对薄膜的污染问题 3.磁控溅射的原理: 磁控溅射就是以磁场束缚和延长电子的运动路径,改变电子的运动方向,提高工作气体的电离率和有效利用电子的能量。具有低温、高速两大特点。 电子在加速的过程中受到磁场洛仑兹力的作用,被束缚在靠近靶面的等离子体区域内: F=-q(E+v×B) 电子的运动的轨迹将是沿电场方向加速,同时绕磁场方向螺旋前进的复杂曲线。即磁场的存在将延长电子在等离子体中的运动轨迹,提高了它参与原子碰撞和电离过程的几率,因而在同样的电流和气压下可以显著地提高溅射的效率和沉积的速率。 具体地说来磁控溅射系统在真空室充入0.1~1OPa压力的惰性气

磁控溅射镀膜简介

磁控溅射镀膜简介 溅射薄膜靶材按其不同的功能和应用可大致分为机械功能膜相物理功能膜两大类。前者包括耐摩、减摩、耐热、抗蚀等表面强化薄膜材料、固体润滑薄膜材料, 后者包括电、磁、声、光等功能薄膜材料靶材等, 具体应用在玻璃涂层(各种建筑玻璃、ITO透明导电玻璃、家电玻璃、高反射后视镜及亚克力镀膜), 工艺品装饰镀膜, 高速钢刀具镀膜, 切削刀具镀膜, 太阳能反光材料镀膜, 光电、半导体、光磁储存媒体、被动组件、平面显示器、微机电、光学组件、及各类机械耐磨、润滑、生物医学, 各种新型功能镀膜(如硬质膜、金属膜、半导体膜、介质膜、碳膜、铁磁膜和磁性薄膜等) 采用Cr,Cr-CrN等合金靶材或镶嵌靶材,在N2,CH4等气氛中进行反应溅射镀膜,可以在各种工件上镀Cr,CrC,CrN等镀层。纯Cr的显微硬度为425~840HV,CrN为1000~350OHV,不仅硬度高且摩擦系数小,可代替水溶液电镀铬。电镀会使钢发生氢脆、速率慢,而且会产生环境污染问题。 用TiN,TiC等超硬镀层涂覆刀具、模具等表面,摩擦系数小,化学稳定性好,具有优良的耐热、耐磨、抗氧化、耐冲击等性能,既可以提高刀具、模具等的工作特性,又可以提高使用寿命,一般可使刀具寿命提高3~10倍。 TiN,TiC,Al2O3等膜层化学性能稳定,在许多介质中具有良好的耐蚀性,可以作为基体材料保护膜。溅射镀膜法和液体急冷法都能制取非晶态合金,其成分几乎相同,腐蚀特性和电化学特性也没有什么差别,只是溅射法得到的非晶态膜阳极电流和氧化速率略大。

在高温、低温、超高真空、射线辐照等特殊条件下工作的机械部件不能用润滑油,只有用软金属或层状物质等固体润滑剂。常用的固体润滑剂有软金属(Au,Ag,Pb,Sn等),层状物质(MoS2,WS2,石墨,CaF2,云母等),高分子材料(尼龙、聚四氟乙烯等)等。其中溅射法制取MoS2膜及聚四氟乙烯膜十分有效。虽然MoS2膜可用化学反应镀膜法制作,但是溅射镀膜法得到的MoS2膜致密性好,附着性优良。MoS2溅射膜的摩擦系数很低,在0.02~0.05范围内。MoS2在实际应用时有两个问题:一是对有些基体材料如Ag,Cu,Be等目前还不能涂覆;二是随湿度增加,MoS2膜的附着性变差。在大气中使用要添加Sb2O3等防氧化剂,以便在MoS2表面形成一种保护膜。 溅射法可以制取聚四氟乙烯膜。试验表明,这种高分子材料薄膜的润滑特性不受环境湿度的影响,可长期在大气环境中使用,是一种很有发展前途的固体润滑剂。其使用温度上限为5OoC,低于-260oC时才失去润滑性。 MoS2、聚四氟乙烯等溅射膜,在长时间放置后性能变化不大,这对长时间备用、突然使用又要求可靠的设备如防震、报警、防火、保险装置等是较为理想的固体润滑剂。 内容来源:宝钢代理商https://www.360docs.net/doc/3d13722598.html, 欢迎多多交流!!!

磁控溅射制备铝薄膜毕业论文

磁控溅射制备铝薄膜毕业论文 目录 第1章绪论 (1) 1.1 引言 (1) 1.1.2 薄膜研究的发展概况 (1) 1.1.3 薄膜的制备方法 (4) 1.1.4 薄膜的特征 (5) 1.1.5 薄膜的应用 (7) 第2章射频反应磁控溅射制备方法机理分析 (8) 2.1 射频反应磁控溅射法原理 (8) 2.1.1 直流辉光放电 (8) 2.1.2 射频辉光放电 (9) 2.1.3 射频原理 (9) 2.1.4 磁控原理 (11) 2.1.5 反应原理 (12) 2.2. 溅射机理 (13) 2.2.1 基本原理 (13) 2.2.2 基本装置 (13) 2.3 溅射的特点和应用 (15) 2.3.1 溅射的特点 (15) 2.3.2 溅射的应用 (16) 第3章实验 (17) 3.1 课题的研究线路 (17) 3.2 实验材料以及设备 (17) 3.3 实验仪器的原理 (18) 3.3.1 磁控溅射镀膜仪的原理 (18) 3.3.2 椭圆偏振测厚仪的原理 (19) 3.3.3 原子力显微镜的原理 (23) 3.3.4 表面预处理 (27) 3.3.5 薄膜制备 (28) 第4章实验结果及数据分析 (30) 4.1 薄膜测试与分析 (30) 4.1.1 衬底温度对于铝薄膜属性的影响 (30) 4.1.2 衬底温度对于铝薄膜生长的影响 (31)

4.1.3 不同的气压对于铝薄膜生长的影响 (34) 结论 (40) 致 (41) 参考文献 (42) 附录X 译文 (43) 利用CO/SiC衬底上制备单层石墨薄膜 (43) 附录Y 外文原文 (48)

第一章绪论 1.1 薄膜概述 1.1.1 引言 人工薄膜的出现是20世纪材料科学发展的重要标志。自70年代以来,薄膜材料、薄膜科学、与薄膜技术一直是高新技术研究中最活跃的研究领域之一,并已取得了突飞猛进的发展。薄膜材料与薄膜技术属于交叉学科,其发展几乎涉及所有的前沿学科,其应用与推广渗透到了各相关技术领域。正是由于薄膜材料和薄膜技术的发展才极促进了微电子技术、光电子技术、计算机技术、信息技术、传感器技术、航空航天技术和激光技术的发展,也为能源、机械、交通等工业部门和现代军事国防部门提供了一大批高新技术材料和器件。 薄膜是不同于其它物质(气态、液态、固态和等离子态)的一种新的凝聚态,有人称之为物质的第五态。顾名思义,薄膜就是薄层材料。它可以理解为气体薄膜,如吸附在固体表面的气体薄层;也可理解为液态薄膜,如附着在液体和固体表面的油膜。我们这里所指的薄膜是固体薄膜,即使是固体薄膜,也可分为薄膜单体和附着在某种基体上的另一种材料的固体薄膜,这里所指的薄膜属于后者[1]。 薄膜的基底材料有绝缘体,如玻璃、瓷等;也有半导体,如硅、锗等;也各种金属材料。薄膜材料也可以是各种各样的,如从导电性来分,可以是金属、半导体、绝缘体或超导体。从结构上来分,它可以是单晶、多晶、非晶(无定形)、微晶或超晶格的。从化学组成上来看,它可以是单质,也可以是化合物,它可阻是无机材料,也可以是有机材料。 1.1.2 薄膜研究的发展概况 薄膜科学是由多个学科交叉、综合、以系统为特色,逐步发展起来的新兴学科,以“表面”及“界面”为研究核心,在有关学科的基础上,应用表面技术及其复合表面技术为特点,逐步形成了与其他学科密切相关的薄膜科

磁控溅射法制备薄膜材料实验报告

实验一磁控溅射法制备薄膜材料 一、实验目的 1、详细掌握磁控溅射制备薄膜的原理和实验程序; 2、制备出一种金属膜,如金属铜膜; 3、测量制备金属膜的电学性能和光学性能; 4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。 二、实验仪器 磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。 三、实验原理 1、磁控溅射镀膜原理 (1)辉光放电 溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为的 Ne 为例,其关系如图 5 -1 所示。 图 5-1 气体直流辉光放电的形成 当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,这个放电区就是通常使用的溅射区域。随后继续增加电压,当电流密度增加到~cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。 (2)溅射

实验磁控溅射法制备薄膜材料

实验磁控溅射法制备薄膜 材料 The final edition was revised on December 14th, 2020.

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流气 体放电体系,在阴阳两极之间由电 动势为的直流电源提供电压和电 流,并以电阻作为限流电阻。在电 路中,各参数之间应满足下述关 系: V=E-IR 使真空容器中Ar气的压力保 持一定,并逐渐提高两个电极之间 的电压。在开始时,电极之间几乎 没有电流通过,因为这时气体原子 大多仍处于中性状态,只有极少量 的电离粒子在电场的作用下做定向运动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。 图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。这些过

实验 磁控溅射法制备薄膜材料

实验4 磁控溅射法制备薄膜材料 一、实验目的 1. 掌握真空的获得 2. 掌握磁控溅射法的基本原理与使用方法 3. 掌握利用磁控溅射法制备薄膜材料的方法 二、实验原理 磁控溅射属于辉光放电范畴,利用阴极溅射原理进行镀膜。膜层粒子来源于辉光放电中,氩离子对阴极靶材产生的阴极溅射作用。氩离子将靶材原子溅射下来后,沉积到元件表面形成所需膜层。磁控原理就是采用正交电磁场的特殊分布控制电场中的电子运动轨迹,使得电子在正交电磁场中变成了摆线运动,因而大大增加了与气体分子碰撞的几率。用高能粒子(大多数是由电场加速的气体正离子)撞击固体表面(靶),使固体原子(分子)从表面射出的现象称为溅射。 1. 辉光放电: 辉光放电是在稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。溅射镀膜基于荷能离子轰击靶材时的溅射效应,而整个溅射过程都是建立在辉光放电的基础之上的,即溅射离子都来源于气体放电。不同的溅射技术所采用的辉光放电方式有所不同,直流二极溅射利用的是直流辉光放电,磁控溅射是利用环状磁场控制下的辉光放电。 如图1(a)所示为一个直流气 体放电体系,在阴阳两极之间由电 动势为的直流电源提供电压和电 流,并以电阻作为限流电阻。在电 路中,各参数之间应满足下述关系: V=E-IR 使真空容器中Ar气的压力保持 一定,并逐渐提高两个电极之间的 电压。在开始时,电极之间几乎没 有电流通过,因为这时气体原子大 多仍处于中性状态,只有极少量的 电离粒子在电场的作用下做定向运 动,形成极为微弱的电流,即图(b)中曲线的开始阶段所示的那样。

图1 直流气体放电 随着电压逐渐地升高,电离粒子的运动速度也随之加快,即电流随电压上升而增加。当这部分电离粒子的速度达到饱和时,电流不再随电压升高而增加。此时,电流达到了一个饱和值(对应于图曲线的第一个垂直段)。 当电压继续升高时,离子与阴极之间以及电子与气体分子之间的碰撞变得重要起来。在碰撞趋于频繁的同时,外电路转移给电子与离子的能量也在逐渐增加。一方面,离子对于阴极的碰撞将使其产生二次电子的发射,而电子能量也增加到足够高的水平,它们与气体分子的碰撞开始导致后者发生电离,如图(a)所示。这些过程均产生新的离子和电子,即碰撞过程使得离子和电子的数目迅速增加。这时,随着放电电流的迅速增加,电压的变化却不大。这一放电阶段称为汤生放电。 在汤生放电阶段的后期,放电开始进入电晕放电阶段。这时,在电场强度较高的电极尖端部位开始出现一些跳跃的电晕光斑。因此,这一阶段称为电晕放电。 在汤生放电阶段之后,气体会突然发生放电击穿现象。这时,气体开始具备了相当的导电能力,我们将这种具备了一定的导电能力的气体称为等离子体。此时,电路中的电流大幅度增加,同时放电电压却有所下降。这是由于这时的气体被击穿,因而气体的电阻将随着气体电离度的增加而显着下降,放电区由原来只集中于阴极边缘和不规则处变成向整个电极表面扩展。在这一阶段,气体中导电粒子的数目大量增加,粒子碰撞过程伴随的能量转移也足够地大,因此放电气体会发出明显的辉光。 电流的继续增加将使得辉光区域扩展到整个放电长度上,同时,辉光的亮度不断提高。当辉光区域充满了两极之间的整个空间之后,在放电电流继续增加的同时,放电电压又开始上升。上述的两个不同的辉光放电阶段常被称为正常辉光放电和异常辉光放电阶段。异常辉光放电是一般薄膜溅射或其他薄膜制备方法经常采用的放电形式,因为它可以提供面积较大、分布较为均匀的等离子体,有利于实现大面积的均匀溅射和薄膜沉积。 2. 磁控溅射: 平面磁控溅射靶采用静止电磁场,磁场为曲线形。其工作原理如下图所示。电子在电场作用下,加速飞向基片的过程中与氩原子发生碰撞。若电子具有足够的能量(约为30eV)。时,则电离出Ar+并产生电子。电子飞向基片,Ar+在电场作用下加速

磁控溅射制膜技术的原理及应用和发展-郭聪

磁控溅射制膜技术的原理及应用和发展 郭聪 (黄石理工学院机电工程学院黄石 435000) 摘要:磁控溅射技术已经成为沉积耐磨、耐蚀、装饰、光学及其他各种功能薄膜的重要手段。探讨了磁控溅射技术在非平衡磁场溅射、脉冲磁控溅射等方面的进步,说明利用新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等,并进一步取代电镀等传统表面处理技术。阐述磁控溅射技术在电子、光学、表面功能薄膜、薄膜发光材料等许多方面的应用。 关键词:非平衡磁控溅射脉冲磁控溅射薄膜制备工艺应用 中图分类号:O484.1 0 前言 薄膜是指存在于衬底上的一层厚度一般为零点几个纳米到数十微米的薄层材料。薄膜材料种类很多,根据不同使用目的可以是金属、半导体硅、锗、绝缘体玻璃、陶瓷等。从导电性考虑,可以是金属、半导体、绝缘体或超导体;从结构考虑,可以是单晶、多晶、非晶或超晶格材料;从化学组成来考虑,可以是单质、化合物或无机材料、有机材料等。制备薄膜的方法有很多,归纳起来有如下几种:1)气相方法制模,包括化学气相淀积(CVD),如热、光或等离子体CVD和物理气相淀积(PVD),如真空蒸发、溅射镀膜、离子镀膜、分子束外延、离子注入成膜等; 2)液相方法制膜,包括化学镀、电镀、浸喷涂等; 3)其他方法制膜,包括喷涂、涂覆、压延、印刷、挤出等。[1] 而在溅射镀膜的发展过程中,新型的磁控溅射技术能够实现薄膜的高速沉积、高纯薄膜制备、提高反应溅射沉积薄膜的质量等。辉光等离子体溅射的基本过程是负极的靶材在位于其上的辉光等离子体中的载能离子作用下,靶材原子从靶材溅射出来,然后在衬底上凝聚形成薄膜;在此过程中靶材表面同时发射二次电子,这些电子在保持等离子体稳定存在方面具有关键作用。溅射技术的出现和应用已经经历了许多阶段,最初,只是简单的二极、三极放电溅射沉积;经过30多年的发展,磁控溅射技术已经发展成为制备超硬、耐磨、低摩擦系数、耐蚀、装饰以及光学、电学等功能性薄膜的一种不可替代的方法,脉冲磁控溅射技术是该领域的另一项重大进展。利用直流反应溅射沉积致密、无缺陷绝缘薄膜尤其是陶瓷薄膜几乎难以实现,原因在于沉积速度低、靶材容易出现电弧放电并导致结构、组成及性能发生改变。利用脉冲磁控溅射技术可以克服这些缺点,脉冲频率为中频10~200kHz,可以有效防止靶材电弧放电及稳定反应溅射沉积工艺,实现高速沉积高质量反应薄膜。 1 基本原理 磁控溅射(Magnetlon Sputtering)是70年代迅速发展起来的一种“高速低温溅射技术”。磁控溅射镀膜采用在靶材表面设置一个平行于靶表面的横向磁场,磁场由置于靶内的磁体产生。在真空室中,基材端接阳极极,靶材端接阴极,阴极靶的下面即放置着一个强力磁铁。溅射时持续通入氩气,使之作为气体放电的载体(溅射气体),同时通入氧气,作为与被溅射出来的锌原子发生反应的反应气体。在真空室内,电子e在电场E的作用下,在加速飞向基板过程中与氩原子发生碰撞,使其电离出Ar+和一个新的电子(二次电子)e。Ar+计在电场作用下加速飞向阴极靶,以高能量轰击Zn靶表面使其发生溅射,溅射出来的锌原子吸收Ar离子的动能而脱离原晶格束缚,飞往基材方向,途中与O 2 发生反应并释放部分能量,最后反应产物继续飞行最终沉积在基材表面。我们需要通过不断的实验调整工艺参数,从而 使得溅射出来的历原子能与O 2 充分反应,制得纯度较高的薄膜。另一方面,二次电子在磁场的作用下围绕靶面作回旋运动,该电子的运动路径很长,在运动过程中不断的与氩原子发生碰撞电离出大量的氩离子轰击靶材,经过多次碰撞后电子的能量逐渐降低,摆脱磁力线的束缚,远离靶材,最终沉积在

磁控溅射镀膜多年经验总结

黑色实验总结 1、材料对比 ⑴ TiC TiC是最常见、最经济的一种黑色硬质膜。颜色可以做到比较深,耐磨性能也很好,但其色调不够纯正,总是黑中略带黄色。并且由于钛的熔点相对较低,在溅射时易出现大的颗粒,使其光令度不易得到改善。防指印的能力也不好,擦后变黄、变朦。 ⑵ CrC CrC的总体色调相对TiC要好,虽然达不到TiC那样黑,但更纯正,带白。由于铬在溅射时直接由固态直接变为气态,故虽然铬的溅射系数很大,膜层沉积速率很快,但其光令度却比TiC好。防指印性能也比TiC好。Cr为脆性材料,膜层的残余应力对耐磨性能的影响尤为重要。 ⑶ TiAlC 由于铝有细化晶粒的作用,所以TiAlC膜层的光令度和防指印的能力均较好。但是铝的熔点很低,要求铝靶的冷却效果要好,施加在铝靶上的功率也不能太大。从TiAlC膜层本身来说,也要求铝的含量要低,不然不够黑。但如果铝靶的功率太低,很容易中毒。建议采用平面铝靶或使用一定铝含量的铝钛合金靶材。 ⑷ TiCrAlC TiCrAlC是用小平面靶试电的,结果光令度和防指印的能力很好,这可能有两个原因:①材料本身的光令度和防指印的能力较好;②采用平面靶轰击打底。其耐磨能力也比较好,这可能是由于:①TiCrAl靶材致密;②TiCrAlC本身比较耐磨;③小平面靶的功率密度比较高,溅射出的粒子能量较高,故膜层致密。 ⑸ TiCN TiCN是一种硬度与耐磨性能较好的薄膜,其颜色甚至可以比TiC更黑,手摸起来不光滑,有粘粘的感觉,但防指印的能力却很好,擦后不会变色,也不会变朦。 2、实验机配置 ⑴ 电源 ① AE中频电源 AE电源的精度很高,对靶材的要求不高,电源自我保护的能力比较强,也因此对真空度等外界条件的要求更苛刻,易灭辉。镀出的CrC膜层光令度与防指印的效果较好,但颜色黑中带蓝。耐磨性能也是试过的电源中最好的。 ② 新达中频电源 新达电源的功率比较大,可以并机使用的它的一大优势。镀出的CrC膜层很黑,但带白,耐磨能力比AE电源镀出的膜层要查差。 ③ 盛普中频电源 盛普电源的稳定性相对其它电源来说要差一些,实际功率不大。镀出的CrC膜层略显黄色,

磁控溅射金属薄膜的制备

磁控溅射金属薄膜的制 备 公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]

磁控溅射薄膜金属的制备 黎明 烟台大学环境与材料工程学院山东烟台 111 E-mail 摘要: 金属与金属氧化物在气敏、光催化与太阳能电池等方面有着极为重要的应用,通过磁控溅射法制备的金属氧化物薄膜,具有纯度高、致密性好、可控性强、与基底附着性好等优点,因此磁控溅射技术被广泛应用于工业化生产制备大面积、高质量的薄膜。我们通过磁控溅射法制备了氧化铜纳米线阵列薄膜,并研究了其气敏性质;除此之外,我们还通过磁控溅射法制备了 TiO2/WO3复合薄膜,研究了两者之间的电荷传输性质 关键词:磁控溅射;气敏性质;光电性质 Magnetron sputtering metal film preparation LiMing Environmental and Materials Engineering, Yantai University Shandong Yantai 111 E-mail Abstract: GAas Metal and metal oxide have important applications in gas-sensing, photocatalyst and photovoltaics, etc. The metal oxide film prepared by magnetron sputtering technique possesses good qualities, such as high purity, good compactness, controllability and excellent adhesion. Therefore magnetron sputtering technique is widely used to prepare large area and high quality films in industrial production. In our work, CuO nanowires (NWs) array films were synthesized by magnetron sputtering. Their gas-sensing properties were also investigated. Except this, WO3/ TiO2 nanocomposite films were synthesized by magnetron sputtering and their dynamic charge transport properties were investigated by the transient photovoltage technique. Key Words : Gmagnetron Sputtering, Photo-electric Properties, Gas-sensing Properties 1绪论

磁控溅射法制备薄膜材料综述

磁控溅射法制备薄膜材料综述 材料化学张召举 摘要薄膜材料的厚度是从纳米级到微米级,具有尺寸效应,在国防、通讯、航空、航天、电子工业等领域有着广泛应用,其有多种制造方法,目前使用较多的是溅射法,其中磁控溅射的应用较为广泛。本文主要介绍了磁控溅射法的原理、特点,以及制备过程中基片温度、溅射功率、溅射气压和溅射时间等工艺条件对所制备薄膜性能的影响。 关键字磁控溅射;原理;工艺条件;影响 正文 薄膜是指尺度在某个一维方向远远小于其他二维方向,厚度可从纳米级到微米级的材料,由于薄膜的尺度效应,它表现出与块体材料不同的物理性质,有广泛应用。薄膜的制备大致可分为物理方法和化学方法两大类。物理方法主要包括各种不同加热方式的蒸发,溅射法等,化学方法则包括各种化学气相沉积(CVD)、溶胶-凝胶法(sol-gel)等。 溅射沉积法由于速率快、均一性好、与基片附着力强、比较容易控制化学剂量比及膜厚等优点,成为制备薄膜的重要手段。溅射法根据激发溅射离子和沉积薄膜方式的不同又分直流溅射、离子溅射、射频溅射和磁控溅射,目前多用后两种。本文主要介绍磁控溅射制备薄膜材料的原理及影响因素。 磁控溅射是70年代迅速发展起来的新型溅射技术,目前已在工业生产中实际应用。这是由于磁控溅射的镀膜速率与二极溅射相比提高了一个数量级。具有高速、低温、低损伤等优点。高速是指沉积速率快;低温和低损伤是指基片的温升低、对膜层的损伤小。1974年Chapin发明了适用于工业应用的平面磁控溅射靶,对进人生产领域起了推动作用。 磁控溅射基本原理 磁控溅射是20世纪70年代迅速发展起来的一种高速溅射技术。对许多材料,利用磁控溅射的方式溅射速率达到了电子术蒸发的水平,而且在溅射金属时还可避免二次电子轰击而使基板保持冷态,这对使用怕受温度影响的材料作为薄膜沉

磁控溅射法制备薄膜材料实验报告

磁控溅射法制备薄膜材 料实验报告 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

实验一磁控溅射法制备薄膜材料 一、实验目的 1、详细掌握磁控溅射制备薄膜的原理和实验程序; 2、制备出一种金属膜,如金属铜膜; 3、测量制备金属膜的电学性能和光学性能; 4、掌握实验数据处理和分析方法,并能利用 Origin 绘图软件对实验数据进行处理和分析。 二、实验仪器 磁控溅射镀膜机一套、万用电表一架、紫外可见分光光度计一台;玻璃基片、金属铜靶、氩气等实验耗材。 三、实验原理 1、磁控溅射镀膜原理 (1)辉光放电 溅射是建立在气体辉光放电的基础上,辉光放电是只在真空度约为几帕的稀薄气体中,两个电极之间加上电压时产生的一种气体放电现象。辉光放电时,两个电极间的电压和电流关系关系不能用简单的欧姆定律来描述,以气压为的 Ne 为例,其关系如图5 -1 所示。 图 5-1 气体直流辉光放电的形成 当两个电极加上一个直流电压后,由于宇宙射线产生的游离离子和电子有限,开始时只有很小的溅射电流。随着电压的升高,带电离子和电子获得足够能量,与中性气体分子碰撞产生电离,使电流逐步提高,但是电压受到电源的高输出阻抗限制而为一常数,该区域称为“汤姆森放电”区。一旦产生了足够多的离子和电子后,放电达到自持,气体开始起辉,出现电压降低。进一步增加电源功率,电压维持不变,电流平稳增加,该区称为“正常辉光放电”区。当离子轰击覆盖了整个阴极表面后,继续增加电源功率,可同时提高放电区内的电压和电流密度,形成均匀稳定的“异常辉光放电”,

这个放电区就是通常使用的溅射区域。随后继续增加电压,当电流密度增加到~cm 2时,电压开始急剧降低,出现低电压大电流的弧光放电,这在溅射中应力求避免。(2)溅射 通常溅射所用的工作气体是纯氩,辉光放电时,电子在电场的作用下加速飞向基片的过程中与氩原子发生碰撞,电离出大量的氩离子和电子,电子飞向基片。氩离子在电场的作用下加速轰击靶材,溅射出大量的靶材原子,这些被溅射出来的原子具有一定的动能,并会沿着一定的方向射向衬底,从而被吸附在衬底上沉积成膜。这就是简单的“二级直流溅射”。 (3)磁控溅射 通常的溅射方法,溅射沉积效率不高。为了提高溅射效率,经常采用磁控溅射的方法。磁控溅射的目的是增加气体的离化效率,其基本原理是在靶面上建立垂直与电场的一个环形封闭磁场,将电子约束在靶材表面附近,延长其在等离子体中的运动轨迹,提高它参与气体分子碰撞和电离过程的几率,从而显着提高溅射效率和沉积速率,同时也大大提高靶材的利用率。其基本原理示意见图 5-2。 图 5-2 磁控溅射镀膜原理 磁控溅射能极大地提高薄膜的沉积速度,改善薄膜的性能。这是由于在磁控溅射时气体压力减小了,使薄膜中嵌入的气体杂质减少,薄膜表面气孔减少而密实,膜面均匀一致。 磁控溅射可以分为直流磁控溅射和射频磁控溅射,射频磁控溅射中,射频电源的频率通常在 5~ 30MHz。溅射过程中还可以同时通入少量活性气体(如氧气),使它和靶材原子在基片上形成化合物薄膜(氧化物薄膜),这就是反应溅射。 2、溅射装备 以平面溅射方式为例,如图 5-3 所示的溅射装置图。在真空室中,基片与圆形靶表面正对且用带孔挡板隔开,其中阴极靶用循环水冷却,基片架上附有加热或通冷却水装置。 四、实验内容 1、在教师指导下学生查阅有关文献,了解磁控溅射制备薄膜的原理; 2、在教师指导下,学习磁控溅射镀膜机的正确使用; 3、在教师指导下,按照实验程序进行薄膜制备实验;

相关文档
最新文档