活性污泥法基本原理

活性污泥法基本原理
活性污泥法基本原理

活性污泥法的基本原理

一.基本概念和工艺流程

(一)基本概念

1.活性污泥法:以活性污泥为主体的污水生物处理。

2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体

(二)工艺原理

1.曝气池:作用:降解有机物(BOD5)

2.二沉池:作用:泥水分离。

3.曝气装置:作用于①充氧化②搅拌混合

4.回流装置:作用:接种污泥

5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。

混合液:污水回流污泥和空气相互混合而形成的液体。

二.活性污泥形态和活性污泥微生物

(一)形态:

1、外观形态:颜色黄褐色,絮绒状

2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。

3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma

{微生物内源代谢,自身氧化残留物Me

{源污水挟入的难生物降解惰性有机物Mi

无机物:全部有原污水挟入Mii

(二)活性污泥微生物及其在活性污泥反应中作用

1.细菌:占大多数,生殖速率高,世代时间性20-30分钟;

2.真菌:丝状菌→污泥膨胀。

3.原生动物

鞭毛虫,肉足虫和纤毛虫。

作用:捕食游离细菌,使水进一步净化。

活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。

☆原生动物作为活性污泥处理系统的指示性生物。

4.后生动物:(主要指轮虫)

在活性污泥处理系统中很少出现。

作用:吞食原生动物,使水进一步净化。

存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。

(三)活性污泥微生物的增殖和活性污泥增长

四个阶段:

1.适应期(延迟期,调整期)

特点:细菌总量不变,但有质的变化

2.对数增殖期增殖旺盛期或等速增殖期)

细菌总数迅速增加,增殖表速率最大,增殖速率大于衰亡速率。3.减速增殖期(稳定期或平衡期)

细菌总数达最大,增殖速率等于衰亡速率。

4.内源呼吸期:(衰亡期)

细菌总数不断减小,增殖速率小于衷亡速率,微生物的增殖要受到有机物含量的控制。

(四)活性污泥絮凝体形成

菌胶团:P99 细菌集团MLSS

原理:活性絮凝体的形成与曝气池内的能含量有关

☆能含量:曝气池内的有机物量与微生物量的比值,用F/M表示。有机物F小,F/M小,能含量低,处于内源呼吸期,有利于絮凝体形成。

F大,F/M大,1/2mv2大,引力小不易结合。

F小,F/M小,V↓,易结合成小的菌胶团→生物絮凝体。

Ma+Me+Mi+Mii

三.活性污泥净化反应过程

1、初期吸附去除阶段

5-10分钟有机物高速去除

定义:P100,吸附去除的原因→有巨大表面积,吸附力强,外部覆盖着多糖类的粘质层。

吸附去除结果:有机物从污水中转移到活性污泥上去

2.微生物代谢

酶:透膜酶

大分子(水解酶)→小分子(透膜酶)→细菌体内→微生物代谢

↗(分解代谢)→无机物+Q ↗残存物质(20%)

有机物+O2(异养菌)→(合成代谢)→新细胞(内源代谢)→无机物质+Q(80%)

4.2 活性污泥净化反应影响因素与主要设计运行参数

一.影响因素

1.营养物质平衡:C N P

碳源N源无机盐类

C→BOD5≥100m3/L 城市污水满足对某些工业废水,C低,补充碳源N:生活污水满足

对某些废水,N不足。(尿素,(NH4)2SO4

Na3PO4-K3PO4 C:N:P=100:5:1

2.DO:{过低:微生物生理活动不能正常进行,处理效果差

{过高:①有机物降解过快,微生物因缺营养而死亡②耗能过大经济浪费

曝气池出口处DO 2mg/L(局部区域进水口处较低,不宜低于1mg/L) 3.PH 6.5—8.5 偏碱

PH> 8.5 粘性物质破坏→活性污泥结构破坏

PH<6.5:分子结构有变化

4.水温:{低温细菌

{中温细菌一般化10℃--45℃污水中草药15℃--35℃

{高温细菌↘对常年或半年处于低温地区,曝气池建在室内,建在室外要有保温措施.

5.有毒物质→ 对微生物抑制和毒害作用

重金属离子CN- 酚

S2-

二.活性污泥处理系统的控制指标和设计运行操作参数

目标:{①使水质,水量得到控制

{②使活性污泥量保持相对稳定

{③控制混合液中DO浓度,满足要求

{④使活性污泥有机物和DO充分接触

控制指标(对活性污泥的评价指标)→(工程上)设计运行操作的参数

1.表示控制混合液中活性污泥微生物量的指标混合液→ 污泥浓度

⑴混合液悬浮固体浓度(简化混合液污泥浓度) 英文:Mixed liquid suspended solids (mlss)

定义:P106

MLSS=(活性污泥固体物总重量)/混合液体积

MLSS=Ma+Me+Mi+Mii (Me+Mi)→非活性Mii→无机

⑵混合液挥发性悬浮固体浓度

SS {MLVSS 有

{MLSS 无

一般用f表示=MLVSS/MLSS 城市污水落石出0.7---0.8

2、活性污泥的沉降性能及评定指标

⑴污泥沉降比P107

SV=(混合液30min静沉的沉降污泥体积ml)/(原混合液体积l)

意义:SV小,沉淀污泥体积小,污泥沉降性能好.

城市污水: 15%---30%

⑵污泥溶积指数: (SVI) (sludgs V olume Index)

SVI=(混合液30min静沉形成的活性污泥溶积ml)/(混合液中悬浮固体干重g)

=((混合静沉30min的污泥体积)/(混合液体积))/((混合液悬浮固体干重)/混合液体积))

=SV/MLSS

意义:SVI过低,无机颗粒多,污泥缺乏活性。

SVI过高,污泥沉降性能不好,易发生膨胀。

SVI:70-100 SVI=100 SVI=120

工程意义:{①SVI与OBD污泥负荷关系

{②SVI-MLSS图

3.污泥龄(sludge age)

指曝气池内活性污泥平均停留时间,以称生物固体平均停留时间。在曝气池内,有机物降解过程中,微生物保持系统平衡,必须排除相当于每日增长的污泥量。

所以,排除污泥量=每日增长的污泥量

△X= { 随上清液排放的污泥土(Q-Qw)Xe

{从二沉池底部排出的污泥QwXr

△X=(Q-Qw)Xe+Qw-Xr

污泥量定义:曝气池内活性污泥量与每日排放的污泥量之比

Qc=XV/△X=XV/((Q-Qw)Xe+QwXV)

X:代表微生物量X Xr Xe Xv

S:代表有机物量Sa Se So

回流污泥浓度等于排放剩余污泥浓度

(Xr)max=106/SVI

4.BOD—污泥负荷和BOD—容积负荷

F/M=NS=(QSa)/(XV) (kgBOD)/(kg mlss d)

定义:V=(QSa)/(XNs) Q—日平均流量m3/s

Sa 进入曝气池的原污水有机污染物(BOD)浓度

Sa=(1-η)S0(经除尘之后)

Sa=S0 直接进入

在工程上:BOD容积负荷

Nv=(Q Sa)/v (kg BOD)/(m2曝气池d)

Nv=NsX

Ns 选取{过高,有机物降解和微生物繁殖速度都很大

{过低,有机物降解和微生物繁殖速度慢,容积大,增加了基建投资Ns {高负荷:1.5-2.5 kgBOD5/kgMlss d

{中负荷(一般):0.5-0.2

{低负荷:≤0.1

SVI 0.5-1.5 避免易发生污泥膨胀

城市污水:Ns:0.5-0.3

5.有机物的降解和活性污泥增长

{合成代谢---新细胞↘

差值---净增值----排放

{内源代谢---减少新细胞↗

△X=aSr-bx b---自身氧化率a---合成产率Sr=Sa-Se (dx/dt)g=(dx/dt)s-(dx/dt)e

(dx/dt)s=Y(ds/dt)u Y—合成产率系数

(dx/dt)e=kdsv

(dx/dt)g=Y(ds/dt)u-kdxv----微生物增值速度基本方程式(ds/dt)v=(Sa-Se)/t=(Sa-Se)/(V/Q)=Q(Sa-Se)/V

△X/v=YQ(Sa-Se)/v-KdXv 同乘v

△X=YQ(Sa-Se)-KdVXv →用来计算排放的剩余污泥量Y Kd 的确定(上式同除以VXv)

△X/VXv=YQ(Sa-Se)/VXv-Kd

BOD污泥去除负荷

Xv/△X=Qc ∴1/Qc=Ynys-Kd

Nys与Qc成反比关系

用图解法确定Y Kd 图

经验数据生活污水: Y 0.4—0.65

Kd 0.05—0.1

城市污水; Y 0.4—0.5

Kd 0.07

工业废水,Y Kd 按实测数据由图解法组成

6.有机物的降解与需氧量

需氧过程{有机物降雨量降解的需氧量

{微生物内源代谢自身氧化需气量

Ov=a’Q(Sa-Se)+b’VXv 用来计算曝气池内实际需氧量a′:有机物降解需氧量b′:需氧率图解确定

O2/VXv=a′Q(Sa-Se)/VXv+b′=a′Nrs+b′

同除以Q(Sa-Se)

O2/QSr=a′+b′/Nrs

结论:降解单位有机物需氧量小,BOD去除率高。

a′b′确定O2/VXv=a′+b′/Nrs

a′ 0.42---0.53 b′ 0.188---0.11

4.3 活性污泥反应动力学基础

一.概述

研究目的{①研究反应速度和环境因素间的关系

{②对反应的机理进行研究,使反应进行控制反应动力学方程式{米门方程式1913研究酶促反应速度

{莫诺方程式1942

{劳—麦方程式1970

二.莫诺方程式

1.基本方程式形式

提出人:莫诺时间:1942试验条件:纯种生物在单一底物的培养基中

试验内容:研究微生物的增值速度与底物浓度间的关系

结果与米门方程式相同

μ=μmaxS/(Ks+S) μ---比增值速度(单位生物量的增殖速度)

S―有机底物的浓度

Ks-饱和常数当μ=1/2μmax时,有机底物的浓度

有机物比降解速度与底物浓度关系

V=VmaxS/(Ks+S) (1)

V=-(ds+dt)/x v=f(s)

-ds/dt=vmaxXS/(Ks+S) (2)

2.推论

(1)对于高底物浓度条件下S>>Ks

V=Vmax=k1

-ds/dt=vmaxx=k1x

结论:①在高底物浓度下,有机底物以最大速度进行降解,与有机底物浓度无关,其降解速度只与污泥浓度有关。

②低底物浓度,S<

V=VmaxS/Ks=k2S (3)

-ds/dt=VmaxXS/Ks=k2SX (4)

结论:在低底物浓度下,有机底物降解速度与有机底物浓度有关,且成一级反应(有机物多,无机物少)

由(4)得-∫s0sds/dt=∫0tk2xsdt

S=S0e-k2xt

3.莫诺方程式在曝气池中的应用

Q(Sa-Se)/v=-ds/dt

Q(Sa-Se)/v=Nrv ∴ds/dt=Nrv

(1) 用来计算Nrv=-ds/dt=Q(Sa-Se)/v=(Sa-Se)/t

k2Xse=Q(Sa-Se)/v

(2)计算Nrs k2Se=Q(Sa-Se)/xv=Nrs

(3)计算有机物降解率η=(Sa-Se)/S0=1-Se/S0=k2xt/(1+k2xt)

4.有关k2的确定(图解法)

Q(Sa-Se)/xv作纵轴Se-X斜率k2

经验数据0.0168---0.0281

三.劳—麦方程式

1.概念:(1)把污泥龄改名为生物固体平均停留时间(2)提出单位底物利用率概念

2.基本方程式

(1)劳---麦第一方程式1/Qc=Yq-Kd

(2)劳-麦第二方程式v=q

v=KS/(Ks+S) →(ds/dt)u/xa=KS/(Ks+S)

3.劳-麦方程式的推论及应用

①Se—Qc关系

②Xa—Qc Xa=YQQc(Sa-Se)/t(1+KdQc)

③R---Qc

④V与q的关系(ds/dt)u/Xa=k2Se →Q(Sa-Se)/XaV=k2Se →v=Q(Sa-Se)/k2XaSe

曝气池容积的计算方法

{①Ns V=Q(Sa-Se)/NsX

{②Nrs V=Q(Sa-Se)/NrsXv

{③劳麦{v=YQQc(Sa-Se)/Xa(1+KdQc)

{v=Q(Sa-Se)/k2SeXa

⑤两种产率△X=YQ(Sa-Se)-KdVXv

合成产率微生物的净增值量

Yobs=Y/(1+KdQc)

△X计算{△X=YQ(Sa-Se)-KdVXv

{△X=YobsQ(Sa-Se)

4.4 曝气池的理论基础

作用:充氧搅拌

方法:鼓风曝气:从鼓风机中房或空气压缩机房送来的空气,经过设置在曝气池底的空气扩散装置,溶解于水中。

机械曝气:利用安装在池表面的机械曝气装置,将空气溶于水中。

一.氧转移原理-传质理论

(一)菲克定律-扩散转移

Vd=-Dldc/dx dc/dx—浓度梯度

Vd=(dm/dt)/A=-Dldc/dx

(二)双膜理论

处理废水量21600m3/d,经过沉淀后的BOD5为250mg/l,希望处理后的出水BOD5为20mg/l, 温度为20℃,曝气池悬浮固体浓度为4000mg/l,设计的Qc为10天。

要求:采用劳-麦方程式计算V;计算排放的剩余污泥量

计算实际所需的空气量。

1. 定义:双膜-气膜液膜

2. 基本点

(1)通过两层膜,两层膜为层流状态,气液两相主体为紊流状态(2)传质阻力仅存在于两层膜中

(3)在气膜中存在氧分压梯度,在液膜中存在氧浓度梯度

(4)传质阻力又主要集中在液膜上(O2难溶于水)

3. 表达式:

4. Kla的确定(Kla-氧总转移系数)

(1)脱氧清水测定法

充氧介质:清水

条件:脱氧DO-0

水温:20℃

大气压:1个气压

步骤:(1)脱氧剂(Na2so3 N2)DO=0 (2)对清水充氧c1t达饱和→DS

(3)C关系作图

横轴C 纵轴

(2)曝气池(了解)

二、氧转移的影响因素

1.污水水质Kla Cs

(1)Kla的影响Kla′= & Kla (&﹤1 )

(2) 对CS的影响CS′=CS(﹤1)

城市污水

水质越差,取值越小

2.水温Kla 、Cs-转移速率增大

(1)对Kla的影响

(2)对CS影响CS 查附录1-P607

3、氧分压C: 2㎎/L

(1)鼓风曝气

(2)机械曝气

P=1 C=㎎/L 为定值

4、其他影响因素

气泡大小紊流程度与气液接触时间人为因素三、氧转移速率与供气量计算

1. 标准条件下的氧转移量(1)机械曝气

(2)鼓风曝气只将C Sb→即可

2. 实际条件下的氧转移量

(1)鼓风曝气

(2)机械曝气

3.供气量的计算

根据GS确定鼓风机型号及台数

(2)机械曝气QOS=R

根据QOS可确定叶轮直径与功率

4.5 曝气系统与空气扩散装置

技术性能的主要指标

(1)动力效率EP ㎏O2/Kwh

每消耗1 Kwh的电能,转移到混合液中O2的量

(2)氧利用率EA=

(3)氧转移效率(充氧能力)EL ㎏O2/h

(1)(2)鼓风(1)(3)机械

一、鼓风曝气系统与空气扩散装置(Or曝气装置曝气皿)(一)鼓风曝气系统

1.组成空压机(Or鼓风机)GS

一系列连通管道

空气扩散装置

2.鼓风曝气过程

(二)空气扩散装置

1. 微气泡空气扩散装置(多孔性空气扩散装置)多孔性材料

优点:EA较高

缺点:易堵塞

(1)扩散板

EA=7%-14%EP=1.8-2.5㎏O2/kwh

安装:在池底一侧或两侧

(2)扩散管

EA=10%-13%EP=2㎏O2/kwh

8-12根扩散管组成管组

(3)固定平板式微孔空气扩散皿

EA=20%-25%EP=4-6㎏O2/kwh

服务面积0.3-0.75㎡/个布满池底

(4)固定钟罩型

设计参数同(3)平板式

(5)膜片式微孔扩散皿合成橡胶

EA=27%-38%EP=3.4㎏O2/kwh

服务面积1-3㎡/个不易堵塞(与其它相对而言)(1)(2)(5)尤其是(5)最常用

(6)摇臂式微孔扩散器服务面积2㎡/个

EA=18%-30%EP=4.4-5.5%㎏O2/kwh

2. 中气泡空气扩散器

(1)穿孔管塑料或钢管

直径25-50?

孔与孔之间距离50-100?

EA=4-6%EP=1 ㎏O2/kwh

(2)网状膜扩散器

EA=12-15%EP=2.7-3.7 ㎏O2/kwh

服务面积0.5 ㎡/个

3.水力剪切式空气扩散装置

特点:利用装置本身的构造特点,产生水力剪切作用

在气泡吹出装置前,将大气泡剪切成小气泡,从而EA′↑倒盆式

固定螺旋了解

金山型

4.水力冲击式空气扩散装置

(1)密集多喷嘴

(2)射流式空气扩散皿(射流曝气皿)

原理P157第一段

5、水下空气扩散器(了解)

〖总结〗

扩散装置安装在池底一侧,两侧Or布满池底

属于水下鼓气

二、机械曝气装置

机械曝气特点:利用安装在曝气池表面的机械曝气装置在电机的驱动下转动,从而将空气中氧转移到水中它属于表面曝气。

它属于表面曝气

(一)机械曝气原理(通过3种作用实现)

1. 表面充氧

2. 整池充氧

3. 吸入部分空气

(二)机械曝气装置

按传动轴的安装方向竖轴(纵轴)

卧轴(横轴)

1. 竖轴机械愚昧落后敢装置

传动轴与水面垂直,装有叶轮,叶轮上装有叶片

又称竖轴叶轮曝气机(表曝机)

(1)泵型叶轮表曝机最佳线速度4.5~5m/s

叶轮淹没深度≤4?

目前国内已有系列产品,应用最广泛

(2)K型最佳线速度4?0~1?←叶轮淹没深度

规定叶轮直径与曝气池直径之比为

(3)倒伞型

(4)平板型

2.卧轴式表曝机

传动轴与水面平行由传动轴和叶片组成

应用→转刷曝气器(曝气转刷)

主要用于氧化沟

活性污泥处理系统的维护管理

一、活性污泥处理系统的投产与活性污泥培训

1、活性污泥的培训(培养与驯化)

方法:同步培训法:培养与驯化同时进行

异步培训法:先培养后驯化

接种培训化

(1)同步培训法生活污水为主的城市污水(1)营养物

(2)菌种

具体操作:

活性污泥成熟,SV 15%~20%

(2)异步培训法工业废水和工业废水为主的城市污水

先培养:粪便水稀释BOD5<500 mg/L

后驯化:在进水中加入首当其冲逐渐增加工厂业废水所占比重(3)接种培训法从附近的污水处理厂引进剩余污泥作种泥2.试运行:目的:确定最佳的运行条件

考虑因素:

(1)MLSS →调整

(2)供气量(1)氧DO:1~2 mg/L

(3)搅拌混合液浓度整池均匀

(4)运行方式12种传统工艺+3种新工艺

二、运行效果的检测

三、活性污泥处理系统运行中的异常情况

1.污泥膨胀定义

原因:大量的丝状菌繁殖

防治措施PH DO

2.污泥解体处理水质变浑污泥絮凝体微细化处理效果变坏

原因(1)运行不当

(2)污水中混入有毒物质

3.污泥上浮

上浮原因:(1)污泥腐化上浮长期滞留造成

(3)曝气过度上浮(3)污泥挟油上浮(4)污泥脱氮上浮过长4.泡沫问题大量合成洗涤剂

消泡措施(1)消泡剂(2)机械消泡(3)分段进

污泥解体处理水浑浊、污泥絮凝体微细化,处理效果变坏等则是污泥解体现象。导致这种异常现象的原因有运行中的问题,也可能由于污水中混入了有毒物质所致。运行不当(如曝气过量),会使活性污泥生物营养的平衡遭到破坏,微生物量减少且失去活性,吸附能力降低,絮凝体缩小;一部分则成为不易沉淀的羽毛状污泥,SV值降低,使处理水变浑浊。当污水中存在有毒物质时,微生物会受到抑制、伤害,污泥失去活性,导致净化能力下降。一般可通过显微镜观察来判

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed VolatileLiquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

活性污泥法的现状及发展趋势

活性污泥法的现状及发展趋势 学院:生命科学与化学工程学院 学号:1111603112 __________ 班级:环境1111 ________ 姓名:_______ 宣锴____________

活性污泥法工艺的现状和发展趋势 1引言 活性污泥法是利用好氧微生物(包括兼性微生物)处理城市污水和工业废水的有效方法,其能够从废水中去除溶解和胶体类可生物降解的有机物质,以及能被活性污泥吸附的悬浮物质和其他一些无机盐类也能够去除,例如氮磷等化合物,在处理工业废水过程中,好氧活性污泥法主要用于处理厌氧出水,是一种非常广泛的生物处理方法其主要的机理是通过好氧微生物的生物化学代谢反应,分解工业废水中的有机物质,过程中涉及到活性污泥的吸附、凝聚和沉淀,能够有效的去除废水中的胶体和溶解性物质,从而净化废水。 该方法于 1913年在英国曼彻斯特市试验成功。 80多年来,随着生产上的应用和不断改进及对生化反应和净化机理进行广泛深入的研究,活性污泥法取得了很大发展,出现了多种运行方式,并正在改变那种用经验数据进行工艺设计和运行管理的现象。本文对各种活性污泥的组成、运行方式及其特点作简要的综述,同时谈谈活性污泥法的发展趋势。 2活性污泥构成简介 活性污泥是由活性微生物、微生物残留物、附着的不能降解的有机物和无机物所组成的褐色絮凝体,由大量细菌、真菌、原生动物和后生动物组成,以细菌为主,由不同大小的微生物群落组成,具有良好的沉降性和传质性能的菌胶团以结构丝状菌为骨架、胶团菌附着其上,并且具有不断生长的特性,增长过程和老化过程中脱落的碎片及其他游离细菌被附着或游离生长的原生动物和后生动物捕食。少量以无机颗粒为核心形成的致密颗粒也可能存在于系统之中,并具有良好的沉降性能。也就是说,具有良好结构的活性污泥是以丝状菌为骨架,胶团菌附着于其上而形成的,结构丝状菌喜低氧状态,在胶团菌的附着下,不断生长伸长,形成条状和网状污泥;没有丝状菌为骨架的絮体颗粒很小,附着于累枝虫等原生动物尸体上的絮体易产生反硝化作用,它们都易随二沉池出水流出。胶团菌与结构丝状菌之间相互依存,丝状微生物形成了絮体骨架,为絮体形成较大颗粒同时保持一定的松散度提供了必要条件。而胶团菌的附着使絮体具有一定的沉降性而不易被出水带走,并且由于胶团菌的包裹使得结构丝状菌获得更加稳定、良

活性污泥法基本原理

活性污泥法的基本原理 一.基本概念和工艺流程 (一)基本概念 1.活性污泥法:以活性污泥为主体的污水生物处理。 2.活性污泥:颜色呈黄褐色,有大量微生物组成,易于与水分离,能使污水得到净化,澄清的絮凝体 (二)工艺原理 1.曝气池:作用:降解有机物(BOD5) 2.二沉池:作用:泥水分离。 3.曝气装置:作用于①充氧化②搅拌混合 4.回流装置:作用:接种污泥 5.剩余污泥排放装置:作用:排除增长的污泥量,使曝气池内的微生物量平衡。 混合液:污水回流污泥和空气相互混合而形成的液体。 二.活性污泥形态和活性污泥微生物 (一)形态: 1、外观形态:颜色黄褐色,絮绒状 2.特点:①颗粒大小:0.02-0.2mm ②具有很大的表面积。③含水率>99%,C<1%固体物质。④比重1.002-1.006,比水略大,可以泥水分离。 3.组成:

有机物:{具有代谢功能,活性的微生物群体Ma {微生物内源代谢,自身氧化残留物Me {源污水挟入的难生物降解惰性有机物Mi 无机物:全部有原污水挟入Mii (二)活性污泥微生物及其在活性污泥反应中作用 1.细菌:占大多数,生殖速率高,世代时间性20-30分钟; 2.真菌:丝状菌→污泥膨胀。 3.原生动物 鞭毛虫,肉足虫和纤毛虫。 作用:捕食游离细菌,使水进一步净化。 活性污泥培养初期:水质较差,游离细菌较多,鞭毛虫和肉足虫出现,其中肉足虫占优势,接着游泳型纤毛虫到活到活性污泥成熟,出现带柄固着纤毛虫。 ☆原生动物作为活性污泥处理系统的指示性生物。 4.后生动物:(主要指轮虫) 在活性污泥处理系统中很少出现。 作用:吞食原生动物,使水进一步净化。 存在完全氧化型的延时曝气补充中,后生动物是不质非常稳定的标志。 (三)活性污泥微生物的增殖和活性污泥增长 四个阶段: 1.适应期(延迟期,调整期)

活性污泥法污水处理

水污染控制工程课程设计城镇污水处理厂设计 指导教师刘军坛 学号 130909221 姓名秦琪宁

目录 摘要 (3) 第一章引言 (4) 1.1设计依据的数据参数 (4) 1.2设计原则 (5) 1.3设计依据 (5) 第二章污水处理工艺流程的比较及选择 (6) 2.1 选择活性污泥法的原因 (6) 第三章工艺流程的设计计算 (7) 3.1设计流量的计算 (7) 3.2格栅 (9) 3.3提升泵房 (9) 3.4沉砂池 (10) 3.5初次沉淀池和二次沉淀池 (11) 3.6曝气池 (15) 第四章平面布置和高程计算 (25) 4.1污水处理厂的平面布置 (25) 4.2污水处理厂的高程布置 (26) 第五章成本估算 (27) 5.1建设投资 (27) 5.2直接投资费用 (28) 5.3运行成本核算 (29) 结论 (29) 参考文献: (30) 致谢 (30)

摘要 本设计采用传统活性污泥法处理城市生活污水,设计规模是200000m3/d。该生活污水氨氮磷含量均符合出水水质,不需脱氮除磷,只考虑除掉污水中的SS、BOD、COD。传统活性污泥法是经验最多,历史最悠久的一种生活污水处理方法。污泥处理工艺为污泥浓缩脱水工艺。污水处理流程为:污水从泵房到沉砂池,经过初沉池,曝气池,二沉池,接触消毒池最后出水;污泥的流程为:从二沉池排出的剩余污泥首先进入浓缩池,进行污泥浓缩,然后进入贮泥池,经过浓缩的污泥再送至带式压滤机,进一步脱水后,运至垃圾填埋场。本设计的优势是:设计流程简单明了,无脱氮除磷的设计,节省了成本,该方法是早期开始使用的一种比较成熟的运行方式,处理效果好,运行稳定,BOD 去除率可达90%以上,适用于对处理效果和稳定程度要求较高的污水,城市污水多采用这种运行方式。 关键词:城市污水传统活性污泥法污泥浓缩

活性污泥法在废水中的应用和发展前景

活性污泥法在废水中的应用和发展前景 废水是当前环境重要污染物之一,对其进行处理是很重要也是很有必要的。废水处理方法主要有物理处理法、化学处理法、物化处理法和生化处理法。其中比较优越的是生化处理法,它也是废水处理系统中最重要的过程之一。在废水生化处理过程中起主力军作用的是活性污泥微生物。本文介绍了活性污泥的相关内容、活性污泥法的实际应用和可能出现的问题及其发展前景。 活性污泥废水处理 活性污泥法1913年在英国实验成功,最初用于处理城市的污水。随着科技的进步和社会发展的需要,活性污泥应用领域已经向多个方向拓展,从城市污水到工业废水,从低浓度废水到高浓度废水,从印染废水到重金属废水等等。活性污泥法的处理核心是活性污泥,其组成特殊,是一个复杂的微生态体系。活性污泥处理低浓度废水时,主要利用污泥中的微生物吸收和分解水中溶解性物质,一部分营养构建自身细胞,一部分被氧化成二氧化碳和水。活性污泥在处理低浓度重金属废水时,主要利用胞外多聚物(ECP)的吸附和包裹。活性污泥法处理废水中的有机质过程,大致都可分为生物吸附阶段和生物氧化阶段。 一、活性污泥 (1)活性污泥的定义、组成部分 活性污泥就是由细菌,原生动物等与悬浮物质,胶体物质混杂在一起

所形成的具有很强的吸附分解有机物能力的絮凝体。絮凝体肉眼可见,具有良好的沉降性能。 菌胶团是活性污泥的重要组成部分,有较强的吸附和氧化有机物的能力,在废水处理中具有重要作用。活性污泥性能的好坏,主要可根据所含菌胶团多少、大小及结构的紧密程度来确定。 (2)衡量活性污泥数量和性能好坏的指标 1.活性污泥的浓度(MLSS)指1L混合液内所含的悬浮固体(MLSS)或挥发性悬浮固体(MLVSS)的量。 2.污泥沉降比(SV%)是指一定量的曝气池废水静止30min后,沉淀污泥与废水的体积比。它可反映污泥的沉淀和凝聚性能的好坏。污泥沉降比越大,越有利于活性污泥与水迅速分离。 3.污泥容积指数(SVI)又称污泥指数,是指一定量的曝气池废水经30min沉淀后,1g干污泥所占有沉淀污泥容积的体积。它实质是反映活性污泥的松散程度,污泥指数越大,则污泥越松散,越易于吸附和氧化分解有机物,提高废水的处理效果。但是,若污泥指数太高,污泥过于松散,则污泥的沉淀性差,故一般控制在50-150mL/g之间。 二、活性污泥法的应用 活性污泥法是采用人工曝气的手段,使活性污泥均匀分散并悬浮于反应器(曝气池)中,和污水充分接触,并在有溶解氧的情况下,对污水中所含的有机物进行分解代谢活动。在这一活动过程中,有机物质被微生物所利用,得以降解、去除。近几十年来,活性污泥法在生物学、反映动力学的理论方面以及在工艺变形方面都获得了长足的发

03-第三章活性污泥法030916

第三章废水好氧生物处理工艺(1)——活性 污泥法 第一节、活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池:1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池的污泥浓度。 ③回流系统:1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统:1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002 1.006);

粒径:0.02~0.2 mm ; 比表面积:20~100cm 2/ml 。 ② 生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a )、微生物源代的残留物(M e )、吸附的原废水中难于生物降 解的有机物(M i )、无机物质(M ii )。 2、活性污泥中的微生物: ① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed V olatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge V olume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge V olume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 )/() /((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?= = 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过 高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。

活性污泥法的发展和演变.doc

活性污泥法的发展和演变 传统的活性污泥法或称普通活性污泥法,经不断发展,已有多种运行方式。 1.渐减曝气 在推流式的传统曝气池中,混合液的需氧量在长度方向是逐步下降的。因此等距离均量地布置扩散器是不合理的。实际情况是:前半段氧远远不够,后半段供氧超过需要。渐减曝气的目的就是合理的布置扩散器,使布气沿程变化,而总的空气用量不变,这样可以提高处理效率。 2.分步曝气 在30年代,纽约市污水厂的曝气池空气量供应不足,厂总工程师把入流的一部分从池端引到池的中部分点进水,见(图6-10),解决了问题。使同样的空气量,同样的池子,得到了较高的处理效率。 3.完全混合法 美国1950年以前建造的曝气池全是狭长的条形池,按推流设计。由于前段需氧量很大,因而通过渐减曝气池来解决。但是,一般池子只有中段(约全长的1/3处)需氧速率与氧传递速率配合的比较好一些,见(图6-11)。在池的前段,因食料多,微生物的生长率高,需氧率也就很大,因而即使渐减曝气也不能根本解决问题,实际的需氧速率受供氧速率控制和制约。图中需氧和供氧率之间池前后两块面积应相等。 这样的供氧和需氧情况,当受到冲击负荷时,前段阴影面积扩大,后段阴影面积缩小,严重时,后段面积全部消失,出现全池缺氧情况。 从上面二种运行方式看,传统活性污泥法的重要矛盾是供氧和需氧的矛盾,为了解决这个矛盾,渐减曝气是通过布气的方法来改善,分步曝气则是通过进水分配的均匀性上来改善。 为了根本上改善长条形池子中混合液不均匀的状态,在分步曝气的基础上,进一步大大增加进水点,同时相应增加回流污泥并使其在曝气池中迅速混合,它就是完全混合的概念,见(图6-12)。在完全混合法的曝气池中,需氧速率和供氧速率的矛盾在全池得到了平衡,因而完全混合法有如下特征: ①池液中各个部分的微生物种类和数量基本相同,生活环境也基本相同; ②人流出现冲击负荷时,池液的组成变化也较小,因为骤然增加的负荷可为全池混合液所分担,而不是象推流中仅仅由部分回流污泥来承担。因而完全混合池从某种意义上来讲,是一个大的缓冲器和均和池。它不仅能缓和有机负荷的冲击,也减少有毒物质的影响,在工业污水的处理中有一定优点; ③池液里各个部分的需氧率比较均匀。 为适应完全混和的需要,机械曝气的圆形池子也得到了发展。机械曝气器很象搅拌机,而圆形池子便于完全混合。 4.浅层曝气 1953年,派斯维尔(Pasveer)曾计算并测定氧在10℃静止水中的传递特性,如图14-25所示。他发现了气泡形成和破裂瞬间的氧传递速率最大的特点。在水

活性污泥法工艺的原理

活性污泥法工艺的原理 一、活性污泥的形态、组成与性能指标 1.活性污泥法工艺 活性污泥法工艺是一种应用最广泛的废水好氧生化处理技术,其主要由曝气池、二次沉淀池、曝气系统以及污泥回流系统等组成(图2-5-1)。废水经初次沉淀池后与二次沉淀池底部回流的活性污泥同时进入曝气池,通过曝气,活性污泥呈悬浮状态,并与废水充分接触。废水中的悬浮固体和胶状物质被活性污泥吸附,而废水中的可溶性有机物被活性污泥中的微生物用作自身繁殖的营养,代谢转化为生物细胞,并氧化成为最终产物(主要是CO2)。非溶解性有机物需先转化成溶解性有机物,而后才被代谢和利用。废水由此得到净化。净化后废水与活性污泥在二次沉淀池内进行分离,上层出水排放;分离浓缩后的污泥一部分返回曝气池,以保证曝气池内保持一定浓度的活性污泥,其余为剩余污泥,由系统排出。 2.活性污泥的形态和组成 活性污泥通常为黄褐色(有时呈铁红色)絮绒状颗粒,也称为“菌胶团”或“生物絮凝体”,其直径一般为0.02~2mm;含水率一般为99.2%~99.8%,密度因含水率不同而异,一般为1.002~1.006g/m3;活性污泥具有较大的比表面积,一般为20~100cm2/mL。 活性污泥由有机物及无机物两部分组成,组成比例因污泥性质的不同而异。例如,城市污水处理系统中的活性污泥,其有机成分占75%~85%,无机成分仅占15%~25%。活性污泥中有机成分主要由生长在活性污泥中的微生物组成,这些微生物群体构成了一个相对稳定的生态系统和食物链(如图2-5-2所示),其中以各种细菌及原生动物为主,也存在着真菌、放线菌、酵母菌以及轮虫等后生动物。在活性污泥上还吸附着被处理的废水中所含有的有机和无机固体物质,在有机固体物质中包括某些惰性的难以被细菌降解的物质。

8.1活性污泥法工艺流程

活性污泥法工艺流程 (活性污泥法、微孔曝气器、管式曝气器、污水厂、水处理工艺)活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。利用活性污泥的生物凝聚、吸附和氧化作用,以分解去除污水中的有机污染物。然后使污泥与水分离,大部分污泥再回流到曝气池,多余部分则排出活性污泥系统。 活性污泥法工艺流程图: 一、活性污泥法由五部份组成: ①曝气池:反应主体;②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度;③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况;④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行;⑤供氧系统:提供足够的溶解氧。 污水和回流的活性污泥一起进入曝气池形成混合液。从空气压缩机站送来的压缩空气,通过铺设在曝气池底部的空气扩散装置,以细小气泡的形式进入污水中,目的是增加污水中的溶解氧含量,还使混合液处于剧烈搅动的状态,呈悬浮状态。溶解氧、活性污泥与污水互相混合、充分接触,使活性污泥反应得以正常进行。 第一阶段,污水中的有机污染物被活性污泥颗粒吸附在菌胶团的表面上,这是由于其巨大的比表面积和多糖类黏性物质。同时一些大分子有机物在细菌胞外酶作用下分解为小分子有机物。 第二阶段,微生物在氧气充足的条件下,吸收这些有机物,并氧化分解,形成二氧化碳和水,一部分供给自身的增殖繁衍。活性污泥反应进行的结果,污水中有机污染物得到降解而去除,活性污泥本身得以繁衍增长,污水则得以净化处理。 经过活性污泥净化作用后的混合液进入二次沉淀池,混合液中悬浮的活性污泥和其他固体物质在这里沉淀下来与水分离,澄清后的污水作为处理水排出系统。经过沉淀浓缩的污泥从沉淀池底部排出,其中大部分作为接种污泥回流至曝气池,以保证曝气池内的悬浮固体浓度和微生物浓度;增殖的微生物从系统中排出,称为“剩余污泥”。事实上,污染物很大程度上从污水中转移到了这些剩余污泥中。

污水处理的现状以及发展趋势

我国污水处理的现状及发展趋势 学号:20086814 姓名:曾雪萍 摘要:随着我国城市化进程的加快,目前,中小城市(镇)的污水排放量约占全国污水排放总量的一半以上,随着未来50年城镇建设的快速发展,生活污水和工业废水的排放量将会数倍、甚至十几倍的增加,势必加剧水环境的恶化。结合我国现阶段污水处理事业发展现状及面临的问题,提出现阶段我国污水处理技术的发展趋势仍然是以发展简易、高效率、低能耗的污水处理技术为主。重点在于能做到投资少,再生水回用率高,污泥处理有效,臭气控制等。 关键词:污水处理;现状;发展 我国水资源和水环境现状 改革开放以来,我国城市化也进入快速发展时期,城市数量由1978年的193个增加到2001年的664个,城镇人口由17,245万人增加到48,064万人。近10年来,我国城市生活污水排放量每年以5%的速度递增,2001年城市生活污水排放量221亿吨,占全国污水排放总量的53.2%,与此同时,我国城市生活污水处理设施严重滞后和不足。 照此发展下去,城市的水环境将每况愈下。根据水利部门的预测,到2030年我国人口増至16亿时,人均水资源将降低到1760m3,总缺水量将达到400~500亿m3,已经达到了世界公认的缺水警戒线。从地区分布情况来看,水资源总量的81%集中分布于长江及其以南地区,其中40%以上又集中于西南五省区,就人均占有淡水资源而言,南方最高地区和北方最低地区相差数十倍,西部比东部甚至高出五、六百倍;这些地区水资源短缺的现状将在一个相当长的时间成为难以解决的问题。而且随着现代工业的发展及人口城市化的加速,城镇污水量将愈来愈大,水环境污染也会日益加重。 我国城市污水处理现状及面临的问题 我国污水处理事业的历史始于1921年,到改革开放的近二十年来取得了迅速的发展,但仍然滞后于城市发展的需要。城市污水处理能力增长缓慢和污水处理率低是造成我国水环境污染的主要原因,并严重的制约了我国经济与社会的发展。我国城市污水处理能力增长缓慢的主要原因可以归结为以下四个方面: 1)污水处理技术落后 城市污水处理技术是城市污水处理设施能否高效运转的关键;长期以来,我国的污水处理技术都是沿袭了欧美国家近百年来的路线和处理技术,在吸收、消化国外技术的同时也形成了自己的技术,城市污水处理技术有了很大的发展,但是我国现阶段采用的污水处理技术与同期国外的技术水平相比依然还很落后,始终存在效率低、能耗高、维修率高、自动化程度低等缺点,从而影响它们在污水处理厂投标中的竞争力。 2)资金短缺,投资力度不够 城市污水处理系统是城市的重要基础设施之一,也是防止水污染、改善城市

活性污泥法的基本工艺流程

第一节活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ①曝气池:反应主体 ②二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池内的污泥浓度。 ③回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤供氧系统:提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ①废水中含有足够的可容性易降解有机物; ②混合液含有足够的溶解氧; ③活性污泥在池内呈悬浮状态; ④活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ①物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm; 比表面积:20~100cm2/ml。 ②生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a)、微生物内源代谢的残留物(M e)、吸附的原废水中难于生物降解的有机物(M i)、无机物质(M ii)。 2、活性污泥中的微生物:

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥中大约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池内发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

思考题 活性污泥法 (2)

思考题 第4章活性污泥法 一、名词解释: 活性污泥 混合液悬浮固体浓度(MLSS,X) 混合液挥发性悬浮固体浓度(MLVSS,X V) 污泥沉降比SV 污泥容积指数SVI(计算公式、单位) 污泥龄(单位)θc 污泥回流比R BOD 污泥负荷率(公式,单位) BOD—容积负荷率(单位) 活性污泥合成产率(系数)Y 污泥表观产率Y obs。 曝气装置的氧利用效率(E A) 曝气装置的充氧能力(E L) 曝气装置的动力效率(E P) 污泥膨胀 污泥解体 污泥上浮 污泥腐化 活性污泥的同步培驯法、异步培驯法、接种培驯法。 二问答题 1.什么是活性污泥法? 2.画出传统活性污泥法的基本流程系统简图并说明各组成部分的作用。 3.活性污泥由哪几部分组成?活性污泥微生物的组成种类有哪些? 4.画出活性污泥微生物增长曲线并说明各个阶段的名称和特点。 5.活性污泥处理系统对污水的净化过程可分成哪几个阶段? 6.画出好氧微生物去除有机污染物的代谢模式图(水中有机污染物主要被转 化成了哪些物质?)。 7.影响活性污泥净化反应(活性污泥法运行)的主要环境因素是什么? 8.根据完全混合活性污泥系统的物料平衡推导出污泥去除负荷(Nrs)与出水 BOD浓度的关系、去除率与反应时间的关系(式4-47),分析去除率与反应时间的关系。 9.写出劳-麦氏方程式中出水有机物浓度与污泥龄的关系式,并分析污泥龄对出 水水质的影响。 10.活性污泥法处理系统的运行方式有哪些?

11.传统活性污泥法、完全混合活性污泥法、阶段曝气活性污泥法、吸附-再生 活性污泥法、延时曝气活性污泥法等处理系统各有哪些特点与不足?在一般情况下,对于有机废水BOD5的去除率如何? 12.常用的氧化沟系统有哪些? 13.典型间歇式活性污泥法系统的运行工序有哪些?间歇式活性污泥法系统处 理工艺有哪些? 14.曝气过程氧转移的双膜理论及其基本点是什么? 15.试分析如何提高曝气池氧的转移速度(对影响氧转移速率的因素进行分析, 说明提高曝气池充氧效果的主要途径)? 16.在实际条件下氧转移的因素有哪些? 17.活性污泥曝气系统的分类和组成是什么?曝气装置的作用是什么?衡量曝 气设备效能的指标有哪些? 18.常用的空气扩散装置和机械曝气装置有哪些? 19.计算二沉池面积时,设计流量怎么确定? 20.活性污泥系统运行中常出现的异常情况有哪些?产生污泥膨胀的主要原因 有哪些? 21.在活性污泥生物相观察时,原生动物和后生动物的数量和种类对污水厂的运 行状况有何指示意义? 22.画出AB法处理工艺流程图,说明该工艺的主要特征。

活性污泥法实验

活性污泥实验 一、 实验目的 1、观察完全混合活性污泥处理系统的运行,掌握活性污泥处理法中控制参数(如污泥负荷、泥龄、溶解氧浓度)对系统的影响; 2、加深对活性污泥生化反应动力学基本概念的理解; 3、掌握生化反应动力学系数K 、Ks 、Vmax 、Y 、Kd 、a 、b 等的测定。 二、 实验原理 活性污泥好氧生物处理是指在有氧参与的条件下,微生物降解污水中的有机物。整个过程包括微生物的生长、有机底物降解和氧的消耗,整个过程变化规律如何正是活性污泥生化反应动力学研究的内容,活性污泥生化反应动力学内容包括: (1)底物的降解速度与有机底物浓度、活性污泥微生物量之间的关系; (2)活性污泥微生物的增殖速度与有机底物浓度、活性污泥微生物量之间的关系; (3)有机底物降解与氧需。 1、底物降解动力学方程 Monod 方程: S Ks S V dt dS +=- max (1) Vmax-------有机底物最大比降解速度, Ks-----------饱和常数, 在稳定条件下,对完全混合活性污泥系统中的有机底物进行物料平衡: 0)(=++-+dt dS V Se Q R Q Se Q R Q So (2) 整理后,得

dt dS V Se So Q - =-)( (3) 于是有 S Ks S V Xt Se So XV Se So Q +=-=-max )( (4) 而M F Xt Se So XV Se So Q /)(=-=-,F/M 为污泥负荷。 完全混合曝气池中S=Se ,所以(4)式整理后可得 max 11max V Se V Ks Se So t X +=- (5) (5)式为一条直线方程,以Se 1 为横坐标,Xt Se So -(污泥负荷)为纵坐标,直 线的斜率为 max V Ks ,截距为max 1 V ,可分别求得max V 、Ks 。 又因为在低底物浓度条件下,Se<

氧化沟——常规活性污泥法的一种改型和发展

书山有路勤为径;学海无涯苦作舟 氧化沟——常规活性污泥法的一种改型和发展 氧化沟是活性污泥法的一种变型,其曝气池呈封闭的沟渠型,所以它在水力流态上不同于传统的活性污泥法,它是一种首尾相连的循环流曝气沟渠,污水渗入其中得到净化,最早的氧化沟渠不是由钢筋混凝土建成的,而是加以护坡处理的土沟渠,是间歇进水间歇曝气的,从这一点上来说,氧化沟最早是以序批方式处理污水的技术。 氧化沟又称氧化渠或循环曝气池。是常规活性污泥法的一种改型和发展。1954年荷兰建成了世界上第一座氧化沟污水处理厂,其原型为一个环状跑道式的斜坡池壁的间歇运行反应池,白天用作曝气池,晚上用作沉淀池,其生化需氧量(BOD)去除率可达97%,由于其结构简单,处理效果好,从而引起了世界各国广泛的兴趣和关注。 氧化沟(OxidationDitch)污水处理的整个过程如进水、曝气、沉淀、污 泥稳定和出水等全部集中在氧化沟内完成,最早的氧化沟不需另设初次沉淀池、二次沉淀池和污泥回流设备。后来处理规模和范围逐渐扩大,它通常采用延时曝气,连续进出水,所产生的微生物污泥在污水曝气净化的同时得到稳定,不需设置初沉池和污泥消化池,处理设施大大简化。不仅各国环境保护机构非常重视,而且世界卫生组织(WH0)也非常重视。在美国已建成的污水处理厂有几百座,欧洲已有上千座。在我国,氧化沟技术的研究和工程实践始于上一世纪70年代,氧化沟工艺以其经济简便的突 出优势已成为中小型城市污水厂的首选工艺。 设计参数 根据美国环保局(EPA)2000年发布的设计指导参数中,氧化沟的平均 速度要达到0.25m/s-0.35m/s,以保持氧化沟中活性污泥处于悬浮状态。 专注下一代成长,为了孩子

活性污泥法的基本原理

活性污泥法的基本原理 一、活性污泥法的基本工艺流程 1、活性污泥法的基本组成 ① 曝气池:反应主体 ② 二沉池: 1)进行泥水分离,保证出水水质;2)保证回流污泥,维持曝气池的污泥浓度。 ③ 回流系统: 1)维持曝气池的污泥浓度;2)改变回流比,改变曝气池的运行工况。 ④ 剩余污泥排放系统: 1)是去除有机物的途径之一;2)维持系统的稳定运行。 ⑤ 供氧系统: 提供足够的溶解氧 2、活性污泥系统有效运行的基本条件是: ① 废水中含有足够的可容性易降解有机物; ② 混合液含有足够的溶解氧; ③ 活性污泥在池呈悬浮状态; ④ 活性污泥连续回流、及时排除剩余污泥,使混合液保持一定浓度的活性污泥; ⑤ 无有毒有害的物质流入。 二、活性污泥的性质与性能指标 1、活性污泥的基本性质 ① 物理性能:“菌胶团”、“生物絮凝体”: 颜色:褐色、(土)黄色、铁红色; 气味:泥土味(城市污水); 比重:略大于1,(1.002~1.006); 粒径:0.02~0.2 mm ; 比表面积:20~100cm 2/ml 。 ② 生化性能: 1) 活性污泥的含水率:99.2~99.8%; 固体物质的组成:活细胞(M a )、微生物源代的残留物(M e )、吸附的原废水 中难于生物降解的有机物(M i )、无机物质(M ii )。 2、活性污泥中的微生物: 剩余活性污泥 回流污泥 二次 沉淀池 废曝气池 初次 沉淀池 出水 空气

① 细菌: 是活性污泥净化功能最活跃的成分, 主要菌种有:动胶杆菌属、假单胞菌属、微球菌属、黄杆菌属、芽胞杆菌属、产碱杆菌属、无色杆菌属等; 基本特征:1) 绝大多数都是好氧或兼性化能异养型原核细菌; 2) 在好氧条件下,具有很强的分解有机物的功能; 3) 具有较高的增殖速率,世代时间仅为20~30分钟; 4) 其中的动胶杆菌具有将大量细菌结合成为“菌胶团”的功能。 ② 其它微生物------原生动物、后生动物----在活性污泥约为103个/ml 3、活性污泥的性能指标: ① 混合液悬浮固体浓度(MLSS )(Mixed Liquor Suspended Solids ): MLSS = M a + M e + M i + M ii 单位: mg/l g/m 3 ② 混合液挥发性悬浮固体浓度(MLVSS )(Mixed Volatile Liquor Suspended Solids ): MLVSS = M a + M e + M i ; 在条件一定时,MLVSS/MLSS 是较稳定的,对城市污水,一般是0.75~0.85 ③ 污泥沉降比(SV )(Sludge Volume ): 是指将曝气池中的混合液在量筒中静置30分钟,其沉淀污泥与原混合液的体积比,一般以%表示; 能相对地反映污泥数量以及污泥的凝聚、沉降性能,可用以控制排泥量和及时发现早期的污泥膨胀; 正常数值为20~30%。 ④ 污泥体积指数(SVI )(Sludge Volume Index ): 曝气池出口处混合液经30分钟静沉后,1g 干污泥所形成的污泥体积, 单位是 ml/g 。 ) /()/((%))/()/(l g MLSS l ml SV l g MLSS l ml SV SVI 10?== 能更准确地评价污泥的凝聚性能和沉降性能,其值过低,说明泥粒小,密实,无机成分多;其值过高,说明其沉降性能不好,将要或已经发生膨胀现象; 城市污水的SVI 一般为50~150 ml/g ; 三、活性污泥的增殖规律及其应用 活性污泥中微生物的增殖是活性污泥在曝气池发生反应、有机物被降解的必然结果,而微生物增殖的结果则是活性污泥的增长。 1、活性污泥的增殖曲线

生活污水处理工艺调试及流程

EH 工艺污水处理调试方法及微生物培养流程 (一)、活性污泥的培养流程 1. 向瀑汽池(好氧池)注入清水同时引入(工业废水)或生活污水,至一定水位,并注意水温。 2. 按风机操作规程启动风机,鼓风或开动液下瀑汽机。 3. 向好氧池投加经过滤的浓粪便水(当粪便水不充足时,可用化粪池和排水沟内的污泥补充。),使得污泥浓度不小于1000mg/L ,BOD 达到一定数值。 4. 有条件时可投加活性污泥的菌种,加快培养速度。 5. 按照活性污泥培养运行工艺对反应池进行曝气、搅拌、沉降、排水。 6. 通过镜检及测定沉降比、污泥浓度,注意观察活性污泥的增长情况。并注意观察在线PH 值、DO 的数值变化,及时对工艺进行调整。 7. 测定初期水质及排水阶段上清液的水质,根据进出水NH3-N 、BOD、COD、NO3-、NO2- 等浓度数值的变化,判断出活性污泥的活性及优势菌种的情况,并由此调节进水量、置换量、粪水、NH4Cl 、H3PO4、CH3OH 的投加量及周期内时间分布情况。 8. 注意观察活性污泥增长情况,当通过镜检观察到菌胶团大量密实出现,并能观察到原生动物(如钟虫),且数量由少迅速增多时,说明污泥培养成熟,可以进生产废水,进行驯化。 二、活性污泥的驯化流程; 1. 通过分析确认进水各项指标在允许范围内,准备进水。 2. 开始进入少量生活污水或废水,进入量不超过驯化前处理能力的20%。同时补充新鲜水、粪便水及NH4Cl 。 3. 达到较好处理后,可增加生活污水或生产废水投加量,每次增加不超过10?20%,同时 减少NH4C1 投加量。且待微生物适应巩固后再继续增污水或生产废水,直至完全停加 NH4Cl 。同步监测出水CODcr 浓度等指标,并观察混合液污泥性状。在污泥驯化期还要适时排放代谢产物, 即泥水分离后上清液。 4. 继续增加生产废水投加量,直至满负荷。满负荷运行阶段, 由于池中已培养和保持了高浓度、高活性的足够数量的活性污泥,池中曝气后混合液的MLSS 达到5000mg/L, 此过程同步监测溶解氧,控制曝气机的运行,并进行污泥的生物相镜检。 三、调试期间的监测和控制 在调试及运行过程有许多影响处理效果的因素,主要有进水CODcr 浓度、pH 值、温度、溶解氧等,所以对整个系统通过感官判断和化学分析方法进行监测是必不可少的。根据监测分析的结果对影响因素进行调整,使处理达到最佳效果。 1 、温度 温度是影响整个工艺处理的主要环境因素,各种微生物都在特定范围的温度内生长。生化处 理的温度范围在10?40C ,最佳温度在20?30C。任何微生物只能在一定温度范围内生存,在适宜的温度范围内可大量生长繁殖。在污泥培养时, 要将它们置于最适宜温度条件下, 使微生物以最快的生长速率生长, 过低或过高的温度会使代谢速率缓慢、生长速率也缓慢, 过高的温度对微生物有致死作用。 2、p H 值 微生物的生命活动、物质代谢与pH值密切相关。大多数细菌、原生动物的最适pH值为6.5?

活性污泥在处理水方面的作用与发展

活性污泥在处理水方面的作用与发展 XX学院XX专业XX级X班 XXX 【摘要】微生物的代谢反应已成为水处理工程的应用热点之一,而活性污泥法(activated sludge process)因为处理污水效率高,效果好,处理后的水质良好而成为处理污水的主要方法。在本文中我会对这一方法的发展、原理、运行方式和后处理作一浅浅的简要综述。 【关键词】活性污泥微生物曝气池污泥处理 1. 引言 随着人们生活和生产水平的日益提高,越来越多的生活污水、工业废水源源不断地排入江河湖海,造成了水体的严重和普遍污染。水是人类最可宝贵的资源之一,“莫要让人类的眼泪成为最后一滴水”督促我们对废水进行处理以再利用。而利用微生物进行水处理使水资源再生,无论现在和将来都是水处理的主要途径之一。其中历史悠久的活性污泥法自发明以来,在生物学、反应动力学理论和工艺方面都得到了长足的发展,出现了多种能适应各种条件的工艺流程,而成为污水废水的主体处理技术。下面我就活性污泥法的相关情况作一综述。 2.简介和原理 活性污泥法于1914年由Ardern和Lockett在曼彻斯特创建成试验厂,是以活性污泥为主体的污水处理微生物技术,实质是在充分曝气供氧条件下,以废水中有机污染物质作为底物,对活性污泥进行连续或间歇培养,并将有机污染物质无机化的过程。活性污泥在曝气池中以絮体形式存在,它有较强的吸附、氧化废水中有机物和毒物的能力,又有良好的沉降性能,是废水处理能连续进行。 活性污泥系统主要由活性污泥反应器——曝气池、曝气系统、二沉池污泥、回流系统和剩余污泥排放系统组成,其工艺流程如图。

废水先进入初沉池,在这里去除有机和无机的悬浮固体和浮油,此为一级处理。废水处理的核心部分是曝气池,通过曝气使曝气池处于好氧状态,并使有机污染物与活性污泥充分接触,完成吸附和氧化分解过程,此为二级处理。之后废水与活性污泥一起进入二次沉淀池,在这里活性污泥与水分离,沉至池底,澄清水排放。分离出的活性污泥(称为回流污泥)经污泥泵回流至曝气池,从而循环利用。而为保持曝气池内浓度恒定,沉入二次沉淀池底部的多余污泥(称为剩余污泥)要经常排出。 3. 活性污泥的组成 活性污泥大致上由四部分物质组成:a.有代谢功能的微生物群体;b.微生物内源代谢、自身氧化的残留物;c.原污水带入的难降解的惰性有机物质;d.污水带入的无机物质。 关于微生物群体(细菌为多),由于活性污泥中的细菌包在絮体中,而解离絮体的方法存在不同,解离出的细菌率及种类也就不同,因此结论各异。不过,从目前资料看来,污泥中的主要菌群有:假单胞杆菌属、产碱杆菌属、无色杆菌属、微杆菌属、黄杆菌属、动胶菌属、芽孢杆菌属、节杆菌属、不动细菌属、微球菌属、气杆菌属、棒状杆菌属、从毛单胞菌属、杆菌属、诺卡氏菌属、球衣细菌属、短杆菌属、亚硝化单胞菌属等细菌。活性污泥中的真菌并不多,真菌的出现与水质有关,一些霉菌常出现在pH较低的废水中。可以说,真菌在活性污泥中并不占主要地位。 4. 几种活性污泥处理系统的运行方式特点 4.1 标准活性污泥法 标准活性污泥法也就是传统活性污泥法,是最早使用的方法,当然也是活性污泥法中最典型的方法。这种曝气池是长条形,池的长宽比值较大。曝气方法是

相关文档
最新文档