三层负载均衡设计

三层负载均衡设计
三层负载均衡设计

1设计思路

通过使用port-channel , spanning-tree , VLAN , HSRP等技术来实现流量负载均衡,同时实现链路发生故障时,流量自动切换,所有过程对于用户端来讲是透明的。将流量分成A流量和B 流量。具体流向走向请看下面。

2流量走向

2.1正常情况下A流量的走向:

2.2当交换机A和负载均衡A之间发生故障时,流量切换到负载均衡B

2.3当设备A发生故障的时候,

2.4正常情况下流量B的走向:

2.5当交换机B和负载均衡B之间发生故障时,流量切换到负载均衡A

2.6当交换机B出现问题的时候

几种负载均衡算法

几种负载均衡算法 本地流量管理技术主要有以下几种负载均衡算法: 静态负载均衡算法包括:轮询,比率,优先权 动态负载均衡算法包括: 最少连接数,最快响应速度,观察方法,预测法,动态性能分配,动态服务器补充,服务质量,服务类型,规则模式。 静态负载均衡算法 ◆轮询(Round Robin):顺序循环将请求一次顺序循环地连接每个服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从顺序循环队列中拿出,不参加下一次的轮询,直到其恢复正常。 ◆比率(Ratio):给每个服务器分配一个加权值为比例,根椐这个比例,把用户的请求分配到每个服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配, 直到其恢复正常。 ◆优先权(Priority):给所有服务器分组,给每个组定义优先权,BIG-IP 用户的请求,分配给优先级最高的服务器组(在同一组内,采用轮询或比率算法,分配用户的请求);当最高优先级中所有服务器出现故障,BIG-IP 才将请求送给次优先级的服务器组。这种方式,实际为用户提供一种热备份的方式。 动态负载均衡算法 ◆最少的连接方式(Least Connection):传递新的连接给那些进行最少连接处理的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配, 直到其恢复正常。 ◆最快模式(Fastest):传递连接给那些响应最快的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。 ◆观察模式(Observed):连接数目和响应时间以这两项的最佳平衡为依据为新的请求选择服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。 ◆预测模式(Predictive):BIG-IP利用收集到的服务器当前的性能指标,进行预测分析,选择一台服务器在下一个时间片内,其性能将达到最佳的服务器相应用户的请求。(被BIG-IP 进行检测) ◆动态性能分配(Dynamic Ratio-APM):BIG-IP 收集到的应用程序和应用服务器的各项性能参数,动态调整流量分配。 ◆动态服务器补充(Dynamic Server Act.):当主服务器群中因故障导致数量减少时,动态地将备份服务器补充至主服务器群。 ◆服务质量(QoS):按不同的优先级对数据流进行分配。 ◆服务类型(ToS): 按不同的服务类型(在Type of Field中标识)负载均衡对数据流进行分配。 ◆规则模式:针对不同的数据流设置导向规则,用户可自行。 负载均衡对应本地的应用交换,大家可以通过对上述负载均衡算法的理解,结合实际的需求来采用合适你的负载均衡算法,我们常用到的一般是最少连接数、最快反应、或者轮询,决定选用那种算法,主要还是要结合实际的需求。

服务器负载均衡的设计与实现

服务器负载均衡的设计与实现 在该架构中OpenFlow控制器可以获取每个服务器的运行状态,并根据运行状态分发用户请求,最大程度地利用每台服务器的计算资源,并且可以在系统运行期间动态地添加或删除服务器,使系统具备很高的灵活性。 1、动态负载均衡架构的整体设计 负载均衡架构是在一个非结构化的网络中使用集中式的控制器实现多台服务器共同对外提供服务。OpenFlow网络中的所有交换机都连接在一个控制器上,每台服务器有两块网卡,一块网卡连接到OpenFlow网络对用户提供网络服务,另一块通过以太网交换机和控制器相连,以便控制器通过SNMP协议获取服务器的运行状态,具体架构如图所示。 在上述负载均衡架构中控制器是网络的核心,其主要功能有四个,分别为: 保证网络正常的通信、获取服务器的运行状态、通过负载均衡算法计算服务器的综合负载、向交换机下发流表项以转发用户请求;控制器的模块设计如图所示。 本文阐述的负载均衡架构可以工作在任意openflow网络中,而不是专门为某个服务器

所设计的负载均衡,控制器的首要任务就是保证网络可以提供正常的数据转发服务,为了保证网络既可以为其他服务提供基础支持又保证负载均衡能够正常工作,在控制器的转发控制中有两个模块,第一个模块负责负载均衡服务,第二个模块负责网络的基本通信。当一个数据包到达Openflow交换机后,如果交换机找不到可以匹配的流表项,就会向控制发送packet-in消息,控制器收到packet-in消息之后首先交给负载均衡模块,由负载均衡模块处理该消息,如果该数据包的目的IP 不是负载均衡所负责的网络服务,如果该数据包的目的IP不是负载均衡所负责的网络服务,负载均衡模块就不会做任何处理而是直接packet-in 消息传递给网络通信模块,以保证其它业务正常通信。如果该数据包的目的IP是负载均衡所负责的网络服务,负载均衡模块就向交换机下发流表项让交换机完成负载均衡服务。 为了有效地利用计算资源,控制器还需要根据服务器的运行状态转发用户请求,因此控制器还要完成这方面的工作。在此架构中每台服务器都有一块通过以太网交换机和控制器相连的网卡,控制器通过以太网交换机和服务器通信,利用SNMP协议获取服务器的运行状态。在此架构中就算没有和服务器相连的网卡,控制器也可以通过Openflow网络和服务器通信,本文之所以没有这么做是因为控制器直接和连接在openflow网络中的服务器通信需要交换机把所有服务器所发送的消息封装成packet-in消息发送给交换机,控制器也必须通过向交换机发送packet-out消息才能把数据发送给服务器,这样做会给交换机和控制器同时带来很大的压力。 因为服务器的运行状态必须由多条信息才能描述清楚,所以就算得到服务器的运行状态之后,也无法根据多条信息判断哪台服务器的负载最低。因此本文在控制器中运行了一个负载均衡算法,控制器会把服务的运行状态作为负载均衡算法的参数代入到服务器综合负载的运算中,计算出服务器的综合负载,并根据综合负载得到负载最小的服务器。 负载均衡的核心内容就是让交换机分发用户的请求,用户请求的第一个数据包到达交换级之后,交换机会通过packet-in消息把数据包发送给控制器,控制器中的负载均衡模块会通过SNMP协议获取所有服务器的运行状态,并根据运行状态计算服务器的综合负载,之后把用户的请求转发给综合负载最小的服务器。 2、动态负载均衡架构的设计与实现 负载均衡常用的算法有随机、轮训和最小连接数,原因是这三种算法很容易用硬件实现,这三种算法中最小连接数算法的效果是最理想的,但是如果集群中的服务器在CPU、内存、网络带宽上的配置不相同,这三个算法都不能充分地发挥服务器集群的计算能力。在openflow网络中,网络的控制层由软件制定,负载均衡算法也可以集成在控制器中,使用软件完成,这样可以更准确地评估服务器的负载情况。本文阐述的负载均衡方案中就设计了一个负载均衡算法,根据服务器的运行状态计算服务器的综合负载,并返回综合负载最小的服务器。该算法可以在服务器性能差距较大的集群中充分发挥每一台服务器的计算能力,算法的具体实现过程如下: 1)动态反馈当前服务器负载量 主要收集每台服务器CPU和内存的使用率,这些信息并不能直接表示一台服务器的负载情况,所以使用公式1把CPU和内存信息转换为服务器的负载量,其中LC为第i台服务器CPU的使用率,LM为第i台内存的使用率,r1和r2为权值,用于强调该服务类型对各个部分的不同影响程度,r1+r2=1,LS为计算得出的第i台服务器负载量 LS=r1LC+r2*LM 2)服务器处理能力计算; 集群中服务器的性能也可能不同,在计算服务器负载的时候还要考虑服务器的处理能力,第i台服务器的处理能力使用C(i)表示,C的计算方法如公式所示,其中P为第i台服务器CPU的个数,M为第i台服务器内存的大小,r1和r2为权值,r1+r2=1。

负载均衡调度算法

负载调度算法 负载均衡(Load Balance),又称为负载分担,就是将负载(工作任务)进行平衡、分摊到多个操作单元上进行执行,例如Web服务器、FTP服务器、企业关键应用服务器和其它关键任务服务器等,从而共同完成工作任务。负载均衡建立在现有网络结构之上,它提供了一种廉价又有效的方法来扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。 在调度器的实现技术中,IP负载均衡技术是效率最高的。在已有的IP负载均衡技术中有通过网络地址转换(Network Address Translation)将一组服务器构成一个高性能的、高可用的虚拟服务器,称之为VS/NAT技术。在分析VS/NAT 的缺点和网络服务的非对称性的基础上,提出通过IP隧道实现虚拟服务器的方法VS/TUN,和通过直接路由实现虚拟服务器的方法VS/DR,它们可以极大地提高系统的伸缩性。 在内核中的连接调度算法上,IPVS实现了以下几种调度算法: 1 轮叫调度 1.1 轮叫调度含义 轮叫调度(Round Robin Scheduling)算法就是以轮叫的方式依次将请求调度不同的服务器,即每次调度执行i = (i + 1) mod n,并选出第i台服务器。算法的优点是其简洁性,它无需记录当前所有连接的状态,所以它是一种无状态调度。 轮叫是基站为终端分配带宽的一种处理流程,这种分配可以是针对单个终端或是一组终端的。为单个终端和一组终端连接分配带宽,实际上是定义带宽请求竞争机制,这种分配不是使用一个单独的消息,而是上行链路映射消息中包含的一系列分配机制。 1.2 轮叫调度算法流程 轮询调度算法的原理是每一次把来自用户的请求轮流分配给内部中的服务器,从1开始,直到N(内部服务器个数),然后重新开始循环。在系统实现时,我们引入了一个额外条件,即当服务器的权值为零时,表示该服务器不可用而不被调度。这样做的目的是将服务器切出服务(如屏蔽服务器故障和系统维护),同时与其他加权算法保持一致。所以,算法要作相应的改动,它的算法流程如下:假设有一组服务器S = {S0, S1, …, Sn-1},一个指示变量i表示上一次选择的服务器,W(Si)表示服务器Si的权值。变量i被初始化为n-1,其中n > 0。 j = i; do { j = (j + 1) mod n;

数据库负载均衡解决方案

双节点数据库负载均衡解决方案 问题的提出? 在SQL Server数据库平台上,企业的数据库系统存在的形式主要有单机模式和集群模式(为了保证数据库的可用性或实现备份)如:失败转移集群(MSCS)、镜像(Mirror)、第三方的高可用(HA)集群或备份软件等。伴随着企业的发展,企业的数据量和访问量也会迅猛增加,此时数据库就会面临很大的负载和压力,意味着数据库会成为整个信息系统的瓶颈。这些“集群”技术能解决这类问题吗?SQL Server数据库上传统的集群技术 Microsoft Cluster Server(MSCS) 相对于单点来说Microsoft Cluster Server(MSCS)是一个可以提升可用性的技术,属于高可用集群,Microsoft称之为失败转移集群。 MSCS 从硬件连接上看,很像Oracle的RAC,两个节点,通过网络连接,共享磁盘;事实上SQL Server 数据库只运行在一个节点上,当出现故障时,另一个节点只是作为这个节点的备份; 因为始终只有一个节点在运行,在性能上也得不到提升,系统也就不具备扩展的能力。当现有的服务器不能满足应用的负载时只能更换更高配置的服务器。 Mirror 镜像是SQL Server 2005中的一个主要特点,目的是为了提高可用性,和MSCS相比,用户实现数据库的高可用更容易了,不需要共享磁盘柜,也不受地域的限制。共设了三个服务器,第一是工作数据库(Principal Datebase),第二个是镜像数据库(Mirror),第三个是监视服务器(Witness Server,在可用性方面有了一些保证,但仍然是单服务器工作;在扩展和性能的提升上依旧没有什么帮助。

天融信负载均衡算法

1.Rr – Round Robin 默认情况下,访问请求分配的次序为: 1, 2, 3, 4, 1, 2, 3,4 若Servers之间存在性能差异,可以通过调整分配粒度值(weight),来控制访问请求分配的次序: 1, 1, 1, 2, 2, 2, 3, 3, 3,4,4,4, 2.Lc - Least Connections 新的访问请求将分配至当前连接数最少的一台服务器上。分配粒度方法定义了两个服务器的活动连接数要有多大差别,算法里才会将它们区分为不同等级。3.Sr – Shortest Response Time 基于后台服务器的最短相应时间来分配新的访问请求。 4.Pi – Persistent IP 相同IP地址的请求将会分配到相同的服务器上 5.HI - Hash IP 这是一种基于源IP地址Hash来分发新建连接的算法。客户端发送一个请求到虚拟服务器;负载均衡设备将根据源IP地址计算出的哈希值来选择将该访问请求发送到哪一台服务器;对于哈希值相同的请求连接,都将会发送到相同的服务器上。 注意:如果一台服务器失效了,将导致负载均衡设备上的哈希值重新计算,这样对所有原已维持的会话状态都将产生影响。 在负载均衡集群的方式下,客户端到服务器端的对应关系,在其他负载均衡设备上无法维持的,因此当其中一台负载均衡设备失效以后,客户端的请求将会在其他正常的负载均衡重新进行负载分配。 6.CHI – Consistent Hash IP 这是一种基于源IP地址Hash来分发新建连接的算法。 客户端发送一个请求到虚拟服务器;负载均衡设备将根据源IP地址计算出的哈希值来选择将该访问请求发送到哪一台服务器;对于哈希值相同的请求连接,都将会发送到相同的服务器上。 注意:

软路由实现双WAN口带宽叠加

软路由实现双WAN口带宽叠加 一、硬件条件 1、要实现双W AN并能实现带宽的叠加,那自然要有两个宽带了,这是必须的,至于怎么弄两个宽带,那我就不多说了,自己想办法去。 2、要有两个网卡,不必太在意是无线网卡还是有线网卡,在我的“晒晒俺的双wan”一贴中有同学提出海蜘蛛(一个软路由软件)是否支持无线网卡,在这里我可以很负责任的告诉你在VMware Workstation虚拟机上是支持的,因为我用的就是一块INTEL 3945 无线网卡。 3、下载必要的软件,我这里就不写下载地址了,在网上连必要的软件都淘不来的,那也没必要再往下看了(没有贬低什么人的意思)。 二、言归正传 在windows系统上运行VMware Workstation虚拟机软件。而且基于虚拟机的话,电脑还可以在windows系统下正常做事情,并不像一些方案专门要独占一台电脑来做路由。还有一个好处就是可以相对比较方便的添加更多的物理网卡,叠加更多的线路带宽。无线网卡就不必多说了,像萨基姆760N这种性能不错的USB网卡仅30元左右。有线网卡的话,PCI或PCI-E等等的网卡由于插槽数有限,插不了很多。如果用多口的网卡价格又贵上很多。怎么办?我们可以用USB网卡,USB2.0的百兆网卡仅20元左右,配合USB HUB或者Card Bus 转USB卡之类的,可以拓展出很多个USB口,网卡可以轻易增加很多个。然后用虚拟机桥接给虚拟网卡即可。 1、先下载软件: 虚拟机请使用V6.0以上版本,V5版本会出现海蜘蛛安装时不识别虚拟硬盘的情况。另外绿色版的VMware有可能会出现错误,譬如海蜘蛛FAQ中推荐的20MB绿盟版,添加虚拟网卡报错。 2,安装虚拟机:

F5负载均衡算法详解

应用交换技术的负载均衡算法 应用交换技术里主要包括四项关键的技术: ●截获和检查流量 ●服务器监控健康检查 ●负载均衡算法 ●会话保持 截获和检查流量保证只有合适的数据包才能通过; 服务器监控和健康检查随时了解服务器群的可用性状态; 负载均衡和应用交换功能通过各种策略导向到合适的服务器; 会话的保持以实现与应用系统完美结合; F5在应用交换技术中的优势: A、截获和检查流量 –BIG-IP 有最强的数据包截获和检查引擎去检查任何数据流量包中的任何部分,可以检测16384bytes包的深度,理论上可以检测 64Kbytes的包长度 –这使得BIG-IP 明显有别于其他的厂商的产品 B、用于定制控制的iRules工具 –可用来定义如何根据报头和/或TCP有效负载信息来引导、保存和过滤流量。 –iRules增强了企业或服务提供商定根据业务需求定制应用流量的能力。 –通用检查引擎和iRules分别是应用智能和业务决策来进行应用流量管理的方法和工具。 C、服务器监控和健康检查

–服务器(Node)-Ping(ICMP) –服务(Port)-Connect –扩展的应用验证(EA V) –扩展的内容验证(ECV) –针对VOD服务器的专用健康检查机制 –针对节点的检查频率和超时频度,e.g.10seconds响应,e.g.5seconds D、负载均衡和应用交换功能 –Global Load Balancer提供17种负载均衡算法 –F5提供最优质的负载均衡和应用交换功能 静态算法 动态算法 智能算法 I –control UIE + Irules –Local Load Balancer提供12种负载均衡算法 E、持续功能 –连续性与负载平衡是相互对立的,但它对于负载平衡又是必不可少的! –简单的连续性—基于源地址 –HTTP Cookie 连续性 –SSL Session ID 连续性 –目的地址的亲合作用--caches –standby BIG-IP实现对连续性记录的镜像 –智能与第七层的内容交换组合 F5做为应用交换领域的领导厂商,一直保持着技术上的领先地位,F5已经有40多项技术申请了专利,其它的竞争合作伙伴都在购买F5的这些专利技术。接下来我们讨论一下负载均衡算法。

负载均衡解决方案设计设计

一、用户需求 本案例公司中现有数量较多的服务器群: WEB网站服务器 4台 邮件服务器 2台 虚拟主机服务器 10台 应用服务器 2台 数据库 2台(双机+盘阵) 希望通过服务器负载均衡设备实现各服务器群的流量动态负载均衡,并互为冗余备份。并要求新系统应有一定的扩展性,如数据访问量继续增大,可再添加新的服务器加入负载均衡系统。 二、需求分析 我们对用户的需求可分如下几点分析和考虑: 1.新系统能动态分配各服务器之间的访问流量;同时能互为冗余,当其中 一台服务器发生故障时,其余服务器能即时替代工作,保证系统访问的 不中断; 2.新系统应能管理不同应用的带宽,如优先保证某些重要应用的带宽要 求,同时限定某些不必要应用的带宽,合理高效地利用现有资源;

3.新系统应能对高层应用提供安全保证,在路由器和防火墙基础上提供了 更进一步的防线; 4.新系统应具备较强的扩展性。 o容量上:如数据访问量继续增大,可再添加新的服务器加入系统; o应用上:如当数据访问量增大到防火墙成为瓶颈时,防火墙的动态负载均衡方案,又如针对链路提出新要求时关于Internet访问 链路的动态负载均衡方案等。 三、解决方案 梭子鱼安全负载均衡方案总体设计 采用服务器负载均衡设备提供本地的服务器群负载均衡和容错,适用于处在同一个局域网上的服务器群。服务器负载均衡设备带给我们的最主要功能是:

当一台服务器配置到不同的服务器群(Farm)上,就能同时提供多个不同的应用。可以对于每个服务器群设定一个IP地址,或者利用服务器负载均衡设备的多TCP端口配置特性,配置超级服务器群(SuperFarm),统一提供各种应用服务。

双线路网络

双网接入的种类与设置方法 一、双IP双线路实现方式 双IP双线路实现方式是指在一台服务器上安装2块网卡,分别配置电信、网通不同的IP地址,这样一台服务器上就有了两个IP地址,在服务器上配置路由表,实现服务器访问电信和网通各自不同的IP的时候,分别走不同的通道。另一方面,用户通过唯一的域名来访问服务器,而域名解析的时候,通过实施对不同的IP地址请求返回不同的服务器IP的方法来实现,网通用户请求域名时返回网通的IP,电信用户请求域名时返回电信的IP,这也就是所谓的智能dns解析。双IP双线路在一定程度上提高了网通与电信用户访问网站的速度,但缺点是由于服务器接入的是双网卡必须在服务器上进行路由表设置,这给普通用户增加了维护难度,并且所有的数据包都需要在服务器上进行路由判断然后再发往不同的网卡,当访问量较大时服务器资源占用很大。此方案是最简单的双线解决方案,一般限于规模较小的IDC提供商使用。 二、单IP双线路 普通的单IP双线路是指在服务器上设置一个IP,此IP是网通IP或是电信IP,通过路由设备设置数据包是通过是电信网络或是网通网络发出来实现的双线技术。此方案也可以提高网通用户与电信用户的访问速度,解决了双IP双线需要在服务器上设置路由的问题,但由于IP地址采用的是网通或电信的IP,访问用户在发送请求数据包时不会自动判别最好的路由。所以这种解决方案只能说是半双线的技术方案、是一种过渡形式的解决方案。此方案一般为单线IDC 服务商往双线IDC服务商转型期所采用的临时方案。 三、 CDN方式实现双线路 CDN(Content Delivery Network)互联网内容分发网络,就是多服务器分网托管加智能域名DNS,即服务器是CDN 服务商提供,放在不同网络节点上,通过缓冲程序自动抓取用户源服务器的数据,然后缓存在不同网段节点的服务器上。再配合智能DNS服务器的分网解析功能,实现不同网络用户都能访问到离自己最近网段上的网站,从而避免因为网络问题而影响网站访问速度的目的。现绝大部份CDN技术在处理静态网站上比较成熟,对交互性很强如全动态页面的网站还不是很成熟。目前CDN方案主要作为一种辅助的解决方案需要配合其它的双线方案才能达到最好的效果。 四、用BGP协议实现的单IP双线路 BGP(边界网关协议)协议主要用于互联网AS(自治系统)之间的互联,BGP的最主要功能在于控制路由的传播和选择最好的路由。中国网通与中国电信都具有AS号(自治系统号),全国各大网络运营商多数都是通过BGP协议与自身的AS号来互联的。使用此方案来实现双线路需要在CNNIC(中国互联网信息中心)申请IDC自己的IP地址段和AS 号,然后通过BGP协议将此段IP地址广播到网通、电信等其它的网络运营商,使用BGP协议互联后网通与电信的所有骨干路由设备将会判断到IDC机房IP段的最佳路由,以保证网通、电信用户的高速访问。使用此方案具体以下优点:1.服务器只需要设置一个IP地址,最佳访问路由是由网络上的骨干路由器根据路由跳数与其它技术指标来确定的,不会对占用服务器的任何系统资源。服务器的上行路由与下行路由都能选择最优的路径,所以能真正实现高速的单IP双线访问。 2.由于BGP协议本身具有冗余备份、消除环路的特点,所以当IDC服务商有多条BGP互联线路时可以实现路由的相互备份,在一条线路出现故障时路由会自动切换到其它线路。 3.使用BGP协议还可以使网络具有很强的扩展性可以将IDC网络与其他运营商互联,轻松实现单IP多线路,做到所有互联运营商的用户访问都很快。这个是双IP双线无法比拟的。 五、单机双线路接入 和第一种方案差不多,区别是: 第一种方案访问网通的ip时走网通线路,访问电信时走电信线路,可以理解为ip 分工处理;本方案是将两个宽带提供的流量相加,它可以是两个网通线路、两个电信线路、网通+电信。可以理解为流量合并处理

应用负载均衡设计方案v1设计方案

应用负载均衡设计方案v1设 计方案 1.需要有支持应用的负载均衡产品,具备多种负载均衡算法。 2.能够做到根据各个Web服务器的性能,合理地分配服务器群中的每台机器所要处理的请求。 3.能够及时的发现群中的某台机器当掉,从而不对此机器发送请求。当掉机器恢复正常后,自动进行业务处理。 4.可以应对大量的服务访问;至少2, 000, 000条的TCP同时并发连接,至少每秒建立100, 000条连接。 5.有效直观的监控统计界面,包含当前时刻、过去一段时间的请求数量统计、性能统计、会话时间统计。 6.为个人业务提供SSL加密服务,可以将服务器SSL加/解密前移,并提供高效的https加/解密性能。 7.能够提供有效的机制缓解后台应用中间键服务器压力,提高业务的访问量。

一、方案建议 针对上一节提出的需求分析,F5公司充分考虑XXXX现有的实际状况,结合F5公司在 国际上网络优化案例的经验,总结出以下应用交付优化设计方案。 方案采用F5公司的新一代LTM应用交换机BIGIP3400, 提供后台Web服务器集群的负 载均衡;同时,采用另两台BIGIP 3400设备提供后台中间键服务器负载均衡,并减轻中间键服务器的压力。 在负责实现Web服务器负载均衡的BIG-IP 3400上设置两个Vlan , 分别是External Vlan 负责连接外部的防火墙系统, Internal Vlan负责连接部Web服务器集群。并且在该对BIG-IP 3400上,分别采用SSL加速模块帮助后台Web服务器实现业务的加密处理;还采用了动态智能压缩模块帮助XXXX在有限的带宽下实现访问速度的提高和访问量的增大。 在负责实现部中间键服务器负载均衡的BIG-IP 3400也设置两个Vlan,分别是External Vlan 负责连接外部的Web服务器集群, Internal Vlan负责连接部中间键服务器集群。并 且在该对BIG-IP 3400上,采用One-Connection技术降低后台中间键服务器集群的负载。

架构设计:负载均衡层设计方案(7)

架构设计:负载均衡层设计方案(7) 1、概述 上篇文章《架构设计:负载均衡层设计方案(6)——Nginx + Keepalived构建高可用的负载层》 (https://www.360docs.net/doc/0e4401542.html,/yinwenjie/article/details/47130609) 我们讲解了Nginx的故障切换,并且承诺各位读者会尽快讲解LVS + Keepalived + Nginx的安装和配置。在中间由于工作的原因,我又插写了三篇关于zookeeper的原理使用的文章。今天这边文章我们回归主题,为各位读者讲解LVS + Keepalived + Nginx的安装及配置。 2、安装计划和准备工作 下图,我们表示了本篇文章要搭建的整个集成架构的抽象结构: 我们采用两个LVS节点(141和142),但是一个时间工作的只有一个LVS节点,另一个始终处于热备standby状态,由keepalived监控这两个节点的工作状态并完成切换。 在LVS节点下,我们采用LVS-DR工作模式挂载了两个Nginx节点(131、132)。并最终将外网请求交由这两个节点进行处理。注意:在实际工作中,Nginx下面一般就是访问静态资源、动态资源的配置了。

2-1、准备两个keepalived节点 首先我们在将要安装LVS的两个节点上,先安装keepalived,并保证这两个keepalived节点能够正常工作(监控批次的状态)。当然,您也可以先准备LVS,在准备keepalived。 我想准备keepalived节点,大家应该轻车熟路了吧,在《架构设计:负载均衡层设计方案(6)——Nginx + Keepalived 构建高可用的负载层》这篇文章中详细介绍了keepalived的最简配置方式。为了大家阅读方便,我们在这里再进行依次简要说明。准备keepalived的整个过程包括: 安装必要的支撑组件,源码安装keepalived 将keepalived注册成节点的服务,以便保证keepalived在 节点启动时就开始工作 更改keepalived的配置文件,让其可以正常工作 验证准备工作 =============安装keepalived [root@lvs1 ~]# yum install -y zlib zlib-devel gcc gcc-c++ openssl openssl-devel openssh [root@lvs1 ~]# tar -zxvf keepalived-1.2.17.tar.gz [root@lvs1 ~]# cd keepalived-1.2.17 [root@lvs1 ~]# ./configure --perfix=/usr/keepalived-1.2.17

电信网通双线备份自动切换配置

电信网通双线备份自动切换配置 RouterOS 2.9中路由规则增加的两点功能: 1、在RouterOS 2.9路由规则中增加了check-gateway的功能,能检测到网关的线路状态,如果网关无法探测到,便认为网关无法连接,会自动禁止访问网关的数据通过,check-gate way功能的探测时间为10s一个周期。 2、在RouterOS 2.9中具备了对缺省网关的判断,在RouterOS 2.9的任何一个路由表中只能存在一个缺省网关,即到任何目标地址为0.0.0.0/0,没有做路由标记(routing-mark)的规则,如果存在另一个缺省网关则认为是错误,路由将不予以执行。如下图: 从上图我们可以看到,所有访问电信的IP段从10.200.15.1出去,其他的数据走网通的缺省网关出去,在我们可以这些网关的前缀都为“AS”,即确定的静态路由,而在第二排可以看到蓝色一行,他也是一个缺省网关,但因为一个路由表中只能存在一个缺省网关,所有前缀为“S”即静态但不确定的网关,被认为位非法的。如果当202.112.12.12.11网关断线,则10.20 0.15.1会自动启用,变为缺省路由,实现现在的切换,如下:

当202.112.12.11断线后,check-gateway在10s一个周期后探测到,并将10.200.15. 11设置为缺省路由,如果202.112.12.11正常后,系统也将会将202.112.12.11设置为缺省路由,因为他是先于10.200.15.1添加入路由表中。 源地址双线应用案例 这是一个典型的通过一个路由器并使用两条ISP线路接入的环境(比如都是两条电线的ADS L或者LAN接入): 当然,你可以选择负载均衡!这里有多种方法可以选择,只是根据你的环境,选择最适合你解决方案。

几种的负载均衡算法

实用标准文案 几种负载均衡算法 本地流量管理技术主要有以下几种负载均衡算法: 静态负载均衡算法包括:轮询,比率,优先权 动态负载均衡算法包括: 最少连接数,最快响应速度,观察方法,预测法,动态性能分配,动态服务器补充,服务质量,服务类型,规则模式。 静态负载均衡算法 ◆轮询(Round Robin):顺序循环将请求一次顺序循环地连接每个服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从顺序循环队列中拿出,不参加下一次的轮询,直到其恢复正常。 ◆比率(Ratio):给每个服务器分配一个加权值为比例,根椐这个比例,把用户的请求分配到每个服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配, 直到其恢复正常。 ◆优先权(Priority):给所有服务器分组,给每个组定义优先权,BIG-IP 用户的请求,分配给优先级最高的服务器组(在同一组内,采用轮询或比率算法,分配用户的请求);当最高优先级中所有服务器出现故障,BIG-IP 才将请求送给次优先级的服务器组。这种方式,实际为用户提供一种热备份的方式。 动态负载均衡算法 ◆最少的连接方式(Least Connection):传递新的连接给那些进行最少连接处理的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配, 直到其恢复正常。

◆最快模式(Fastest):传递连接给那些响应最快的服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP 就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直精彩文档.实用标准文案 到其恢复正常。 ◆观察模式(Observed):连接数目和响应时间以这两项的最佳平衡为依据为新的请求选择服务器。当其中某个服务器发生第二到第7 层的故障,BIG-IP就把其从服务器队列中拿出,不参加下一次的用户请求的分配,直到其恢复正常。 ◆预测模式(Predictive):BIG-IP利用收集到的服务器当前的性能指标,进行预测分析,选择一台服务器在下一个时间片内,其性能将达到最佳的服务器相应用户的请求。(被BIG-IP 进行检测) ◆动态性能分配(Dynamic Ratio-APM):BIG-IP 收集到的应用程序和应用服务器的各项性能参数,动态调整流量分配。 ◆动态服务器补充(Dynamic Server Act.):当主服务器群中因故障导致数量减少时,动态地将备份服务器补充至主服务器群。 ◆服务质量(QoS):按不同的优先级对数据流进行分配。 ◆服务类型(ToS): 按不同的服务类型(在Type of Field中标识)负载均衡对数据流进行分配。 ◆规则模式:针对不同的数据流设置导向规则,用户可自行。 负载均衡对应本地的应用交换,大家可以通过对上述负载均衡算法的理解,结合实际的需求来采用合适你的负载均衡算法,我们常用到的一般是最少连接数、最快反应、或者轮询,决定选用那种算法,主要还是要结合实际的需求。

负载均衡技术的三种实现方法

目前,网络应用正全面向纵深发展,企业上网和政府上网初见成效。随着网络技术的发展,教育信息网络和远程教学网络等也得到普及,各地都相继建起了教育信息网络,带动了网络应用的发展。 一个面向社会的网站,尤其是金融、电信、教育和零售等方面的网站,每天上网的用户不计其数,并且可能都同时并发访问同一个服务器或同一个文件,这样就很容易产生信息传输阻塞现象;加上Internet线路的质量问题,也容易引起出 现数据堵塞的现象,使得人们不得不花很长时间去访问一个站点,还可能屡次看到某个站点“服务器太忙”,或频繁遭遇系统故障。因此,如何优化信息系统的性能,以提高整个信息系统的处理能力是人们普遍关心的问题。 一、负载均衡技术的引入 信息系统的各个核心部分随着业务量的提高、访问量和数据流量的快速增长,其处理能力和计算强度也相应增大,使得单一设备根本无法承担,必须采用多台服务器协同工作,提高计算机系统的处理能力和计算强度,以满足当前业务量的需求。而如何在完成同样功能的多个网络设备之间实现合理的业务量分配,使之不会出现一台设备过忙、而其他的设备却没有充分发挥处理能力的情况。要解决这一问题,可以采用负载均衡的方法。 负载均衡有两个方面的含义:首先,把大量的并发访问或数据流量分担到多台节点设备上分别处理,减少用户等待响应的时间;其次,单个重负载的运算分担到多台节点设备上做并行处理,每个节点设备处理结束后,将结果汇总,再返回给用户,使得信息系统处理能力可以得到大幅度提高。 对一个网络的负载均衡应用,可以从网络的不同层次入手,具体情况要看对网络瓶颈所在之处的具体情况进行分析。一般来说,企业信息系统的负载均衡大体上都从传输链路聚合、采用更高层网络交换技术和设置服务器集群策略三个角度实现。 二、链路聚合——低成本的解决方案 为了支持与日俱增的高带宽应用,越来越多的PC机使用更加快速的方法连入网络。而网络中的业务量分布是不平衡的,一般表现为网络核心的业务量高,而边缘比较低,关键部门的业务量高,而普通部门低。伴随计算机处理能力的大幅度提高,人们对工作组局域网的处理能力有了更高的要求。当企业内部对高带宽应用需求不断增大时(例如Web访问、文档传输及内部网连接),局域网核心部位的数据接口将产生瓶颈问题,因此延长了客户应用请求的响应时间。并且局域网具有分散特性,网络本身并没有针对服务器的保护措施,一个无意的动作,像不小心踢掉网线的插头,就会让服务器与网络断开。 通常,解决瓶颈问题采用的对策是提高服务器链路的容量,使其满足目前的需求。例如可以由快速以太网升级到千兆以太网。对于大型网络来说,采用网络系统升级技术是一种长远的、有前景的解决方案。然而对于许多企业,当需求还没有大到非得花费大量的金钱和时间进行升级时,使用升级的解决方案就显得有些浪费

艾泰路由HiPER使用电信网通双线路接入的配置方法

HiPER使用电信网通双线路接入的配置方法 在很多地区,用户同时申请了中国电信和中国网通两条宽带接入线路,如果此时双线路采用常规的“负载均衡”方式,就会发生访问网通站点走电信线路,访问电信站点走网通线路的情况,由于当前网通和电信两个运营商之间存在着互联互通速度慢的问题,造成速度瓶颈。本文介绍了在HiPER宽带安全网关上配置电信、网通双线路,实现访问网通站点只走网通线路,访问网通以外的站点走电信线路的方法,以解决南方电信和北方网通互联互通带来的问题。 配置环境 用户使用HiPER宽带安全网关,申请两条固定IP线路接入Internet,一条电信线路,一条网通线路。 假设如下: 内网网关: IP地址:192.168.16.1 子网掩码:255.255.255.0 主线路:电信线路 IP地址:222.215.64.2 子网掩码:255.255.255.252 网关:222.215.64.1 备份线路:网通线路 IP地址:221.10.170.2 子网掩码:255.255.255.252 网关:221.10.170.1 适用产品型号:HiPER 2300NBII、HiPER 2520NB、HiPER 3300NB、HiPER 3300VF、HiPER4520NB 适用HiPER ReOS软件版本:05年9月29号以后的537版本。

软件版本查询方式: 在WebUI ?系统管理?软件升级?版本信息,查看版本信息: 更新的软件版本可以从艾泰科技网站下载中心(https://www.360docs.net/doc/0e4401542.html,/downloadcenter.php )或者是艾泰科技客户服务中心获得。 配置过程 1、 设备安装 将HiPER 宽带安全网关接通电源,电信线路接入WAN 端口,网通线路接入WAN2端口,LAN 端口和内网交换机或者主机相连。 2、 软件生成网通路由 使用“网通路由配置生成”软件生成网通路由配置文件。 (下载页面:https://www.360docs.net/doc/0e4401542.html,/downloadcenter.php?filetypeid=6&productmodelid=-1) 网关IP 地址:填入网通线路的网关221.10.170.1 绑定连接名:选择eth3 单击“生成路由配置”,在“网通路由配置生成”软件所在目录生成名称为“艾泰路由配置”的文本文件。 如下图: 注意: 1、 如果网通线路连接在设备WAN 端口,“绑定连接名”选择eth2; 2、 如果网通线路为PPPoE 接入,线路连接在设备的WAN2端口,“网关IP 地址”不填,“绑定连接名”选择PPOE ; 3、 如果网通线路为PPPoE 接入,线路连接在设备的WAN 端口,“网关IP 地址”不填,“绑定连接名”选择PPPOE 。 3、 将网通路由导入HiPER 宽带安全网关 登录HiPER 宽带安全网关的Web 管理界面,在WebUI 管理界面?系统管理?配置管理?恢复配置,单击“浏览”找到上一步生成的“艾泰路由配置”的文件,单击“加载”。

可扩展、高可用与负载均衡网站架构设计策划方案

可扩展、高可用、负载均衡网站架构设计方案 2009-06-08 13:22 差不多需求: 1、高可用性:将停止服务时刻降低到最低甚至是不间断服务 2、可扩展性:随着访问的增加,系统具备良好的伸缩能力 3、可视性:系统、服务的状态处于一个实时的监控之下 4、高性能高可靠性:通过优化的体系结构及合理的备份策略 5、安全性:结构上的安全及主机的安全策略 差不多思路 1、关于访问频繁,用户量大的对象(bbs,blog)采纳某种合理的方式负载到多个 服务器上。把数据库独立出来,预备2套mysql数据库,以实现主从复制,即减轻负载,又提高了可靠性。更近一步,使用mysql proxy技术,实现主从服务器的读写分离,大大提高那个系统的性能和负载能力。 2、数据库与外部网络隔离,只同意web服务器(bbs,blog等)通过私有地址方 式访问。如此就提高了数据库的安全性,同时也节约了宝贵的带宽。 3、部署监控系统,通过监控主机存活、服务、主机资源,实时把系统的健康状 态置于可视状态,对系统的运营状态心中有数。 4、备份是想都不用想的情况,使用单独的服务器集中备份,是一个比较不错的 主意。 拓扑结构

业务逻辑

技术实现 1、负载均衡。2台同样配置的linux服务器,内核支持lvs,配置keepalived工具,即可实现负载转发。一旦其后的真实服务器出现故障,keepalived会自动把故障机器从转发队列删除掉,等到故障修复,它又会自动把真实服务器的地址加入转发列表。由于lvs支持会话保持,因此关于bbs 如此的应用,一点也不用担心其登录丢失。 2、mysql主从复制。即保证数据的安全,又提高了访问性能。我们在前端的每个web服务器上加入mysql proxy那个工具,即可期待实现读写的自动分离,让写的操作发生在主数据库,让查询这类读操作发生在从数据库。 3、nagios是一个开源的,受广泛欢迎的监控平台。它可对主机的存活、系统资源(磁盘空间、负载等)、网络服务进行实时监控。一旦探测到故障,将自动发送邮件(短信)通知故障。 4、备份。包括web数据和数据库服务器的备份。关于web服务而言,GNU tar 即可实现备份的一切愿望。简单的设置一下crontab 就能够让系统在我们做梦的时刻老老实实的帮我们备份了。然而,由于空间的限制,不可能一直备份下去,因此要做一个合适的策略,以不断的用新的备份去替换陈旧的备份数据;多少天合适?看磁盘容量吧。关于数据库,先mysqldump一下,再tar.完成这些工作后把备份文件传输到备份服务器集中。一个比较省事的方法是把备份服务器以NFS 方式挂接到web服务器及数据库服务器。

静态负载均衡算法的简单说明

静态负载均衡算法的简单说明 实现的问题: 目前有N个资源Scale1~ScaleN,且这N个资源正在处理个数不等的请求,这时发来M个请求。 如何把M个请求分发到这N个资源中,使得分发完之后这N个资源所处理的请求是均衡的。 名词定义 Scale-资源 Order-请求 compId-每个资源的唯一标识 compId数组-compIdArr 根据每个Scale目前所处理的Order个数多少,从小到大把其对应的compId记录在数组中 负载分配数组-dispatchCountArr 对于dispatchCountArr[i],它的值表示的是可以分发的Order的个数, 分发的compId的范围是在compIdArr[0]到compIdArr[i]之间。 例,如果有3个Scale,它们的compId和当前的Order个数分别为 Scale1:1,Scale2:5,Scale3:12 那么根据这组数据可以构造一个负载分配数组 dispatchCountArr[0]=(5-1)*1=4 表示可以在Scale1上再分配4个Order dispatchCountArr[1]=(12-5)*2=14 表示可以在Scale1和Scale2上平均分配14个Order dispatchCountArr[2]=整型最大值表示可以在Scale1~Scale3上再平均分配任意个Order 当有多个Order订单,需要为每个都分配一个compId时, 1.先从dispatchCountArr[0]开始,如果dispatchCountArr[0]不为0,说明可以把这个订单指派给Scale1, 并且dispatchCountArr[0]的值减1; 2.如果发现dispatchCountArr[0]已经为0,则继续看dispatchCountArr[1], 如果大于0,说明可以再从Scale1和Scale2中取一个进行指派,用dispatchCountArr[1] mod 2产生一个0到1 的index,意思是在Scale1和Scale2之间进行平均分配,取compIdArr[index]作为分配的compId, 同时dispatchCountArr[1]减1 3.如果dispatchCountArr[1]也被减为0,那么继续看dispatchCountArr[2],类似2中的操作, 用dispatchCountArr[2] mod 3产生一个0到2的index,意思是在Scale1到Scale3

相关文档
最新文档