船体用结构钢的力学性能

船体用结构钢的力学性能
船体用结构钢的力学性能

船体用结构钢的力学性能 ( 摘自 GB / T712 — 1988 )

钢材等级

厚度

/ mm

屈服

σ 5 /

MPa

抗拉

强度

σ b /

MPa

伸长

δ 5

( % )

V 型冲击试验

/

平均冲击吸收功

A

kv

/ J

纵向横向

A

50

235

400

~ 490

22

———

B

50

235

400

~ 490

22

27

20

D

50

235

400

~ 490

22

-

10

27

20

E

50

235

400

~ 490

22

-

40

27

20

AH3 2

50

315

440

~ 590

22

31

22

DH3 2

50

315

440

~ 590

22

-

20

31

22

EH3 2

50

315

440

~ 590

22

-

40

31

22

AH3 6

50

355

490

~ 620

21

34

24

DH3 6

50

355

490

~ 620

21

-

20

34

24

EH3 6

50

355

490

~ 620

21

-

40

34

24

船体结构用钢板简称船用板。由于船舶工作环境恶劣,船体壳要受海水的化学腐蚀、电化学腐蚀和海生物、微生物的腐蚀;船体承受较大的风浪冲击和交变负荷;船舶形状使其加工方法复杂等因素、所以对船体结构用钢要求严格。首先良好的韧性是最关键的要求,此外,要求有较高的强度,良好的耐腐蚀性能、焊接性能,加工成型性能以及表面质量。为保质量和保证有足够的韧性,要求化学成分的Mn/C在2.5以上,对碳当量也有严格要求,并由船检部门认可的钢厂生产。船体用结构钢分一般厚度和高强度钢两种,一般强度钢按质量分A、B、C和D四个等级;高强度钢又分两个强度级别和三个质量等级;AH32、DH32、EH32、AH36、DH36、EH36。

船体结构用钢板主要用于制造远洋、沿海和内河航运船舶的船体、甲板等的钢板。

产品规格:厚度4.5-50mm、宽度1.0-2.2mm、长度4.0-12.0m。

船体用结构钢的化学成分

类等级化学成份(质量分数)(%)

C Mn si P S Al Nb V

一般

强度

钢A ≤O.22 ≥2.5C O.10~0.35 ≤O.04 ≤0.04

B ≤O.21 O.60~1.00

D ≤O.21 0.60~1.00 ≥O.015

E ≤O.18 O.70~1.20 ≥0.015

钢AH32 ≤O.18 O.70~1.60 0.10~O.50 ≤O.04 ≤0.04 ≥O.015 DH32 O.90~1.60

EH32 O.90~1.60

AH36 0.70~1.60 O.015~O.050 O.03O~O.10

DHB6 0.90~1.60

EH36 O.90~1.60

船体用结构钢的交货状态

钢材等级厚度/mm 交货状态

A 6---40

热轧、控轧或正火

B 热轧、控轧或正火

D 6---32 热轧、控轧或正火

正火①②

E 6---32 钢板:正火;型钢;正火或控轧

AH32

AH36 6---32

>25--32 热轧、正火或控轧

正火①②

DH32

DH36 6---25

>20---32 正火或控轧②

正火①②

EH32

EH36 6---40 正火②

船体用结构钢的力学性能

钢材

等级

厚度

/mm

屈服点ós

/MPa 抗拉

强度

ób/MPa 伸长率δ5

(%) v型冲击试验冷弯试验

温度

/℃平均冲击吸收功

AKv/J 窄冷弯

b=2a

180℃宽冷弯

b=5a

120°

纵向横向

≥ ≥ ≥

A ≤50 235 400~490 22 d=2a

B 0 27 20

d=3a

D —10 27 20

E 一40 27 20

AH32 ≤50 315 440~590 22 O 3l 22 d=3a

DH32 —20 31 22

EH32 —40 31 22

AH36 ≤50 355 490~620 21 O 34 24 d=3a

DH36 —20 34 24

EH36 —40 34 24

JIS G 3101:2015一般结构用轧制钢材(成分标准)

日本工业标准JIS G3101:2015 一般结构用轧制钢材 1.适用范围本标准是桥梁,船舶,车辆及其它结构件使用的一般结构用热轧钢材(以下称钢材)的标准。 2.引用标准付表1所示的标准是该标准的引用标准,是该标准规定的构成部分,这些引用标准均适用最新版本(包含补充内容)。 JIS G0320 钢材的炼钢化学成分分析方法 JIS G0404 钢材的一般交货条件 JIS G0415 钢及钢制品——检查文件 JIS G0416 钢及钢制品——机械试验用试验材料及试样的选取位置和制备 JIS G3191 热轧制钢棒及盘条的形状、尺寸、质量及其允许偏差 JIS G3192 热轧型钢的形状、尺寸、质量及其允许偏差 JIS G3193 热轧制钢板及钢带的形状、尺寸、质量及其允许偏差 JIS G3194 热轧制扁钢的形状、尺寸、质量及其允许偏差 JIS Z2241 金属材料拉伸试验方法 JIS Z2248 金属材料弯曲试验方法 3.种类及牌号钢材的种类分4种,其牌号及适用尺寸如表1所示 表1—种类牌号及适用尺寸 种类牌 号 适用范围适用尺寸 SS330 钢板、钢带、扁钢及棒钢— SS400 钢板、钢带、型钢、扁钢及棒钢— SS490 SS540 钢板、钢带、型钢、及扁钢厚度a)在40mm以下 棒钢直径、边或对边距离在40mm以下 注:棒钢包括软钢线材。 注a)型钢的厚度为,JIS G 3192的表3(角钢、I型钢、槽钢、球扁钢及T型钢的形状及尺寸的允许偏差)的厚度t或t2及表4(H型钢的形状及尺寸的允许偏差)的厚度t2。 4.化学成分钢材按8.1进行试验,其熔炼分析值如表2所示.

船体用结构钢的力学性能

船体用结构钢的力学性能 ( 摘自 GB / T712 — 1988 ) 钢材等级 厚度 / mm 屈服 点 σ 5 / MPa 抗拉 强度 σ b / MPa 伸长 率 δ 5 ( % ) V 型冲击试验 温 度 / ℃ 平均冲击吸收功 A kv / J 纵向横向 A ≤ 50 ≥ 235 400 ~ 490 ≥ 22 ——— B ≤ 50 ≥ 235 400 ~ 490 ≥ 22 ≥ 27 ≥ 20 D ≤ 50 ≥ 235 400 ~ 490 ≥ 22 - 10 ≥ 27 ≥ 20 E ≤ 50 ≥ 235 400 ~ 490 ≥ 22 - 40 ≥ 27 ≥ 20 AH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 ≥ 31 ≥ 22 DH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 - 20 ≥ 31 ≥ 22 EH3 2 ≤ 50 ≥ 315 440 ~ 590 ≥ 22 - 40 ≥ 31 ≥ 22 AH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 ≥ 34 ≥ 24 DH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 - 20 ≥ 34 ≥ 24 EH3 6 ≤ 50 ≥ 355 490 ~ 620 ≥ 21 - 40 ≥ 34 ≥ 24 船体结构用钢板简称船用板。由于船舶工作环境恶劣,船体壳要受海水的化学腐蚀、电化学腐蚀和海生物、微生物的腐蚀;船体承受较大的风浪冲击和交变负荷;船舶形状使其加工方法复杂等因素、所以对船体结构用钢要求严格。首先良好的韧性是最关键的要求,此外,要求有较高的强度,良好的耐腐蚀性能、焊接性能,加工成型性能以及表面质量。为保质量和保证有足够的韧性,要求化学成分的Mn/C在2.5以上,对碳当量也有严格要求,并由船检部门认可的钢厂生产。船体用结构钢分一般厚度和高强度钢两种,一般强度钢按质量分A、B、C和D四个等级;高强度钢又分两个强度级别和三个质量等级;AH32、DH32、EH32、AH36、DH36、EH36。 船体结构用钢板主要用于制造远洋、沿海和内河航运船舶的船体、甲板等的钢板。 产品规格:厚度4.5-50mm、宽度1.0-2.2mm、长度4.0-12.0m。

船舶结构力学概念题

船舶结构力学习题集 第一章绪论 1. 什么叫做船体总纵弯曲?船体的总纵强度与局部强度有什么区别与联系? 2. 船体结构中有哪些受压构件?为什么说船在总弯曲时船体受压的构件(主要是中垂状态时的上层甲板)因受压过度而丧失稳定性后,会大大减低船体抵抗总弯曲的能力? 3. 船舶在航行时为什么会发生扭转现象?船体结构中还有哪些构件在受载后会发生扭 转? 4. 应力集中是由什么因素引起的?船体结构中哪些部位会发生应力集中?应力集中可能 导致什么后果? 5. 何谓骨架的带板?带板的宽度(或面积)与什么因素有关,如何确定?试分析带板宽度对骨架断面几何要素的影响。 第二章单跨梁的弯曲理论 1. 梁弯曲微分方程式是根据什么基本假定导出的,有什么物理意义,适用范围怎样? 2. 单跨梁初参数法中的四个参数指什么参数?它们与坐标系统的选择有没有关系? 3. 为什么当单跨梁两端为自由支持与单跨梁两端为弹性支座支持时,在同样外荷重作用下两梁断面的弯矩和剪力都相等;而当梁两端是刚性固定与梁两端为弹性固定时,在同样外荷重作用下两梁断面的弯矩和剪力都不同? 4. 梁的边界条件与梁本身的计算长度、剖面几何要素、跨间荷重有没有关系?为什么? 5. 梁复杂弯曲时的边界条件与梁横弯曲时的边界条件有何不同?它反映了什么问题? 6. 梁的弹性支座与弹性固定端各有什么特点?它们与梁本身所受的外荷重(包括大小、方 向及分布范围)有没有关系? 7. 为什么梁在横弯曲时,横荷重引起的弯曲要素可以用叠加法求出,而梁在复杂弯曲时,横荷重与轴向力的影响不可分开考虑? 第四章力法 1. 什么叫力法?如何建立力法方程式? 2. 什么是力法的基本结构和基本未知量?基本结构与原结构有什么异同?力法正则方程 式的物理意义是什么? 3. 用力法计算某些支座有限定位移的连续梁或平面刚架时应注意什么问题? 4. 刚架与板架的受力特征和变形特征有何区别? 5. 仅有肋骨组成的横骨架式船侧板架,为提高其强度,加设一根船侧纵桁。试从板架两向梁之间的相互关系分析,是否恰当? 6. 如果一根交叉构件板架中有一根主向梁的尺寸或固定情况与其余的不相同,应如何计算?此时交叉构件将是怎样的弹性基础梁? 第五章位移法 1. 试举例说明位移法的基本原理。 2. 位移法的基本结构是什么样的结构? 3. 何谓“结构的动不定次数”?如何决定位移法中的基本未知数? 4. 根据位移法的基本原理,试举例写出节点有集中力或集中弯矩的平衡方程式,列出弹性支座处或开口端为弹性固定端处的节点力平衡方程式。 5. 与力法相比,位移法有何优点与缺点? 6. 在位移法计算中,刚架或连续梁的开口端是否一定要刚性固定住?如果不需要,试导出相应的由转角引起的杆端弯矩的关系式。 第六章能量法 1. 一梁上同时受到两个集中力时,应变能可否分别计算每一力作用时的应变能再相加,为

结构力学习题及答案(武汉大学)

结构力学习题 第2章平面体系的几何组成分析2-1~2-6 试确定图示体系的计算自由度。 题2-1图题2-2图 题2-3图题2-4图 题2-5图题2-6图 2-7~2-15 试对图示体系进行几何组成分析。若是具有多余约束的几何不变体系,则需指明多余约束的数目。

题2-7图 题2-8图题2-9图 题2-10图题2-11图 题2-12图题2-13图 题2-14图题2-15图

题2-16图题2-17图 题2-18图题2-19图 题2-20图题2-21图2-1 1 W = 2-1 9 W - = 2-3 3 W - = 2-4 2 W = - 2-5 1 = W - 2-6 4 = W - 2-7、2-8、2-12、2-16、2-17无多余约束的几何不变体系 2-9、2-10、2-15具有一个多余约束的几何不变体系 2-11具有六个多余约束的几何不变体系 2-13、2-14几何可变体系为

2-18、2-19 瞬变体系 2-20、2-21具有三个多余约束的几何不变体系 第3章静定梁和静定平面刚架的力分析3-1 试作图示静定梁的力图。 (a)(b) (c) (d) 习题3-1图 3-2 试作图示多跨静定梁的力图。 (a) (b)

(c) 习题3-2图 3-3~3-9 试作图示静定刚架的力图。 习题3-3图习题3-4图 习题3-5图习题3-6图 习题3-7图习题3-8图

习题3-9图 3-10 试判断图示静定结构的弯矩图是否正确。 (a) (b) (c) (d) 部分习题答案 3-1 (a )m kN M B ?=80(上侧受拉),kN F R QB 60=,kN F L QB 60-= (b )m kN M A ?=20(上侧受拉),m kN M B ?=40(上侧受拉),kN F R QA 5.32=, kN F L QA 20-=,kN F L QB 5.47-=,kN F R QB 20=

船舶结构力学课后题答案上海交大版

船舶结构力学课后题答案上海交大版 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

s目录 第1章绪论 (2) 第2章单跨梁的弯曲理论 (2) 第3章杆件的扭转理论 (15) 第4章力法 (17) 第5章位移法 (28) 第6章能量法 (41) 第7章矩阵法 (56) 第9章矩形板的弯曲理论 (69) 第10章杆和板的稳定性 (75)

第1章 绪 论 1.1 题 1)承受总纵弯曲构件: 连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨 等远离中和轴的纵向连续构件(舷侧列板等) 2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨 3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等 4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递 纵桁,龙骨等 1.2 题 甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压 力,横向作用) 舷侧外板:横向水压力等骨架限制力沿中面 内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向 力 舱壁板:主要为横向力如水,货压力也有中面力 第2章 单跨梁的弯曲理论 2.1题 设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x ) 1)图 2.1 3 3 3 23 034 2 4 3()()()424()26666l l l l l l p x p x p x M x N x v x EI EI EI EI EI ---=++ ++

原点在跨中:3 23 0111104 ()4()266l l p x M x N x v x v EI EI EI -=+++ ,'11' 11()0()0 22(0)0(0)2 l l v v p v N ?==? ??==? 2)3 3 203 ()32.2 ()266l l p x N x Mx v x x EI EI EI θ-=+++ 图 3)3 3 3 002 ()22.3()666x x x l l p x N x qx dx v x x EI EI EI θ-=+ +-?图 2.2题 a) 33 11131113 1(3)(2)61644464162 4pp p pl pl v v v EI EI ????=+=??-+?-????????? = 3 512pl EI 3 33321911()61929641624pl pl pl V EI EI EI ????= -++= ??????? b) 2' 29 2(0)(1)3366Ml Ml Pl v EI EI EI -= +++ =22 20.157316206327Pl Pl Pl EI EI EI -+=? 229 1()(1)3366Ml Ml Pl l EI EI EI θ-= +-+ =22 20.1410716206327Pl Pl Pl EI EI EI ---=? ()()() 22 2 2133311121333363l l p l l v m m EIl EI ???? ? ??? ??????=----+ ?? ??? = 2 372430pl EI c) () 44475321927682304ql ql ql l v EI EI EI =-=

《结构力学习题集》(含答案)

第三章 静定结构的位移计算 一、判断题: 1、虚位移原理等价于变形谐调条件,可用于求体系的位移。 2、按虚力原理所建立的虚功方程等价于几何方程。 3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。 4、求图示梁铰C 左侧截面的转角时,其虚拟状态应取: A. ; ; B. D. C. =1 =1 5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。 6、已知M p 、M k 图,用图乘法求位移的结果为:()/()ωω1122y y EI +。 M k M p 2 1 y 1 y 2 * * ωω ( a ) M =1 7、图a 、b 两种状态中,粱的转角?与竖向位移δ间的关系为:δ=? 。 8、图示桁架各杆E A 相同,结点A 和结点B 的竖向位移均为零。 A a a 9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。 二、计算题: 10、求图示结构铰A 两侧截面的相对转角?A ,EI = 常数。 q l l l /2 11、求图示静定梁D 端的竖向位移 ?DV 。 EI = 常数 ,a = 2m 。 a a a 10kN/m 12、求图示结构E 点的竖向位移。 EI = 常数 。 l l l /3 /3 q

13、图示结构,EI=常数 ,M =?90kN m , P = 30kN 。求D 点的竖向位移。 P 3m 3m 3m 14、求图示刚架B 端的竖向位移。 q 15、求图示刚架结点C 的转角和水平位移,EI = 常数 。 q 16、求图示刚架中D点的竖向位移。EI = 常数 。 l/2 17、求图示刚架横梁中D点的竖向位移。 EI = 常数 。 18、求图示刚架中D 点的竖向位移。 E I = 常数 。 q l l/2 19、求图示结构A、B两截面的相对转角,EI = 常数 。 l/3 l/3 20、求图示结构A 、B 两点的相对水平位移,E I = 常数。

船舶结构力学课后题答案(上 海交大版)精选.doc

s目录 第1章绪论 (2) 第2章单跨梁的弯曲理论 (2) 第3章杆件的扭转理论 (15) 第4章力法 (17) 第5章位移法 (28) 第6章能量法 (41) 第7章矩阵法 (56) 第9章矩形板的弯曲理论 (69) 第10章杆和板的稳定性 (75)

第1章绪论 1.1题 1)承受总纵弯曲构件: 连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中 和轴的纵向连续构件(舷侧列板等) 2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨 3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等 4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙骨等 1.2题 甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向作用) 舷侧外板:横向水压力等骨架限制力沿中面 内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力 舱壁板:主要为横向力如水,货压力也有中面力 第2章单跨梁的弯曲理论 2.1题 设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v( 1 x) 1)图2.1 333 23 3 424 3 ()()() 424 () 26666 l l l l l l p x p x p x M x N x v x EI EI EI EI EI ---=++++ 原点在跨中: 3 23 011 110 4 ()4 () 266 l l p x M x N x v x v EI EI EI - =+++, ' 11 ' 11 ()0()0 22 (0)0(0)2 l l v v p v N ?== ? ? ?== ? 2) 3 3 2 3 ()3 2.2() 266 l l p x N x Mx v x x EI EI EI θ - =+++ 图 3) 3 33 00 2 ()2 2.3() 666 x x x l l p x N x qx dx v x x EI EI EI θ - =++- ? 图 2.2题 a) 33 1 11311131 (3)(2) 616444641624 pp p pl pl v v v EI EI ????=+=??-+?-? ???? ????= 3 512 pl EI 333 3 2 1911 () 619296 41624 pl pl pl V EI EI EI ?? ?? =-++= ? ?? ?? ??

结构力学课后习题答案1

习题 7-1 试确定图示结构的位移法基本未知量数目,并绘出基本结构。 (a) (b) (c) 1个角位移3个角位移,1个线位移4个角位移,3个线位移 (d) (e) (f) 3个角位移,1个线位移2个线位移3个角位移,2个线位移 (g) (h) (i) 一个角位移,一个线位移一个角位移,一个线位移三个角位移,一个线位移7-2 试回答:位移法基本未知量选取的原则是什么?为何将这些基本未知位移称为关键位移?是否可以将静定部分的结点位移也选作位移法未知量? 7-3 试说出位移法方程的物理意义,并说明位移法中是如何运用变形协调条件的。 7-4 试回答:若考虑刚架杆件的轴向变形,位移法基本未知量的数目有无变化?如何变化? 7-5 试用位移法计算图示结构,并绘出其内力图。 (a) 解:(1)确定基本未知量和基本结构 有一个角位移未知量,基本结构见图。 l 7- 32

7- 33 Z 1M 图 (2)位移法典型方程 11110 p r Z R += (3)确定系数并解方程 i ql Z ql iZ ql R i r p 24031831 ,82 12 12 111= =-∴-== (4)画M 图 M 图 (b) 解:(1)确定基本未知量 1个角位移未知量,各弯矩图如下 4m 4m 4m

7- 34 1Z =1M 图 3 EI p M 图 (2)位移法典型方程 11110 p r Z R += (3)确定系数并解方程 1115 ,35 2p r EI R ==- 15 3502 EIZ -= 114Z EI = (4)画M 图 () KN m M ?图 (c) 解:(1)确定基本未知量 一个线位移未知量,各种M 图如下 6m 6m 9m

超高强度船体结构钢的开发现状与趋势

超高强度船体结构钢的开发现状与趋势 发表时间:2018-08-10T15:17:55.367Z 来源:《科技中国》2018年4期作者:汤卫兵黄振毅[导读] 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借 鉴。 摘要:超高强度船体结构钢在制造领域,通常被用来为海洋平台或者大型船舶提供结构上的强度支撑,促进海洋油气开发工程的顺利推进,有着广阔的应用前景。基于此主要发展情况,本文首先分析当前国内外超高强度船体结构钢的开发现状,同时立足于此主要现状,深入探索在未来的制造业消费市场中,超高强度船体结构钢的发展趋势,希望能够为超高强度船体结构钢的科学应用提供理论层面借鉴。 关键词:超高强度船体结构钢;焊接性能;析出粒子 引言:在建造船体结构钢的时候,一定要严格按照船级社的建造规范依次开展施工工艺,使得最终制造出来的船体结构钢质量能够满足船体结构的建造需要。通常来说,船体结构钢的强度有着严格的等级划分标准,其中超高强度结构钢属于强度要求最高的一种类型,要求在建造的时候严格按照强度等级超出420MPa的标准来开展生产工艺,使得最终建造出来的钢强度能够满足大型船舶的运航需求。 一、浅析超高强度船体结构钢的开发现状 (一)生产工艺的开发现状 传统的TMCP技术发展至今,已经逐渐演变成了超高强度船体结构钢的生产工艺。在建造超高强度船体结构钢的时候,技术人员通常会注意将TMCP技术的粗轧温度稳定在1000℃-1050℃之间,接着运用大道次压下量的方法,让形变的部位能够逐渐渗透到板坯心部,使得其中的奥氏体材质逐渐结晶。当前已经出现了新的生产工艺,能够结合大型船舶对超高强度船体结构钢质量的使用需求,大幅优化TMCP生产工艺的性能,使得结晶环节中的材料下压率能够超过40%,再逐渐回温到Ar3温度以上,最后可以通过冷却方法的利用,得到具有细小晶粒的室温组织,这种新型生产工艺的好处便是能够显著增强超高强度船体结构钢大强度[1]。 (二)HY系列的开发现状 超高强度船体结构钢HY系列,主要包括美国研制出来的HY80、HY100以及HY130等系列,还有能够替换HY80的HSLA80系列,以及能够替换HY100的HSLA100系列。HY系列的超高强度船体结构钢具有非常高的强度等级,甚至能够达到550MPa-890MPa,主要是因为HY 系列的超高强度船体结构钢具有大量的Ni物质。当超高强度船体结构钢中的Mn含量能够达到1.6%的时候,Ni的含量能够达到1.02%,这时侯超高强度船体结构钢的强度性能最高,正是因为HY系列的超高强度船体结构钢采用了高Mn+低Ni的成分配置方法,所以该系列的钢结构的强度较高,但是焊接性能有所欠缺。 (三)HSLA系列的开发现状 相比之下,HSLA系列的超高强度船体结构钢在碳当量,以及裂纹敏感系数方面的生产工艺都与HY系列存在着较大的不同。首先,HSLA系列的超高强度船体结构钢显著降低了C、Cr、Ni的含量,同时又增加了Cu、Mo和Mn的含量,使得最终制造出来的HSLA系列超高强度船体结构钢,相较HY100钢要多出大量的Mn、Mo、Ni含量,但是Cr的含量却要少很多,只能在一定程度上改善HY系列超高强度船体结构钢的碳当量以及裂纹敏感系数,也就是说实现了焊接性能的有效改善,并且合金元素也有了极大的改善,整体来说HSLA100系列超高强度船体结构钢逐渐转变成了双向组织的超高强度船体结构。 二、浅析超高强度船体结构钢的发展趋势 (一)Cu析出粒子的优化 目前,国内外超高强度船体结构钢的研发,正在逐步向改善强韧化方法以及保持适当碳当量值的方向发展,以期大幅提高超高强度船体结构钢的强度性能。开发超高强度船体结构钢的时候,引出的析出强化粒子主要为Cu粒子,这种Cu粒子的优势在于能够与超高强度船体结构钢的组织类型、变形程度达到良好的契合,从而加强Cu粒子在界面的偏聚情况,使得析出的Cu粒子激活能开始有所降低。如此一来,通过Mn以及Ni的添加,能够显著降低Cu粒子的临界形核功,继而利用三种元素之前的相互契合与相互作用,有效提升奥氏体的稳定性,最终达到强化超高强度船体结构钢结构强度的效果[2]。 (二)化合物析出粒子 在回火温度升高的条件下,超高强度船体结构钢会析出大量富含Nb、Ti的碳氮化物。这些化合类物质的尺寸基本处于10-20nm之间,在Nb、Ti显著增高的前提下也不会导致超高强度船体结构钢中碳当量的增加,能够有效减缓C原子的扩散速度。在电子搅拌离心力的作用下,细小的钛氧化物粒子开始逐渐向周边扩散,等到冷却之后就能够产生纳米钛氧化粒子,可以有效抵抗奥氏体的生产,从而显著改善超高强度船体结构钢的力学性能,使得最终生产出来的超高强度船体结构钢在质量性能商更为优越,是为未来超高强度船体结构钢的主要发展方向。 (三)焊接性能的提升 焊接性能的提升能够改善超高强度船体结构钢的性能,增强其在结构方面的铸造质量。在目前的生产工艺中,超高强度船体结构钢一旦经受了高温热循环处理,便会导致结构的韧性开始下降,影响到钢结构最后的焊接效果。因此,未来提升超高强度船体结构钢的焊接性能将成为主要的发展方向,目的是为了提高焊接前预热、焊接后回火处理的效果,保证超高强度船体结构钢在生产工艺能够获得良好的焊接效果,继而逐步突破超高强度船体结构钢焊接工艺方面存在的难点,促进超高强度船体结构钢强度等级的提高。 结束语:综上所述,目前我国的超高强度船体结构钢开发正在逐步取得新的进展,面临的各项技术瓶颈也在不断的被突破,未来超高强度船体结构钢还将在我国走向纵深化的发展道路。但是与此同时,技术人员还要意识到超高强度船体结构钢开发过程中存在的技术难点,继而从韧性、强度以及焊接性能等方面出发,全面推动超高强度船体结构钢的研发技术走向质的飞跃,提升船体结构的稳定性。参考文献: [1]雷玄威, 黄继华, 陈树海,等. 超高强度船体结构钢的开发现状与趋势[J]. 材料科学与工艺, 2015, 23(4):7-16. [2]陈佳, 孙明, 隋丹,等. 高强度船体结构钢的现状与发展[J]. 工程技术:全文版, 2016(2):00289-00289.

结构力学课后习题答案

习题及参考答案 【习题2】【习题3】【习题4】【习题5】【习题6】【习题8】【习题9】【习题10】【习题11】【习题12】【习题13】【习题14】【参考答案】 习题2 2-1~2-14试对图示体系进行几何组成分析,如果是具有多余联系的几何不变体系,则应指出多余联系的数目。 题2-1图 题2-2图 题2-3图题2-4图题2-5图 题2-6图题2-7图题2-8图 题2-9图题2-10图题2-11图

题2-12图 题2-13图 题2-14图 习题3 3-1 试作图示多跨静定梁的M 及Q 图。 (b) (a) 20kN 40kN 20kN/m 40kN 题3-1图 3-2 试不计算反力而绘出梁的M 图。 (b) 5kN/m 40kN (a) 题3-2图 习题4 4-1 作图示刚架的M 、Q 、N 图。 (c) (b)(a)20kN /m 2kN /m 题4-1图 4-2 作图示刚架的M 图。

P (e) (d) (a) (b) (c) 20k N /m 4kN 题4-2图 4-3 作图示三铰刚架的M 图。 (b) (a) 题4-3图 4-4 作图示刚架的M 图。 (a) 题4-4图 4-5 已知结构的M 图,试绘出荷载。 (b) (a) 题4-5图

4-6 检查下列刚架的M 图,并予以改正。 (e)(g)(h) P (d) (c)(a)(b) (f) 题4-6图 习题5 5-1 图示抛物线三铰拱轴线方程x x l l f y )(42-= ,试求D 截面的力。 题5-1图 5-2 带拉杆拱,拱轴线方程x x l l f y )(42-= ,求截面K 的弯矩。 C 题5-2图 题5-3图 5-3 试求图示带拉杆的半圆三铰拱截面K 的力。 习题 6 6-1 判定图示桁架中的零杆。

第五章 船体结构用钢材

第五章船体结构用钢材(4学时) 教学要求:理解CCS关于船体结构用钢的规定。 重点:强度船体结构用钢不同牌号的性能指标。 难点:强度船体结构用钢性能指标测定试验。 教学内容: 随着造船工业的不断发展,造船工业所用的材料,品种越来越多,数量越来越大。例如建造一艘16000吨级多用途集装箱货船,单船体用钢材就需要4600吨,2005年我国造船量为1200万载重吨,消耗钢材400多万吨,由此可见材料对发展造船工业的重要性。 造船材料分为金属材料和非金属材料两大类。 现代船舶的船体结构制造所用材料主要是一般强度船体结构用钢、高强度船体结构用钢、奥氏体不锈钢和双相不锈钢、复合钢板、Z向钢、铝合金、增强塑料等。根据CCS 1998年《材料与焊接》规范和2002、2004年规范修改通报要求,所有金属材料必须从力学性能(强度、塑性、硬度、蠕变)、工艺性能(弯曲、焊接性)、化学成分、脱氧方法、交货状态(热处理)等方面符合规范要求。 第一节船体结构对其金属材料的基本要求 由于船舶工作条件的特殊性和复杂性,因而对制造船体结构的金属材料提出了较高的要求,大致有以下几方面: 一、良好的力学性能 1.强度 强度—金属材料在外力作用下抵抗断裂和变形的能力。 2.塑性 塑性—金属材料在外力作用下产生塑性变形而不破坏的能力。 3.冲击韧性 冲击韧性—金属材料抵抗冲击载荷和脆性破坏的能力。 4.疲劳强度 疲劳强度—金属材料抵抗外力反复作用下的能力,即在交变载荷无限次作用下不致引起破坏的能力,以бN表示。 5.硬度 硬度—金属材料抵抗比它更硬物体压入表面内的能力。 二、优良的工艺性能 所谓工艺性能是指材料对各种加工方法的适应性。在现代造船中,采用最多的金属材料加工方法是焊接与弯曲。因此,作为船体结构材料必须具有良好的焊接性和优良的承受弯曲加工的性能。 三、良好的耐腐蚀性能 船体结构用金属材料在海水中具有较高的耐腐蚀性能,而目前的一般强度船体结构用钢和高强度船体结构用钢还不能完全满足要求,在海水中的腐蚀都比较严重,据统计碳素钢为0.1毫米/年,含镍合金钢为0.08毫米/年。因此,船舶设计时必须增放腐蚀余量,这就增加了船体自重和材料消耗。

船舶结构力学设计

課程名稱:船舶結構力學 第一部分課程性質與目標 一、課程性質與特點 本課程研究的主要對象是船體結構中的杆件、杆系和板的彎曲及穩定性,系統地闡述了結構力學中的基本理論與方法----力法、位移法及能量原理。是高等教育自學考試船舶與海洋工程專業的一門重要專業基礎課。 二、課程目標與基本要求 本課程的目標:學生通過該課程的學習,掌握結構力學的基本理論和方法,應用它們來解決船體結構中典型結構(杆系和板的彎曲及穩定性)的強度計算分析。還能處理一般工程結構中類似的力學問題。 本課程基本要求: 1.掌握建立船體結構計算圖形的基本知識 2.掌握單跨梁的彎曲理論 3.掌握力法的基本原理和應用 4.掌握位移法和矩陣位移法的基本原理和應用 5.掌握能量原理及其應用 6.瞭解有限單元法的基本概念和解題過程 7.掌握矩形薄板的彎曲理論 8.掌握杆及板的穩定性概念,解答和應用 9.瞭解薄壁杆件扭轉的基本概念 10.該課程理論性強,力學概念較難建立,涉及數學知識較多,學習和掌握有一定的困難。相比較而言,單跨梁的彎曲理論和板的彎曲理論是本課程的基本基礎。力法,矩陣位移法,能量法部分偏重於原理和方法在結構分析中的應用。自學過程中應按大綱要求仔細閱讀教材,切實掌握有關內容的基本概念、基本原理和基本方法。學習過程中遵循吃透原理、掌握計算方法、看懂教材例題,完成部分習題。不懂的地方要反復學,前、後聯繫起來學,要克服浮燥心理,欲速則不達,慢工出細活。從而達到學懂、學會、學熟,及應用它們來解決實際結構計算。 三、與本專業其他課程的關係 本課程是船舶與海洋工程專業的一門專業基礎課,該課程應在修完學科基礎課和相關的專業基礎課後進行學習。 先修課程:高等數學,理論力學,材料力學,船體結構與海洋工程製圖 後續課程:船體強度與結構設計 第二部分考核內容與考核目標 第1章緒論 一、學習目的與要求 本章是對船舶結構力學總述性的概述。通過對本章的學習,明確船舶結構力學的內容與任務,是為了解決船體強度問題,結構力學研究的是船體結構的靜力回應,即內力與變形,以及受壓結構的穩定性問題。學習和掌握結構力學的基本原理與方法,經典的力法、位移法及能量原理。對船體結構及其簡化成相應的力學計算圖形有深刻的理解。 二、考核知識點與考核目標 (一)船舶結構力學的內容與任務(重點) 識記:船體強度的內容,船舶結構力學的內容。 理解:船舶結構力學與船體強度的聯繫。 應用:分析船體強度與變形及其他問題 (二)船體結構的計算圖形(重點) 識記:計算圖形,典型的船體結構計算圖形(人工計算:四種。電腦計算:空間杆系結構和板、梁組合結構。)理解:船體結構計算圖形簡化的內涵和簡化過程。 應用:實際船體結構簡化為與計算方法相應的計算圖形。 第2章單跨梁的彎曲理論

结构力学2课后思考题答案

概念题 1.1 结构动力计算与静力计算的主要区别是什么? 答:主要区别表现在:(1) 在动力分析中要计入惯性力,静力分析中无惯性力;(2) 在动力分析中,结构的内力、位移等是时间的函数,静力分析中则是不随时间变化的量;(3) 动力分析方法常与荷载类型有关,而静力分析方法一般与荷载类型无关。 1.2 什么是动力自由度,确定体系动力自由度的目的是什么? 答:确定体系在振动过程中任一时刻体系全部质量位置或变形形态所需要的独立参数的个数,称为体系的动力自由度(质点处的基本位移未知量)。 确定动力自由度的目的是:(1) 根据自由度的数目确定所需建立的方程个数(运动方程 数=自由度数),自由度不同所用的分析方法也不同;(2) 因为结构的动力响应(动力内力和动位移)与结构的动力特性有密切关系,而动力特性又与质量的可能位置有关。 1.3 结构动力自由度与体系几何分析中的自由度有何区别? 答:二者的区别是:几何组成分析中的自由度是确定刚体系位置所需独立参数的数目,分析的目的是要确定体系能否发生刚体运动。结构动力分析自由度是确定结构上各质量位置所需的独立参数数目,分析的目的是要确定结构振动形状。 1.4 结构的动力特性一般指什么? 答:结构的动力特性是指:频率(周期)、振型和阻尼。动力特性是结构固有的,这是因为它们是由体系的基本参数(质量、刚度)所确定的、表征结构动力响应特性的量。动力特性不同,在振动中的响应特点亦不同。 1.5 什么是阻尼、阻尼力,产生阻尼的原因一般有哪些?什么是等效粘滞阻尼? 答:振动过程的能量耗散称为阻尼。 产生阻尼的原因主要有:材料的内摩擦、构件间接触面的摩擦、介质的阻力等等。当然,也包括结构中安装的各种阻尼器、耗能器。阻尼力是根据所假设的阻尼理论作用于质量上用于代替能量耗散的一种假想力。粘滞阻尼理论假定阻尼力与质量的速度成比例。 粘滞阻尼理论的优点是便于求解,但其缺点是与往往实际不符,为扬长避短,按能量等 效原则将实际的阻尼耗能换算成粘滞阻尼理论的相关参数,这种阻尼假设称为等效粘滞阻尼。 1.6 采用集中质量法、广义位移法(坐标法)和有限元法都可使无限自由度体系简化为有限自由度体系,它们采用的手法有何不同? 答:集中质量法:将结构的分布质量按一定规则集中到结构的某个或某些位置上,认为其他地方没有质量。质量集中后,结构杆件仍具有可变形性质,称为“无重杆”。 广义坐标法:在数学中常采用级数展开法求解微分方程,在结构动力分析中,也可采用 相同的方法求解,这就是广义坐标法的理论依据。所假设的形状曲线数目代表在这个理想化形式中所考虑的自由度个数。考虑了质点间均匀分布质量的影响(形状函数),一般来说,对于一个给定自由度数目的动力分析,用理想化的形状函数法比用集中质量法更为精确。有限元法:有限元法可以看成是广义坐标法的一种特殊的应用。一般的广义坐标中,广 义坐标是形函数的幅值,有时没有明确的物理意义,并且在广义坐标中,形状函数是针对整个结构定义的。而有限元法则采用具有明确物理意义的参数作为广义坐标,且形函数是定义在分片区域的。在有限元分析中,形函数被称为插值函数。 综上所述,有限元法综合了集中质量法和广义坐标法的特点:(l) 与广义坐标法相似, 有限元法采用了形函数的概念。但不同于广义坐标法在整体结构上插值(即定义形函数),而是采用了分片的插值,因此形函数的表达式(形状)可以相对简单。(2) 与集中质量法相比,有限元法中的广义坐标也采用了真实的物理量,具有直接、直观的优点,这与集中质量法相同。

船舶及海洋工程用结构钢

GB 712-200× 《船舶及海洋工程用结构钢》 国家标准编制说明 《船舶及海洋工程用结构钢》国家标准项目组 二〇〇八年七月

GB 712-200×《船舶及海洋工程用结构钢》 国家标准编制说明 1 工作概况 1.1 任务来源 我国船舶产业经历了从上世纪五、六十年代的发展(60年代初已自主研发成“东风”号万吨轮),九十年代以后快速发展,到目前向高技术含量、大吨位、专业化船舶发展,我国已能自主研发、生产远望号测量船、雪龙号科考船以及30万吨油轮、大型散装货轮、装载万箱的大型集装箱船及LNG船等各种技术先进的大型船舶,使我国已济身世界造船大国行列,正向世界造船强国迈进。 近年来,因中国等新兴发展中国家对矿石、石油等资源的大量需求,国际航运界得到加快发展,新船订单不断增加,我国2010年的新船订单达1.3亿载重吨,已排在世界第一。随着新船订单的持续增加,船舶及海洋工程用结构钢的需求数量和质量都快速增长。到2010年,我国建造的散货船、油船市场占有率将分别提升到世界第一位和世界第二位,集装箱船市场占有率将接近韩国,LNG船市场占有率达到20%以上,成为高新技术船舶重要生产国。届时,造船用钢预计达到1000万吨以上;计划建造海洋平台近80座,需海洋平台用高等级系列钢材约160万吨左右,其中,自升式海洋平台的桩腿、悬臂梁、升降齿条机构等需要460MPa~690MPa钢级及690MPa 以上钢级的高强度或特厚(最大厚度达到259mm)等专用钢。 与此同时,随着近二十年国民经济的快速发展,我国冶金工业也得到了高速发展。特别是近年来,我国钢铁企业技术进步很快,装备和工艺也已经达到世界先进水平。国产船舶和海洋工程用钢的品种不断开发、实物质量大幅提升,不仅在产量上,而且在质量上已能够基本满足我国船舶工业发展的需要,为我国造船业提供了坚实的钢铁基础。全国已有50余条中厚板生产线,产能达5600万吨,在建、拟建10余套3500mm以上轧机,新增产能约1500万吨,许多条生产线工艺装备达到国际一流水平,至2010年中厚板产能将达到7000万吨。从以前大量使用的一般强度级A、B、D和高强度级AH32、AH36、DH32、DH36发展到E、EH32、EH36,直至高强度级的AH40、DH40、EH40、FH40和超高强度钢级的420、460、500、550钢级,甚至有更高强度要求和-196℃冲击试验的特殊船钢(LNG船)。以鞍钢为例:鞍钢的船板产量逐年大幅度提高,2003年销售32万吨,2004年销售70万吨,2005年销售87万吨,2006年销售约110万吨,2007年销售约170万吨,约占国内市场份额的20%左右。船钢等级也由1994年开始CCS认可时的A、B、D、AH32、AH36、DH32、DH36,发展到目前FH550钢级取得九国船级社认可,低温压力容器用9%Ni钢板也取得了CCS、LR、DNV船级社和容标委认可。 我国船钢出口也在逐年增加,主要出口对象是目前世界上最大的造船国--韩国的现代、三星、大宇以及STX等企业,部分出口日本、美国、欧洲等国家和地区。 GB/T 712-2000《船体用结构钢》国家标准实施的几年来,对当时的船钢发展和钢厂工艺技术进步起到了积极的促进和推动作用,但因船东委托船级社对船舶进行监造,船钢均需通过船级社认可,按船规交货及验收,所以,执行国家标准的船用钢材的量较小。按国家标准体系和标准要充分反映出钢厂在船钢方面的科研成果,并使之快速商品化,及提高产品实物质量,与国外先进标准接轨、促进技术进步,根据全国钢标准化技术委员会SAC/TC183钢标委[2008]01号《关于下达全国钢标委2008年第一批国家标准制修订计划项目的通知》安排(第70项计划编号20077223-Q-605),将推荐性国家标准--GB/T 712-2000《船体用结构钢》修订为强制性国家标准--GB 712-200×《船体及海洋工程用结构钢》。 从当今国际上高强度、超高强度船钢发展看,普遍采用低碳含量(低碳当量),微合金化,控轧控冷、热处理等工艺技术路线。微合金元素的加入不但能起到提高强度,补偿降低碳含量所带来的强度损失,同时他们对提高钢材的焊接性能、力学和工艺性能。从我国钢厂装备和技术水平来看,能够达到高强度、高韧性、高焊接性能,以及厚度方向性能等要求。因此,此次修订GB/T 712,等同采用国外先进标准(各国船级社规范)、引用国家基础标准,纳入高强度、超高强度的新钢级,技术水平比原标准有较大幅度的提高,使本标准能够满足新型现代化大型船舶的设计和建造要求,并能促进我国生产船钢实物质量稳定提高和达到国际先进水平,也能推动企业技术进步,为我国企业加入国际市场竞争创造更有利的条件,标准水平要达到国际先进水平。

船舶结构力学(交大)习题集答案

目录 第1章绪论 (2) 第2章单跨梁的弯曲理论 (2) 第3章杆件的扭转理论 (15) 第4章力法 (17) 第5章位移法 (28) 第6章能量法 (41) 第7章矩阵法 (56) 第9章矩形板的弯曲理论 (69) 第10章杆和板的稳定性 (75)

第1章 绪 论 1.1 题 1)承受总纵弯曲构件: 连续上甲板,船底板,甲板及船底纵骨,连续纵桁,龙骨等远离中 和轴的纵向连续构件(舷侧列板等) 2)承受横弯曲构件:甲板强横梁,船底肋板,肋骨 3)承受局部弯曲构件:甲板板,平台甲板,船底板,纵骨等 4)承受局部弯曲和总纵弯曲构件:甲板,船底板,纵骨,递纵桁,龙 骨等 1.2 题 甲板板:纵横力(总纵弯曲应力沿纵向,横向货物或上浪水压力,横向 作用) 舷侧外板:横向水压力等骨架限制力沿中面 内底板:主要承受横向力货物重量,骨架限制力沿中面为纵向力 舱壁板:主要为横向力如水,货压力也有中面力 第2章 单跨梁的弯曲理论 2.1题 设坐标原点在左跨时与在跨中时的挠曲线分别为v(x)与v(1x ) 1)图2.1o 3 3 3 23034 2 4 3()()()424()26666l l l l l l p x p x p x M x N x v x EI EI EI EI EI ---=++ ++o 原点在跨中:3 2 3 01 1 1104 ()4()266l l p x M x N x v x v EI EI EI -=+ ++o ,'11'11()0()022(0)0(0)2 l l v v p v N ?==???==? 2)3 3 203 ()32.2 ()266l l p x N x Mx v x x EI EI EI θ-=+++ o o 图 3)3 3 3 002 ()22.3 ()666x x x l l p x N x qx dx v x x EI EI EI θ-=++- ?o o 图 2.2题 a) 33 11131113 1(3)(2)61644464162 4pp p pl pl v v v EI EI ????=+=??-+?-????????? = 3 512pl EI 3 33321911()61929641624pl pl pl V EI EI EI ????= -++= ???????

船舶结构力学习题册

第一章 绪论 计算骨架断面惯性矩时的表格算法 断面形式 构件 名称 构件面积 a (cm 2 ) 构件形心距参考轴距离(cm ) ay ay 2 构件对其形心的 惯性矩i (cm 4 ) 带板 腹板 面板 … … … … … … … … … … … … / … / A B C 水平构件对其形心的惯性矩可以不计。 断面中和轴离参考轴距离 ε=B/A(cm) 断面对中和轴的惯性矩 I=C-εB(cm 4 ) 最小断面模数 W min =I/y*max (cm 3 )

第二章单跨梁的弯曲理论 一.初参数法 1.用初参数法求两端自由支持在刚性支座上,受均布载荷的梁的挠曲线。 2.用初参数法图2所示受集中力作用的单跨梁的挠曲线方程式。梁的左端为弹性固定,柔性系数为α=l/(3EI)。梁的右端为弹性支座,柔性系数为A=l3/(48EI)。 3.两端刚性固定的梁,不受外荷重,当其右支座发生位移△时,求其挠曲线与断面弯矩与剪力。

4用初参数法求图中单跨梁的挠曲线方程式。 5. 图中的双跨梁,试用初参数法解之,求出挠曲线方程式,设弹性支座的柔性系数为A=l3/(3EI)。 6.考虑剪切影响,试导出图中梁的挠曲线方程式及两端的弯矩及剪力,并将结果推广到梁左端与右端分别有位移△i,θi及△j,θj时的情况。梁的长度为l,断面惯性矩为I,有效抗剪面积为A s。

7. 如图所示变断面梁,用初参数法解之。图中P=q l,求出挠曲线方程式及P力作用点处的挠度和转角。 8.用初参数法求图所示单跨梁的挠曲线方程式,转角方程式,弯矩方程式,剪力方程式。推导中可令a=αEI/l (1)求出当α→∞时梁两瑞的转角,进行分析讨论。 (2)求出当α→0时梁左端的转角、弯矩及梁右端的转角,进行分析讨论。a

相关文档
最新文档