超薄镀锌板辊弯成形回弹工艺

超薄镀锌板辊弯成形回弹工艺
超薄镀锌板辊弯成形回弹工艺

第6期(总第175期)

2012年12月机械工程与自动化

MECHANICAL ENGINEERING & AUTOMATIONNo.6

Dec.

文章编号:1672-6413(2012)06-0042-0

3超薄镀锌板辊弯成形回弹工艺分析

范 琦

(北方工业大学机电研究院,北京 100144

)摘要:对于超薄镀锌板,厚度薄回弹量大难以控制是运用辊弯成形方法中的难点之一。基于ABAQUS有限元软件建立了超薄板辊弯成形仿真模型,以单波模型为例,运用正交试验方法分析了压型板的回弹,详细分析了相对弯曲半径变化对回弹的影响。研究表明,材料厚度增加、弯角半径减小时,回弹角度会减小;在一定范围内较少道次数也能减小回弹角度;板材回弹角度与r/t值成线性关系。关键词:辊弯成形;数值模拟;回弹

中图分类号:TG386.3+

1 文献标识码:A

收稿日期:2012-05-30;修回日期:2012-06-2

0作者简介:范琦(1986-)

,男,新疆乌鲁木齐人,在读硕士研究生,主要从事辊弯成形CAD/CAE/CAM一体化方面的研究。0 引言

超薄镀锌板多见于建筑中的轻钢结构。其板厚小于1mm,屈服强度不低于550MPa,最显著的特点是强度高、

塑性差,屈服强度和抗拉强度非常接近,在屈服后几乎无应力强化阶段。辊弯成形是一种重要的板材成形技术,具有连续生产、节约成本、工艺稳定、成形

精度高等优点[1,2]

,因此辊弯成形适合规模化生产,但

其成形过程复杂,影响因素多,所以对辊弯成形回弹特点还有待进一步研究。本文以超薄镀锌板成形为对象,基于ABAQUS有限元软件,建立有限元简化模型,并设计正交试验,研究压型板成形特点及回弹规律。1 有限元模型的建立

本文对3种厚度板材进行单向拉伸试验,由试验

结果计算后得到材料参数,见表1[3]

。材料密度取7 850kg

/m3

。表1 拉伸试验结果

厚度(mm)弹性模量(MPa)屈服强度(MPa)抗拉强度(MPa)泊松比0.3 165 755 561 620 0.30.48 212 572 590 650 0.30.6 

202 770 

670 

755 

0.3

板材成形后的最终截面见图1。有限元模型建立

如下:道次间距250mm,上、下辊间距180mm;对单波成形进行模拟,将轧辊设为解析刚体,轧辊与板料间摩擦系数设为零,限制轧辊的转动,轧辊与板材间采用面-面接触;板材长宽尺寸为750mm×120mm;将轧辊完全约束,在板料纵向加载一段位移,限制板料前端部的纵向位移,限制板料中心线前、后两端点的横向位

移;选用S4R壳单元,厚度方向取5个积分点,网格在弯角处加密。共划分19 000个网格、19 539个节点。成形过程采用显式算法,后导入隐式算法计算回弹。

图1 最终截面图

2 成形模拟过程分析

辊弯过程中板材逐一经过机架,板料中间部分受上辊的压力而向下运动,两边受下辊压力被抬起并向中间运动,相对中心线而言两边为扭转变形。变形幅度越大,应力应变也越大。成形过程中板料不同位置不同时间可能受到横向弯曲、横向扭转、纵向弯曲、纵向拉压、横向剪切等作用,变形极为复杂。取四道次成形为例,图2为前两道次应力分布。当板料进入轧辊后,在弯角处和中间腹板部分产生较大的应力集中,这些区域出现大变形。从第一道次开始,弯曲段就存在塑性变形。由于板料薄厚方向刚度小,应力波对板材影响大。选择板料的中部成形时刻,每道次变形发生在板料与轧辊接触及附近区域,最大应力出现在进入轧辊前,而板料被带出轧辊后,应力迅速减小并进入卸载阶段。其后的每道次成形与第一道次相似。由于第二道次的下山量和成形角度最大,需要更大的纵向弯曲和横向弯曲,故应力较大。

在板料中段3个弯曲段各取特征节点A、B、C,其等效应力、应变随成形过程变化见图3和图4。图3

弯管常见的缺陷及其解决措施

弯管常见的缺陷及其解决措施 从工艺分析可知,常见的弯管缺陷主要有以下几种形式:圆弧处变扁严重(椭圆形)、圆弧外侧管壁减薄量过大、圆弧外侧弯裂、圆弧内侧起皱及弯曲回弹等。随着弯管半径的不同,前四种缺陷产生的方式及部位有所不同,而且不一定同时发生,而弯曲工件的弹性回弹却是不可避免的。弯管缺陷的存在对弯制管件的质量会产生很大的负面影响。管壁厚度变薄,必然降低管件承受内压的能力,影响其使用性能;弯曲管材断面形状的畸变,一方面可能引起横断面积减小,从而增大流体流动的阻力,另一方面也影响管件在结构中的功能效果;管材内壁起皱不但会削弱管子强度,而且容易造成流动介质速度不均,产生涡流和弯曲部位积聚污垢,影响弯制管件的正常使用;回弹现象必然使管材的弯曲角度大于预定角度,从而降低弯曲工艺精度。因此,应在弯制之前采取对应措施防止上述缺陷的产生,以获得理想的管件,保证产品的各项性能指标和外观质量。在通常情况下,对于前面提到的几种常见缺陷,可以有针对性地采取下列措施: (1) 对于圆弧外侧变扁严重的管件,在进行无芯弯管时可将压紧模设计成有反变形槽的结构形式:在进行有芯弯管时,应选择合适的芯棒(必要时可采用由多节段芯棒组装而成的柔性芯棒),正确安装之,并在安装模具时保证各部件的管槽轴线在同一水平面上。 (2) 小半径弯管时圆弧外侧减薄是弯曲的工艺特点决定的,是不可避免的。为了避免减薄量过大,常用的有效方法是使用侧面带有助推装置或尾部带有顶推装置的弯管机,通过助推或顶推来抵消管子弯制时的部分阻力,改善管子横剖面上的应力分布状态,使中性层外移,从而达到减少管子外侧管壁减薄量的目的。 (3) 对于管子圆弧外侧弯裂的情况,首先应保证管材具有良好的热处理状态,然后检查压紧模的压力是否过大,并调整使其压力适当,最后应保证芯棒与管壁之间有良好的润滑,以减少弯管阻力及管子内壁与芯棒的摩擦力。 (4) 对于圆弧内侧起皱,应根据起皱位置采取对应措施。若是前切点起皱,应向前调整芯棒位置,以达到弯管时对管子的合理支撑:若是后切点起皱,应加装防皱块,使防皱块安装位置正确,并将压模力调整至适当;若圆弧内侧全是皱纹,则说明所使用的芯棒直径过小,使得芯棒与管壁之间的间隙过大,或者就是压模力过小,不能使管子在弯曲过程中很好地与弯管模及防皱块贴合。因此,应更换芯棒,并调整压紧模使压模力适当。

精轧机弯窜辊常见故障排除方法

精轧机弯窜辊常见故障排除方法 【摘要】本文主要介绍了精轧机弯窜辊装置在使用中常见的故障,针对这些故障,结合多年的使用及处理故障经验,提出了可靠有效的合理化建议及解决方案。 【关键词】精轧机;移动座常见故障;弯窜辊缸 0.引言 在带钢生产中,弯窜辊装置是不可或缺的一部分。弯辊可改善带钢的板形;窜辊为平辊水平窜动,提高轧辊的使用效率,延长轧辊寿命。但是,在实际使用中,弯窜辊装置经常性出现漏油、内泄、活塞杆拉伤、防尘圈脱出、窜辊轧钢过程中跑位、油路块旋转接头管路拉断等恶性现象,给设备及生产带来不利的影响。本文针对经常性出现的故障,结合现场使用环境及工作原理分析了各故障产生的原因,并提出了可靠有效的合理化建议及解决方案。 1.精轧机弯窜辊装置的组成及功能概述 弯辊串辊装置装在牌坊窗口内侧表面,主要由弯辊缸1;固定座2;移动座3;窜辊缸4;工作辊锁紧装置5等组成。附简图: 工作辊窜辊和弯辊装置以控制板形、平直度和凸度。工作辊窜辊系统与工作辊弯辊系统配合,就会在保持良好的平直度的同时得到一定的、合乎要求的板形。工作辊弯辊系统油缸也用于工作辊的平衡、压紧。固定座固定在牌坊窗口的内侧,带可更换滑板,用螺钉及楔键固定,用于支撑移动座。移动座为弯辊串辊装置的关键部位,每个移动块装有垂直作用的弯曲/平衡液压缸、工作辊串辊缸及工作辊锁紧缸,它们与固定座、工作辊轴承座之间也带可更换的滑板,工作辊锁紧系统为液压锁紧,水平布置在操作侧,夹持上下工作辊轴承座并将轴向窜动量传递给工作辊,其换辊时需打开。窜辊油缸体安装在换辊侧移动座上,换辊侧与传动侧的移动座分别与工作辊轴承座连接,通过工作辊形成钢性联接,实现工作辊的轴向窜动。位置传感器装在窜辊油缸上,用来测量上下工作辊的位置(轴向位置偏移)。弯曲/平衡液压缸以移动座为缸体,活塞杆与液压盖之间、活塞与缸体之间有密封装置。 弯辊可改善带钢的板形,当需要进行弯辊控制时,将液压系统从压紧位置换到弯辊位置,对工作辊施加正弯辊力,改变轧机辊缝,达到控制板形的目的。 窜辊为平辊水平窜动,可提高轧辊的使用效率,延长轧辊寿命。窜辊是轧制带钢前,事先通过液压缸传感器将轧辊位置摆好(即窜辊到位)。窜辊量为±125mm。 2.窜辊装置的各项参数

铝合金挤压工序中的主要缺陷分析及质量控制方法

铝合金挤压工序中的主要缺陷分析及质量控制方法 一、缩尾 在某些挤压制品的尾端,经低倍检查,在截面的中间部位有不合层形似喇叭状现象,称为缩尾。经常可以见到一类缩尾或二类缩尾两种情况。一类缩尾位于制品的中心部位,呈皱褶状裂缝或漏斗状孔洞。二类缩尾位于制品半径1/2区域,呈环状或月牙状裂缝。有时在离制品表面层0.5-2mm处出现连续的或不连续的不合层裂纹或裂纹痕迹,有人把它称为第三类缩尾。 一般正向挤压制品的缩尾比反向挤压的长,软合金比硬合金的长。正向挤压制品的缩尾多表现为环形不合层,反向挤压制品的缩尾多表现为中心漏斗状。 金属挤压到后端,堆积在挤压筒死角或垫片上的铸锭表皮和外来夹杂物流入制品中形成二次缩尾;当残料留得过短,制品中心补缩不足时,则形成一类缩尾。从尾端向前,缩尾逐渐变轻以至完全消失。 缩尾的主要产生原因 1、残料留得过短或制品切尾长度不符合规定; 2、挤压垫不清洁,有油污; 3、挤压后期,挤压速度过快或突然增大; 4、使用已变形的挤压垫(中间凸起的垫); 5、挤压筒温度过高; 6、挤压筒和挤压轴不对中; 7、铸锭表面不清洁,有油污,未车去偏析瘤和折叠等缺陷; 8、挤压筒内套不光洁或变形,未及时用清理垫清理内衬。 防止方法 1、按规定留残料和切尾; 2、保持工模具清洁干净; 3、提高铸锭的表面质量; 4、合理控制挤压温度和速度,在平稳挤压; 5、除特殊情况外,严禁在工、模具表面抹油; 6、垫片适当冷却。 二、粗晶环

有些铝合金的挤压制品在固溶处理后的低倍试片上,沿制品周边形成粗大再结晶晶粒组织区,称为粗晶环。由于制品外形和加工方式不同,可形成环状、弧状及其他形式的粗晶环。粗晶环的深度同尾端向前端逐渐减小以至完全消失。期形成机理是由热挤压后在制品表层形成的亚晶粒区,加热固溶处理后形成粗大的再结晶晶粒区。 粗晶环主要的产生原因 1、挤压变形不均匀‘ 2、热处理温度过高,保温时间过长,使晶粒长大; 3、便金化学成分不合理; 4、一般的可热处理强化合金经热处理后都有粗晶环产生,尤其是6A02,2A50等合金 的型、棒材最为严重,不能消除,只能控制在一定范围内; 5、挤压变形小或变形不充分,或处于临界变形范围,易产生粗晶环。 防止方法 1、挤压筒内壁光洁,形成完整的铝套,减小挤压时的摩擦力; 2、变形尽可能充分和均匀,合理控制温度、速度等工艺参数; 3、避免固溶处理温度过高或保温时间过长; 4、用多孔模挤压; 5、用反挤压法和静挤压法挤压; 6、用固溶处理-拉拔-时效法生产; 7、调整全金成分,增加再结晶抑制元素; 8、采用较高的温度挤压; 9、某些合金铸锭不均匀化处理,在挤压时粗晶环较浅。 三、成层 这是在金属流动较均匀时,铸锭表面沿模具和前端弹性区界面流入制品而形成的一种表皮分层缺陷。在横向低倍试片上,表现为在截面边缘部有不合层的缺陷。 成层主要的产生原因 1、铸锭表面有尘垢或铸锭有较大的偏析聚集物而不车皮,金属瘤等易产生成层; 2、毛坯表面有毛刺或粘有油污、锯屑等脏物,挤压前没有清理干净; 3、模孔位置不合理,靠近挤压筒边缘;

卷板预弯工艺的对中操作介绍共10页

卷板预弯工艺的对中操作介绍 Three bending process 1 卷板由预弯(压头)、对中和卷弯三个过程组成。 1 roll plate by bending (head), and roll bending of three process. 2 预弯(压头)在三棍卷板机或预弯压力机上进行。当预弯板厚不超过20mm的情况下,可采用预弯也一块钢板作为弯模,其厚度不应大于板厚的两倍,长度应比板略长,将弯曲模放入辊筒中,将板料置于弯模上,压下上辊并使弯模来回滚动使板料边缘达到所要求的弯曲半径。同时采用弯模预弯时,必须控制弯曲功率不超过设备能力60%,操作时应严格控制上辊的压下量,以防过载损坏设备。在压力机上用模具预弯适用于各种板厚,用长度比板料短的通用模具,预弯时必须分段进行,预弯两端,预弯尺寸根据工件卷圆卷板机种类而定。如20*2000卷板机端面预弯尺寸是250-300;8*2000卷板机端面预弯尺寸是150-200。 2 bending (pressure head) in three stick machine or bending machine. When bending thickness under the condition of less than 20 mm, bending can be used also as a steel plate bending die, its thickness should not be greater than twice the thickness, length should be slightly longer than the board, the bending die is put into the roller, puts sheet metal bending mold, pressure roller and the bending modulus back and forth

锻造工艺

复杂弯轴类锻件辊锻-摩擦压力机模锻复合锻造工艺 一、前言 复杂弯轴类锻件的最佳成形法一直是锻造行业致力研究的问题,前些年我国轻轿车生产数量不大,没有形成规模经营,故轻轿车复杂弯轴锻件的生产主要以传统的锤上模锻工艺进行小批量生产,有的厂家甚至采用自由锻—胎模锻工艺,需几火次才能锻成。近年来,我国轻轿车生产迅速发展,生产批量越来越大,整机制造水平越来越高,对复杂弯轴类锻件而言,不仅形状复杂,而且锻件尺寸精度,表面质量等方面的要求也更加严格,故探索轻轿车复杂弯轴类锻件的合理锻造方法,显得尤为重要。根据一汽轻轿车生产实际需求,在试验研究的基础上,我们采用了辊锻制坯—摩擦压力机模锻复合工艺替代传统的锤上模锻,生产了轻型车左转向节臂,奥迪轿车左、右下控制臂等五种复杂弯轴类锻件,其锻件技术水平达到了轻型车、奥迪轿车原图纸设计要求,各项技术经济指标均达到了预期目标。 二、工艺分析与方案确定 轻轿车复杂弯轴类锻件,其特点是轴线呈空间曲线形,多向弯曲,截面差与落差大,外形复杂,锻造成形与模具加工难度较大。以左转向节臂(图1)为例,按传统的锤上模锻工艺,一般要采用拨长—滚压—弯曲—锻造等工步。其突出缺点是锻件精度较差,工作时震动噪音大,材料消耗与能耗大,劳动条件差。如采用较先进的热模锻压力机成形法,虽然工人劳动条件好,生产率及锻件尺寸精度较高,也便于实现机械化和自动化,但其突出缺点是制造成本高,不便于拔长、滚压等制坯工步,需配其它辅助设备制坯。 图1 针对现有锻造工艺的诸多问题及复杂弯轴类锻件自身的技术特点,我们确定了辊锻——摩擦压力机模锻复合锻造工艺的方案,其工艺流程为:下料→中频感应加

中厚板生产中常见缺陷的类型及预防

中厚板生产中常见缺陷的类型及预防 中厚钢板是国民经济发展所依赖的重要材料,广泛用于高层建筑、桥梁、锅炉、容器、石油化工、工程机械、管线及国防建设等各个方面,中厚钢板的品种繁多,使用温度区域较广(-200℃~600℃),使用环境复杂,(耐候性、耐蚀性),使用要求高(强韧性、焊接性)。 目前,我国中厚板生产厚度为4~250mm, 宽度可达4000mm, 最长可达27m。在品种方面, 已能生产难度比较大的装甲、船身、不锈、高压锅炉容器、桥梁等专用中厚板。但是, 高档次板仍然比较少,专用板只占20%多一点, 大多数厂以生产大路货普碳板为主, 产量占70%~80%。 由于大部分企业炼钢缺少炉外精炼手段, 钢质纯净度差, 钢板夹杂、分层现象有时较为突出, 在轧制生产中, 钢板表面铁皮多, 麻点面积大且深, 修磨量大, 严重影响了钢板品种与质量的发展。另外国产中厚板尺寸偏差、表面质量、力学性能也存在很多问题,只是大多数厂生产以普碳钢为主,钢板质量问题还未完全暴露出来。(中厚板市场) 随着国民经济的发展, 各行各业对中厚板品种、规格、尺寸精度、内外部质量及性能提出了日益增高的要求。所以中厚钢板不仅要有好的机械性能,还要求有优良的表面质量和内部质量。 目前,国内中厚板存在的主要质量问题有: (1) 产品质量不能满足国际标准, 国际标准要求产品表面无缺陷

且无修磨痕迹, 厚度公差带较国内标准减少50%, 不平度长度测量单位增加一倍, 产品全部双定尺交货。 国内中厚板双定尺率只有65%左右。 (2) 产品品种单一, 不能满足国内和国际市场需求, 有订单不能接受。 大部分企业只生产普碳和低合金钢中的A、B级钢,C、D级不能保证性能。 (3) 钢板外观质量差,如断面有兰边, 锯齿、撕裂、错牙等缺陷,表面有划伤、铁皮、油污、麻点等缺陷,厚度偏差大、宽度大小头差大、对角线差值大等非矩形缺陷。 国内外中厚板外观质量对照表

(完整word版)辊弯成形技术与装备-教学大纲

课程名称:辊弯成形技术与装备 课程编码:M683011 课程学分:2学分 适用学科:机械工程领域 辊弯成形技术与装备 Roll Forming Technology and Equipment 教学大纲 一、课程性质 《辊弯成形技术与装备》是针对机械工程领域专业所开设的一门专业选修课。 二、课程教学目的 其主要目的是使学生理解和掌握辊弯成形技术基本理论及装备的一般知识,通过本课程的学习,应掌握辊弯成形轧辊设计理论,金属板带的辊弯成形特性基本原理;培养具有初步辊弯成形产品设计以及轧机设计的能力;了解辊弯成形生产线上辅助加工,特种与未来的辊弯成形技术等;通过实验加深学生对所学理论基础知识的理解和认识,培养学生具备一定的辊弯成形工艺综合分析和处理成形实际问题的能力。 三、教学基本内容及基本要求 1、教学基本内容 (1)绪论 本课程研究的对象及内容,本课程的性质及要求,学习本课程的方法,辊弯成形工艺及应用概述。 (2)辊弯成形轧机 轧机概述,轧机的类型:悬臂式轧机、双端式轧机、标准轧机、双层轧机、成组快换式轧机、并列轧机、拉料成形轧机、螺旋管轧机、车载轧机、特种轧机,轧机的构成:床身、机架、轴、驱动、辅辊和插入式立辊道次、道次间导引、矫直头、润滑系统、轴肩定位、在轧机中安装其他装置。 (3)辊弯成形轧辊设计理论 轧辊设计过程,断面,产品成形方位和其他在线操作,材料,辊弯成形轧机,

模具设计的其他考虑,定位套和垫片,计算板带宽度,弯曲方法,道次数,辊花图,轧辊设计,人工设计轧辊尺寸,计算机辅助轧辊设计,轧辊标记系统,轧辊方向,安装图。 (4)辊弯成形产品设计 薄壁产品的开发,设计中要考虑的因素,辅助加工,制造不同尺寸的断面,特殊产品的设计,尺寸与公差。 (5)金属板带的辊弯成形特性 成形过程中的变形类型,冗余变形的原因及对产品缺陷的影响,金属板带变形的数学仿真,轧辊轮廓的计算机设计系统。 (6)辊弯成形生产线上辅助加工 辅助加工主要工作原理及功用,矫直,张紧或松弛的生产线:在成形前、中、后的切断,辅助加工的位置,固定冲模和飞冲模,冲孔、冲多孔、切口和斜切,穿孔和局部冲切,翻边、冲百叶孔和切缝,压纹和冲压,弯曲,弯圆,标记,搭扣,旋转冲模,不同板带和零件间的机械连接,胶接,锡焊和铜焊,电阻焊,喷漆,发泡,打包。 (7)特种与未来的辊弯成形技术 轧机特殊设计,新型辊弯成形方法,热辊弯成形所需的设备和工具,计算机控制的辊弯成形线等。 2、教学基本要求 (1)了解辊弯成形工艺特点; (2)了解辊弯型钢产品的类型、特点及应用情况; (3)掌握辊弯成形设备组成、结构与工作原理; (4)掌握板金属成形的基本理论知识; (5)掌握辊弯成形缺陷的分析及解决方法。 四、本课程与其他课程的联系与分工 本课程的先修课程主要有机械制图、理论力学、材料力学、高等数学、机械原理、机械设计、工程材料及成形技术基础、机械制造工艺学等。建议学生通过选修或自学的方式学习弹塑性力学理论等方面的一些基础知识。 五、实践环节教学内容的安排与要求 1、实验教学内容

铸轧辊磨削的缺陷分析和预防

铸轧辊磨削的缺陷分析和解决方法 杜永生 摘要:分析了铸轧辊磨削过程中产生的辊型缺陷和表面振动纹,切削痕,螺旋纹的缺陷产生的原因和危害性,并介绍了缺陷的控制方法。 关键词:铸轧辊,砂轮,凸度、振动纹、切削痕、螺旋纹 一前言 高质量的铝铸轧板带的生产, 在很大程度上依赖于高磨削质量的铸轧辊,因此在轧辊磨削过程中准确诊断和分析已发现的磨削缺陷 , 找出产生的原因, 及时采取正确而经济的方法来消除和预防, 是提高铸轧板质量的有效途径。 本文以我公司在铸轧辊磨削过程中产生的主要缺陷为例,分析其产生的原因并提出相应的解决办法。我公司现使用的铸轧磨床是国内险峰机床厂生产的M84100B轧辊磨床。铸轧辊的磨削技术要求是: 1.铸轧辊表面不允许有明显刀花,切削痕,振动纹等。 2.铸轧辊的中凸度(直径)允许的误差值为0.01mm。 3. 铸轧辊的中高对称度(半径)应小于0.006mm。 4. 辊面径向跳动<=0.001mm。 铸轧辊的主要缺陷概括为两大类,辊型缺陷和轧辊表面缺陷。其中辊型缺陷直接影响到铸轧板的板形,造成板形纵向厚差,横向厚差超标以及中凸度超标或不够,是铸轧生产中最经常碰到的质量问题。铸轧辊的表面缺陷除了影响铸轧板的表面质量外还影响到铸轧辊的使用寿命,增加铸轧的生产成本。 二铸轧辊磨削的主要辊型缺陷分析及解决方法 2.1辊型缺陷 辊型是指辊身中部和辊身边部的直径差值的分布规律,为了补偿轧制时由于轧制力引起的轧辊压扁产生弯曲而获得断面平直的铸轧板带,铸轧辊一般设计有一定的凸度,通常铸轧辊的辊型为抛物线或正弦曲线凸辊,如图1 所示, 轧辊凸度值的大小是以辊面中心处的直径与辊面边部直径的差值来表示的,Cr=D - D0 或Cr = 2〃Δt , 式中Cr 为轧辊凸度, D 为轧辊中心处直径, D0 为辊面边部直径。

材料成形工艺期末复习总结

7.简述铸造成型的实质及优缺点。 答:铸造成型的实质是:利用金属的流动性,逐步冷却凝固成型的工艺过程。优点:1.工艺灵活生大,2.成本较低,3.可以铸出外形复杂的毛坯 缺点:1.组织性能差,2机械性能较低,3.难以精确控制,铸件质量不够稳定4.劳动条件太差,劳动强度太大。 8.合金流动性取决于哪些因素?合金流动性不好对铸件品质有何影响? 答:合金流动性取决于 1.合金的化学成分 2.浇注温度 3.浇注压力 4.铸型的导热能力5.铸型的阻力 合金流动性不好:产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣和缩孔缺陷的间接原因。 9.何谓合金的收缩,影响合金收缩的因素有哪些? 答:合金的收缩:合金在浇注、凝固直至冷却到室温的过程中体积或缩减的现象 影响因素:1.化学成分 2 浇注温度 3.铸件的结构与铸型条件 11.怎样区别铸件裂纹的性质?用什么措施防止裂纹? 答:裂纹可以分为热裂纹和冷裂纹。 热裂纹的特征是:裂纹短、缝隙宽,形状曲折,裂纹内呈氧化色。 防止方法:选择凝固温度范围小,热裂纹倾向小的合金和改善铸件结构,提高型砂的退让。 冷裂纹的特征是:裂纹细小,呈现连续直线状,裂缝内有金属光泽或轻微氧化色。 防止方法:减少铸件内应力和降低合金脆性,设置防裂肋 13.灰铸铁最适合铸造什么样的铸件?举出十种你所知道的铸铁名称及它们为什么不用别的材料的原因。 答:发动机缸体,缸盖,刹车盘,机床支架,阀门,法兰,飞轮,机床,机座,主轴箱 原因是灰铸铁的性能:[组织]:可看成是碳钢的基体加片状石墨。按基体组织的不同灰铸铁分为三类:铁素体基体灰铸铁;铁素体一珠光体基体灰铸铁;珠光体基体灰铸铁。 [力学性能]:灰铸铁的力学性能与基体的组织和石墨的形态有关。灰铸铁中的片状石墨对基体的割裂严重,在石墨尖角处易造成应力集中,使灰铸铁的抗拉强度、塑性和韧性远低于钢,但抗压强度与钢相当,也是常用铸铁件中力学性能最差的铸铁。同时,基体组织对灰铸铁的力学性能也有一定的影响,铁素体基体灰铸铁的石墨片粗大,强度和硬度最低,故应用较少;珠光体基体灰铸铁的石墨片细小,有较高的强度和硬度,主要用来制造较重要铸件;铁素体一珠光体基体灰铸铁的石墨片较珠光体灰铸铁稍粗大,性能不如珠光体灰铸铁。故工业上较多使用的是珠光体基体的灰铸铁。 [其他性能]:良好的铸造性能、良好的减振性、良好的耐磨性能、良好的切削加工性能、低的缺口敏感性 14.可锻铸铁是如何获得的?为什么它只适宜制作薄壁小铸件? 答:制造可锻铸铁必须采用碳、硅含量很低的铁液,以获得完全的白口组织。 可锻铸铁件的壁厚不得太厚,否则铸件冷却速度缓慢,不能得到完全的白口组织。 17. 压力铸造工艺有何缺点?它熔模铸造工艺的适用范围有何显著不同? 答:压力铸造的优点: 1.生产率高 2.铸件的尺寸精度高,表面粗糙度低,并可直接铸出极薄件或带有小孔、 螺纹的铸件 3.铸件冷却快,又是在压力下结晶,故晶粒细小,表层紧实,铸件的强 度、硬度高 4.便于采用嵌铸法 压力铸造的缺点: 1.压铸机费用高,压铸型成本极高,工艺准备时间长,不适宜单件、不批生产。 2.由于压铸型寿命原因,目前压铸尚不适于铸钢、铸造铁等高熔点合金的铸造。

辊弯生产中的缺陷分析

辊弯生产中的缺陷分析

摘要:辊弯成形工艺是加工连续截面的一种重要工艺,在世界上得到广泛应用。但是,辊弯生产中同样存在很多问题,多种因素的影响使得辊弯产品存在许多缺陷,例如纵向弯曲和扭曲,边波,袋形波,角部褶皱,边角裂纹和撕裂等,这些缺陷主要是由加工产品的冗余应变引起的,因此就需要对冗余应变的产生原因进行分析,进而找出解决或者改进方法。 关键字:辊弯成型,缺陷分析,冗余应变 辊弯成型是带材在辊式成形机上连续弯曲成具有规定形状和尺寸的截形的塑性变形工艺。在实际的辊弯生产中,金属板带受到不同的变形,包括横向变形和冗余变形。其中横向变形是辊弯成形过程中最重要,必不可少的变形。横向变形将加工材料变形为具有所要求的横截面的产品,它通过一系列具有轮廓的轧辊来逐渐成型。而冗余变形则是在加工过程中产生的多余的,不需要的变形。冗余变形包括:纵向弯曲和回复;纵向伸长和收缩;横向伸长和收缩;金属平面的剪切;金属厚度方向的剪切;以及以上各种变形的结合。 在辊弯生产过程中,纵向应变主要产生在边缘处。这是因为金属板带的横向边缘和临近部分通常沿着流线移动,这些边部流线比中心和中间部分更长。由于这个原因,中心部分通常沿着直线运动,边部通常为竖直上升,同时水平移向横截面中心,边部的垂直上升和水平移动使得边部在纵向伸长,而中心和中间部分在纵向收缩。在辊弯生产过程中产生的纵向应变以及剪切应变无法同时得到优化,只能在两者之间取得一个折中的解决办法。如纵向弯曲和扭曲,边波,袋形波,角部褶皱,边角裂纹和撕裂等缺陷问题主要是由这些冗余变形引起的。冗余变形极大地影响着或者所要求产品横截面所需的横向弯曲,也影响着金属板带中的应力应变,成型后的回弹变形,产品中残余应力的分布等。

锻造成形工艺及其质量控制

锻造成形工艺及其质量控制 汽车前梁成形辊锻工艺日趋成熟,特别是近几年,前梁生产逐步采用整体辊锻模锻复合工艺,它是成形辊锻工艺基础上,引入模锻工艺,原理上汲取各自优点,但组成优于两者的新工艺,该工艺适用于各类轻、中、重型汽车前梁锻件的生产。为少投入、高质量、大批量生产复杂类汽车零部件探索了一条新途径。 1、汽车前轴成形辊锻工艺 汽车前轴(图2-1左右对称)成形辊锻工艺流程如下: 图2-1 汽车前轴锻件图 (1)下料采用G4032带锯条下料。 (2)加热采用KGPS250-1型中频感应炉加热。 (3)成形辊锻采用D42-1000辊锻机,进行制坯、预成形、终成形三道次辊锻或四道次。 (4)弯形局部整形采用6300T磨擦压力机整体弯形、整形。 (5)切边采用1600T摩擦压力整体切边。 (6)热校正采用1600T磨擦压力机整体热校正。 该工艺将圆钢通过制坯、预成形、终成形三道次辊锻制成带飞边直坯锻件,然后通过局部整形、切边、弯形、热校正完成锻件生产,从而达到工艺要求的几何尺寸。 2、下料是将原材料切割成所需尺寸的坯料。 3、锻造所用的原材料种类繁多,有各种钢号和非铁金属,有不同的截面形状,不同的尺寸规格,不同的化学成份的物理学性质等,所以下料方法是多种多样的。

4、辊锻工艺辊锻前轴一般利用圆钢作为初始材料,直径和长度都是设计出来的。 5、不同型号前轴所需圆钢尺寸不一样。印度产品FA90 所需原钢尺寸为Φ150×740 6、因辊锻工艺所需圆钢长度精确,端面平整,所以辊锻工艺采用锯床下料。但存在生产率较低、锯口损耗较大等缺陷。 2.1.1加热 在锻造生产中,金属坯料锻前一般均需加热,其目的是:提高金属塑性,降低变形抗力,使之易于流动成形并获得良好锻压组织。因此,锻前加热是整个锻造过程中的一个重要环节,对提高锻造生产率,保证锻件质量及节约能源消耗等都有直接影响。 圆钢加热主要采用电加热。电加热是通过把电能转变为热能来加热金属坯料。其中有感应电加热,接触电加热,电阻炉加热和盐浴加热等。辊锻工艺要求加热速度快,加热质量好,温度控制准确,金属烧损较少(一般小于0.5%),故一般采用感应加热。并且感应加热还具有操作简单,工作稳定,便于和锻压设备组成生产线实现机械化一自动化,劳动条件好,对环无污染等优点。 感应加热的原理如图2-2在感应器通入变电流产生的交变磁切作用下,金属坯料内部产生交变涡流。由于涡流发热机磁化发热(磁性转变点以下)便直接将金属坯料加热。 图2-2 感应电加热原理图1—感应器2—坯料

材料成型工艺基础习题答案

材料成型工艺基础(第三版)部分课后习题答案第一章 ⑵.合金流动性决定于那些因素?合金流动性不好对铸件品质有何影响? 答:①合金的流动性是指合金本身在液态下的流动能力。决定于合金的化学成分、结晶特性、粘度、凝固温度范围、浇注温度、浇注压力、金属型导热能力。 ②合金流动性不好铸件易产生浇不到、冷隔等缺陷,也是引起铸件气孔、夹渣、縮孔缺陷的间接原因。 ⑷.何谓合金的收縮?影响合金收縮的因素有哪些? 答:①合金在浇注、凝固直至冷却至室温的过程中体积和尺寸縮减的现象,称为收縮。 ②影响合金收縮的因素:化学成分、浇注温度、铸件结构和铸型条件。 ⑹.何谓同时凝固原则和定向凝固原则?试对下图所示铸件设计浇注系统和冒口及冷铁,使其实现定向凝固。 答:①同时凝固原则:将内浇道开在薄壁处,在远离浇道的厚壁处出放置冷铁,薄壁处因被高温金属液加热而凝固缓慢,厚壁出则因被冷铁激冷而凝固加快,从而达到同时凝固。 ②定向凝固原则:在铸件可能出现縮孔的厚大部位安放冒口,使铸件远离冒口的部位最先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 第二章 ⑴ .试从石墨的存在和影响分析灰铸铁的力学性能和其他性能特征。 答:石墨在灰铸铁中以片状形式存在,易引起应力集中。石墨数量越多,形态愈粗大、分布愈不均匀,对金属基体的割裂就愈严重。灰铸铁的抗拉强度低、塑性差,但有良好的吸震性、减摩性和低的缺口敏感性,且易于铸造和切削加工。石墨化不充分易产生白

口,铸铁硬、脆,难以切削加工;石墨化过分,则形成粗大的石墨,铸铁的力学性能降低。 ⑵.影响铸铁中石墨化过程的主要因素是什么?相同化学成分的铸铁件的力学性能是否 相同? 答:①主要因素:化学成分和冷却速度。 ②铸铁件的化学成分相同时铸铁的壁厚不同,其组织和性能也不同。在厚壁处冷却速度较慢,铸件易获得铁素体基体和粗大的石墨片,力学性能较差;而在薄壁处,冷却速度较快,铸件易获得硬而脆的白口组织或麻口组织。 ⑸.什么是孕育铸铁?它与普通灰铸铁有何区别?如何获得孕育铸铁? 答:①经孕育处理后的灰铸铁称为孕育铸铁。 ②孕育铸铁的强度、硬度显著提高,冷却速度对其组织和性能的影响小,因此铸件上厚大截面的性能较均匀;但铸铁塑性、韧性仍然很低。 ③原理:先熔炼出相当于白口或麻口组织的低碳、硅含量的高温铁液,然后向铁液中冲入少量细状或粉末状的孕育剂,孕育剂在铁液中形成大量弥散的石墨结晶核心,使石墨化骤然增强,从而得到细化晶粒珠光体和分布均匀的细片状石墨组织。 ⑻.为什么普通灰铸铁热处理效果不如球墨铸铁好?普通灰铸铁常用的热处理方法有哪 些?其目的是什么? 答:①普通灰铸铁组织中粗大的石墨片对基体的破坏作用不能依靠热处理来消除或改进;而球墨铸铁的热处理可以改善其金属基体,以获得所需的组织和性能,故球墨铸铁性能好。 ②普通灰铸铁常用的热处理方法:时效处理,目的是消除内应力,防止加工后变形;软化退火,目的是消除白口、降低硬度、改善切削加工性能。

辊锻轧制技术

辊锻轧制技术 周艳鸿成型082 2008101208 1.辊锻变形特点 辊锻是材料在一对反向旋转模具的作用下产生塑性变形得到所需锻件或锻坯的塑性成形工艺。辊锻变形原理如图1所示。辊锻变形是复杂的三维变形。大部分变形材料沿着长度方向流动使坯料长度增加,少部分材料横向流动使坯料宽度增加。辊锻过程中坯料根截面面积不断减小。辊锻适用于轴类件拔长,板坯辗片及沿长度方向分配材料等变形过程。 2.辊锻基本原理 (1)坯料的咬入只有坯料被辊锻模咬入才能建立起辊锻过程,在实际生产中有端都自然咬入和中间咬入两种咬入方式,如图2所示。在端部自然咬入进,模具与坯料之词的摩擦力是咬入的主动力,而坯料受到的压力p的分力是咬入的阻力,图中α称咬入角。提高摩擦系数,减少咬入角有利于实现咬入条件,提高摩擦系数可用模具表面粗糙化来实现,减少咬入角可用减少绝对压下量来实现。中间咬入是由辊锻模上的突出部位直接压入坯料而强行将坯料拽入变形区,咬入时不受摩擦影响,咬入角可以加大。为了减少辊锻道次,增加每道次的压下量采用中间咬入是必需的。端部自然咬入时咬入角不大于25?,中间咬入时可达:32?~37?。 (2)前滑辊锻过程中,每一时刻流入变形区与流出变形区的材料体积相等,而变形区的高度是变化的,因此材料沿辊锻方向运动速度也是变化的,在变形区出口处材料运动速度大于锻辊线速度。这一现象称为前滑。由于辊锻件的长度由出口处运动速度决定,因此计算前滑有重要意义,计算前滑的芬克公式为 S=(R/h-1/2)r2 r=(α/2)×(1-α/2β) 式中S——前滑值; R——辊锻模半径; α——咬入角; β——摩擦角; h——变形区出口处高度。 芬克公式是在忽略宽民的条件下导出的,是计算简单变形的近似公式。对于受型槽约束的纵向变断面辊锻,其前滑值较简单辊锻小。

热弯玻璃的工艺控制及常见质量缺陷的探讨和分析

热弯夹层玻璃的生产主要经过以下几道工序:玻璃的热弯、合片、真空预热预压、高温高压等工艺过程。 1 热弯模具的选用 热弯玻璃所使用的成型模具在热弯玻璃成型过程中起着至关重要的作用,热弯模具的种类主要分为三种:实心模、条框模、空心模,在此基础之上很多生产厂家在模具的加工上都有自已的特点。实心模,顾名思义模具中间为实心,用铁板制作成,此种模具的特点是容易保证玻璃的弯曲度和球面的一致,玻璃不会弯曲过头,对操作人员要求不高,缺点是模具的制作成本高,制作周期长,在热弯烧制过程中,模具吸热多造成升温慢,在烧制过程中容易造成玻璃表面出现麻点;空心模的制作采用角钢和扁钢制成,这种模具的制作相对简单,用材少,在热弯烧制过程中模具吸热少,在烧制过程中玻璃的中间采用弹簧进行支撑,制品表面不会出现麻点,采用此种模具对热弯的操作技术要求较高,由于热弯玻璃过程中有热滞后现象,制品很容易弯过头;条框模是介于实心模和空心模之间的一种模具,它的制作相对于实心模来说较为简单,对热弯操作要求也较低。 2. 热弯的操作过程 目前,大多数玻璃加工厂家采用的是电加热式热弯炉,这种热弯炉温度控制方便,易操作,不污染玻璃,产品的质量和产品的一致性较高,且多数已采用计算机集成控制,通过对计算机各种参数设置,实现了对热弯工艺的程序化控制。 热弯操作过程可以简单概括为将搭配好的大小片,且两片大小片间均匀洒上硅粉的玻璃放在凹模上面,然后对其进行加热,使玻璃达到软化点温度时,玻璃在自身重力或外部压力的作用下达到与凹模曲率一致后,停止加热,缓慢进行退火直至室温,至此完成热弯过程。玻璃热弯工艺过程中的控制,主要把握:玻璃预热时,应采用连续加热或缓慢加热的方式,使炉内温各处一致;要求两片重叠的玻璃弯曲的曲率半径相一致,否则会使夹层玻璃产生光学畸变;玻璃必须达到所要热弯成型时所需的温度;模具放置在承载小车上时,必须保证模具放置的水平;炉内温度达到玻璃成型时所需的温度640~710℃,这时玻璃将开始在自身重力的作用下开始变形,为了防止玻璃在接近软化温度时突然沉降,防止玻璃表面产生热弯波纹,这时操作人员必须时刻观察炉内玻璃的成形情况,通过观察来控制加热灯管的开关数量、区域和时间;玻璃的退火应采用缓慢冷却的方式,炉温必须降到100℃以下时再取出玻璃,玻璃在热弯成型时,原有应力已消除,为防止在降温过程中由于温度梯度而产生新的应力,应严格控制在退火温度范围的冷却速度,特别是在温度较高阶段,要玻璃慢冷到玻璃结构完全固定以后,以防止永久应力的产生,退火曲线应该均匀变化,且出炉落架的玻璃不能放在车间风口或风扇直吹处。

材料成形工艺知识点

一.铸造成型 1.1收缩:铸造合金在液态、凝固态和固态的冷却过程中,由于温度降低而引起的体积减小的现象,称为收缩。 缩松缩孔:铸件在冷却和凝固过程中,由于合金的液态和凝固收缩,往往在铸件最后凝固的部分出现空洞。容积大而集中孔洞称为缩孔,细小而分散的孔洞称为缩松。 影响缩孔和缩松的因素及防止措施: 因素:浇筑温度,合金的结晶范围,铸型的冷却能力越大 防止措施:用顺序凝固方法 1.1.5铸造应力怎么产生的: 铸件凝固后在冷却过程中,由于温度下降将继续收缩。有些合金还会发生固态相变而引起收缩或膨胀,这导致铸件的体积和长度发生变化,若这种变化受到阻碍,就会在铸件内产生应力,称为铸造应力。 1.2砂型铸造 剖面示意图:上型下型,明冒口,出气冒口,浇口杯,型砂,砂箱,直浇道,横浇道,暗冒口,内浇口,型腔,型芯,分型面。 工艺流程! 1.3金属型铸造 金属型铸造又称硬模铸造,它是将金属液浇入金属型中,以获得金属铸件的一种工艺方法。(永久型铸造) 1.4熔模铸造:熔模铸造又称失蜡铸造,通常是在蜡模表面涂上数层耐火材料,待其硬化干燥后,将其中的蜡模熔去而制成型壳,再经过焙烧,然后进行浇注,而获得铸件的一种方法。熔模铸造工艺(重点) 1.5压力铸造:在高压作用下,使得液态或半液态金属以较高的速度充填压铸模型腔,并在压力下成形和凝固。 1.6铸造工艺设计 1.6.2铸件结构的工艺性。 1.铸造结构形式:结构外形应方便起模,尽可能减少和简化分型面,铸件的内腔应尽量不用或少用型芯。 2.合理的铸件壁厚:铸件壁厚过小,易产生浇不到、冷隔等缺陷;壁厚过大,易产生缩孔、缩松、气孔等缺陷。壁厚应均匀。 3.铸件壁的链接:连接处或者转角处应有结构圆角。,厚壁与薄壁间的链接要逐步过渡。 4.铸件应尽量避免有过大的平面 1.6.4型芯设计的作用是形成铸件的内腔、孔洞、形状复杂阻碍取模部分的外形以及铸型中有特殊要求的部分。 1.6.5浇注系统设计:浇口杯,直浇道,横浇道,内浇道。 金属型的浇筑位置一般分为三种:顶注式、底注式和侧注式。 基本要求: 1.防止浇不足缺陷 2.液态金属平稳地流入型腔 3.能把混入合金液中的熔渣挡在浇筑系统中 4能够合理地控制和调节铸件各部分的温度分布,减少或消除缩松缩孔 5.结构简单,体积小

弯管常见的缺陷及其解决措施

弯管常见的缺陷及其解决措施

弯管常见的缺陷及其解决措施 从工艺分析可知,常见的弯管缺陷主要有以下几种形式:圆弧处变扁严重(椭圆形)、圆弧外侧管壁减薄量过大、圆弧外侧弯裂、圆弧内侧起皱及弯曲回弹等。随着弯管半径的不同,前四种缺陷产生的方式及部位有所不同,而且不一定同时发生,而弯曲工件的弹性回弹却是不可避免的。弯管缺陷的存在对弯制管件的质量会产生很大的负面影响。管壁厚度变薄,必然降低管件承受内压的能力,影响其使用性能;弯曲管材断面形状的畸变,一方面可能引起横断面积减小,从而增大流体流动的阻力,另一方面也影响管件在结构中的功能效果;管材内壁起皱不但会削弱管子强度,而且容易造成流动介质速度不均,产生涡流和弯曲部位积聚污垢,影响弯制管件的正常使用;回弹现象必然使管材的弯曲角度大于预定角度,从而降低弯曲工艺精度。因此,应在弯制之前采取对应措施防止上述缺陷的产生,以获得理想的管件,保证产品的各项性能指标和外观质量。在通常情况下,对于前面提到的几种常见缺陷,可以有针对性地采取下列措施: (1) 对于圆弧外侧变扁严重的管件,在进行无芯弯管时可将压紧模设计成有反变形槽的结构形式:在进行有芯弯管时,应选择合适的芯棒(必要时可采用由多节段芯棒组装而成的柔性芯棒),正确安装之,并在安装模具时保证各部件的管槽轴线在同一水平面上。 (2) 小半径弯管时圆弧外侧减薄是弯曲的工艺特点决定的,是不可避免的。为了避免减薄量过大,常用的有效方法是使用侧面带有助推装置或尾部带有顶推装置的弯管机,通过助推或顶推来抵消管子弯制时的部分阻力,改善管子横剖面上的应力分布状态,使中性层外移,从而达到减少管子外侧管壁减薄量的目的。 (3) 对于管子圆弧外侧弯裂的情况,首先应保证管材具有良好的热处理状态,然后检查压紧模的压力是否过大,并调整使其压力适当,最后应保证芯棒与管壁之间有良好的润滑,以减少弯管阻力及管子内壁与芯棒的摩擦力。 (4) 对于圆弧内侧起皱,应根据起皱位置采取对应措施。若是前切点起皱,应向前调整芯棒位置,以达到弯管时对管子的合理支撑:若是后切点起皱,应加装防皱块,使防皱块安装位置正确,并将压模力调整至适当;若圆弧内侧全是皱纹,则说明所使用的芯棒直径过小,使得芯棒与管壁之间的间隙过大,或者就是压模力过小,不能使管子在弯曲过程中很好地与弯管模及防皱块贴合。因此,应更换芯棒,并调整压紧模使压模力适当。

锻造基本知识

锻造是一种利用锻压机械对金属坯料施加压力,使其产生塑性变形以获得具有一定机械性能、一定形状和尺寸锻件的加工方法,锻压(锻造与冲压)的两大组成部分之一。通过锻造能消除金属在冶炼过程中产生的铸态疏松等缺陷,优化微观组织结构,同时由于保存了完整的金属流线,锻件的机械性能一般优于同样材料的铸件。相关机械中负载高、工作条件严峻的重要零件,除形状较简单的可用轧制的板材、型材或焊接件外,多采用锻件。 1.变形温度 钢的开始再结晶温度约为727℃,但普遍采用800℃作为划分线,高于800℃的是热锻;在300~800℃之间称为温锻或半热锻,在室温下进行锻造的称为冷锻。用于大多数行业的锻件都是热锻,温锻和冷锻主要用于汽车、通用机械等零件的锻造,温锻和冷锻可以有效的节材。 2.锻造类别 上面提到,根据锻造温度,可以分为热锻、温锻和冷锻。 根据成形机理,锻造可分为自由锻、模锻、碾环、特殊锻造。 1)自由锻。指用简单的通用性工具,或在锻造设备的上、下砧铁之间直接对坯料施加外力,使坯料产生变形而获得所需的几何形状及内部质量的锻件的加工方法。采用自由锻方法生产的锻件称为自由锻件。自由锻都是以生产批量不大的锻件为主,采用锻锤、液压机等锻造设备对坯料进行成形加工,获得合格锻件。自由锻的基本工序包括镦粗、拔长、冲孔、切割、弯曲、扭转、错移及锻接等。自由锻采取的都是热锻方式。 2)模锻。模锻又分为开式模锻和闭式模锻.金属坯料在具有一定形状的锻模膛内受压变形而获得锻件,模锻一般用于生产重量不大、批量较大的零件。模锻可分为热模锻、温锻和冷锻。温锻和冷锻是模锻的未来发展方向,也代表了锻造技术水平的高低。 按照材料分,模锻还可分为黑色金属模锻、有色金属模锻和粉末制品成形。顾名思义,就是材料分别是碳钢等黑色金属、铜铝等有色金属和粉末冶金材料。 挤压应归属于模锻,可以分为重金属挤压和轻金属挤压。 闭式模锻和闭式镦锻属于模锻的两种先进工艺,由于没有飞边,材料的利用率就高。用一道工序或几道工序就可能完成复杂锻件的精加工。由于没有飞边,锻件的受力面积就减少,所需要的荷载也减少。但是,应注意不能使坯料完全受到限制,为此要严格控制坯料的体积,控制锻模的相对位置和对锻件进行测量,努力减少锻模的磨损。

中厚板表面质量缺陷分析

中厚板表面质量缺陷分析 【摘要】镰刀弯及麻点是中厚板卷现场轧制过程中中厚板表面产生常见质量缺陷,本文针对其产生原因进行了分析,并提出了几点解决方法。仅供参考! 【关键词】镰刀弯;麻点;工艺 概述 钢板的表面质量是好坏直接影响到钢板的性能与质量。在钢板生产过程中,由于原材料、轧制设备和工艺等原因,导致钢板表面出现麻面、结疤、裂纹、辊印、刮伤、针眼、鳞皮、孔洞等不同类型的缺陷。这些缺陷不仅影响产品的外观,而且降低了产品的抗腐蚀性、耐磨性和疲劳强度等性能。如何在生产过程中尽量避免钢板的表面缺陷,从而控制和提高钢板产品的表面质量,一直是钢铁加工企业非常关注的问题。本文重点就镰刀弯和麻点的产生原因及解决方法进行阐述。 1镰刀弯的产生及解决方法 1.1镰刀弯的产生原因 在中厚板轧制过程中,由于现场某些因素的影响,使板坯在轧制过程中的工艺参数发生变化,如冷却不均匀使板坯两侧存在温度差,或来料厚度宽度方向上不均匀;设备原因,如操作侧和传动侧的轧机刚度不同,使得板坯咬入轧辊时偏离轧制中心线。在电气方面,由于控制系统或参数设定不当,板坯在轧制过程中出现楔形(即板坯两侧存在厚度差);这些不对称因素的产生,都将使板坯轧制过程中辊系的受力平衡发生变化,使轧辊产生倾斜,板坯出现镰刀弯现象,造成板形不好和尺寸精度变差,这些都严重影响了产品的尺寸精度和质量。结合中厚板厂的生产实际情况,下面对产生镰刀弯的主要因素进行分析。 (1)温度的影响 温度的影响主要有三方面:加热炉加热的板坯,在宽度方向上存在温度差,即操作侧和传动侧的温度不同;或者由于轧辊冷却水的分布的不均匀,造成轧辊的辊身的操作侧和传动侧温度不同;或者由于工作辊刮水板漏水,导致轧件在宽度方向上的温度偏差。 (2)偏移轧制中心线的影响 在轧制过程中,轧件偏移了轧机的中心线,使机架所受的轧制力分布不均衡,导致轧件出口厚度的波动,从而产生镰刀弯。 (3)楔形量的影响

精锻成形技术的现状及其发展

精锻成形技术的现状及其发展青岛建筑工程学院(山东青岛!(("&&)孙令强 【摘要】首先介绍了我国的精锻成形技术;然后介绍了用传统的锻压设备及新型局部连续成形锻压设备进行精密成形的国内外情况,例如冷摆辗、辗环、径向锻造等;最后介绍了精锻技术必须注意的几个问题。 关键词精锻成形径向锻造辊锻冷摆辗 )我国的精锻成形技术现状 锻造工业一直是汽车、矿山、能源、建筑、航空、航天、兵器等工业的重要基础。近十年来,锻压工艺突破了毛坯生产的范畴,人们能生产出不少接近成品的冷锻成形件,其表面质量好,机械加工余量少,尺寸精度高。精锻成形提高了材料利用率,部分取消或减少了切削加工,使金属纤维沿产品轮廓分布,使零件的承载能力增加,提高了整车性能。 我国已拥有&""""台左右的锻压设备,锻件年产量大体为&""多万吨,其中模锻件大约占&"*。我国有模锻设备约&+""台。其中蒸、空模锻锤(+"台;模锻水压机万吨和&+"""吨各一台;)("",$以上的热模锻压力机)""台;螺旋压力机)!""台;平锻机约-""台,用于模锻生产的机械压力机约为-""台。 我国模锻业发展迅速,目前已能为("万千瓦及以下火电站、."万千瓦及以下水电站、&"万千瓦及以下核电站提供汽轮机主轴、发电机转子和核岛锻件。为冶金机械生产.!""//特厚板轧机轧辊,直径!!"""//整体支持辊锻件,为炼油化工行业提供单重+("",$及以下加氢反映容器等大型锻件,能锻造直径!+!""//以下环形锻件。在汽车行业依靠自己的力量建成了汽车前轴自动生产线。在轴承行业已较多的采用多工位热镦工艺取代旧的扩孔工艺;直伞齿轮已普遍采用精锻齿形工艺,等速万向节筒形壳体用冷锻压力机冷挤已试制成功并投入生产。 由此可见,我国精锻成形技术的发展已较为成熟,但与世界先进水平尚有一定的差距。 !采用传统锻压设备进行的精密成形技术 精锻成形工艺的主要应用大体分两类:"精化毛坯,即用精锻工序代替粗切削加工工序,将精锻件直接进行精加工得到成品件;#精锻件,大多数是采用精密成形工艺制造零件的主要部分或不易机加工的部分,减少机加工量或只进行少量的切削加工。 精锻成形工艺按金属成形时的变形温度可分为高温精密模锻、中温精锻成形、室温精锻成形和超速等温精锻成形。如按成形式金属的流动情况,则可分为开式精锻成形、闭式精锻成形、半闭式精锻成形。按变形速度可分为一般精密模锻、慢速精锻成形和高速精锻成形。 常规模锻件所达到的合理尺寸精度为0"#)1"#!+//,表面粗糙度值小于!"2!#+$/,而精锻件一般为"#"+//,较高精度可达到"#"+1"#)"//,表面粗糙度可达到!"2 )#(1"#.$/。此外,采用精密模锻成形还可节约材料和机床。据有关资料,每)""万吨钢材由切削加工改为精密模锻,可节约钢材)+万吨,相应可节约机床)+"""台。 冷成形工艺的生产率比切削加工要高几倍到几十倍,材料利用率达-"*1’"*,在冷成形过程中,金属材料处于三向不等的压应力作用下,挤压变形后,金属材料的晶粒组织更加致密;金属流线不被切断,而是沿着挤压件轮廓连续分布;同时由于冷挤压利用了金属材料冷变形的冷作硬化特性,从而使冷挤压件的强度大为提高。 国外已普遍采用冷成形工艺生产低碳钢、中碳钢和合金钢零件,重量由几克到几十克。冷成形的形状多种多样,如齿轮、齿条、同步齿圈、花键等。我国现在可以生产)("",$、!""",$、.""",$、+""",$、(&"",$以至)"""",$的各种型号的冷挤压机。 温锻是("年代至-"年代较为发展的新工艺,其工艺特点为把金属加热到再结晶温度以下(-""1

相关文档
最新文档