表面淬火工艺原理4-2

表面淬火工艺原理4-2
表面淬火工艺原理4-2

4.2 表面淬火工艺原理

一、钢在非平衡加热时的相变特点

如前所述,钢在表面淬火时,其基奉条件是有足够的能量密度提供表面加热,使表面有足够快的速度达到相变点以上的温度。因此,表面淬火时,钢处于非平衡加热。

钢在非平衡加热时有如下特点:

1.在一定的加热速度范围内,临界点随加热速度的增加而提高。

在快速加热时均随着加热速度的增加而向高温移动。但当加热速度大到某一范围时,所有亚共析钢的转变温度均相同.加热速度愈快,奥氏体形成温度范围愈宽,但形成速度快;形成时间短.加热速度对奥氏体开始形成温度影响不大,但随着加热速度的提高,显著提高了形成终了温度.原始组织愈不均匀,最终形成温度提得愈高.

2.奥氏体成分不均匀性随着加热速度的增加而增大

如前所述,随着加热速度的增大,转变温度提高,转变温度范围扩大.随着转变温度的升高,与铁素体相平衡的奥氏体碳浓度降低,而与渗碳体相平衡的奥氏体碳浓度增大.因此,与铁素体相毗邻的奥氏体碳浓度将和与渗碳体相毗邻的奥氏体中碳浓度有很大差异。由于加热速度快,加热时间短,碳及合金元素来不及扩散,将造成奥氏体中成分的不均匀,且随着加热速度的提高,奥氏体成分的不均匀性增大。例如0.4%C碳钢,当以130℃/s的加热速度加热至900℃时,奥氏体中存在着1.6%C的碳浓度区.显然,快速加热时,钢种、原始组织对奥氏体成分的均匀性有很大影响.对热传导系数小,碳化物粗大且溶解困难的高合金钢采用快速加热是有困难的.

3.提高加热速度可显著细化奥氏体晶粒.

快速加热时,过热度很大,奥氏体晶核不仅在铁素体一碳化物相界面上形成,而且也可能在铁素体的亚晶界上形成,因此使奥氏体的成核串增大。又由于加热时间极短,奥氏体晶粒来不及长大.当用超快速加热时,可获得超细化晶粒。

4.快速加热对过冷奥氏体的转变及马氏体回火有明显影响.

快速加热使奥氏体成分不均匀及晶粒细化,减小了过冷奥氏体的稳定性,使c曲线左移.由于奥氏体成分的不均匀性,特别是亚共析钢,还会出现二种成分不均匀性现象。在珠光体区域,原渗碳体片区与原铁索体片区之间存在着成分的不均匀性,这种区域很傲小,即在微小体积内的不均匀性.而在原珠光体区与原先共析铁索体块区也存在着成分的不均匀性,这是大体积范围内的不均匀性.由于存在这种成分的大体积不均匀性,将使这二区域的马氏体转变点不同,马氏体形态不同.即相当于原铁素体区出现低碳马氏体,原珠光体区出现高碳马氏体.由于快速加热奥氏体成分的不均匀性,淬火后马氏体成分也不均匀,所以,尽管淬火后硬度较高,但回火时硬度下降较快,因此回火温度应比普通加热淬火的略低。

二、表面淬火的组织与性能

1.表面淬火的金相组织

钢件经表面淬火后的金相组织与钢种、淬火前的原始组织及淬火加热时沿截面温度的分布有关。最简单的是原始组织为退火状态的共析钢。淬火以后金相组织应分为三区,自表面向心部分别为马氏体区(M) (包括残余奥氏体),马氏体加珠光体(M十P)及珠光体(P)区。这里所以出现马氏体加珠光体区,因快速加热时奥氏体是在一个温度区间、并非在一个恒定温度形成的,其界限相当于沿截面温度曲线的奥氏体开始形成温度及奥氏体形成终了温度.在全马氏体区,自表面向里,由于温度的差别,在有情况下也可以看到其差别,最表面温度高,马氏体较粗大,中间均匀细小,紧靠开始形成温度区,由于其淬火前奥氏体成分不均匀,如腐蚀适当,将能看到珠光体痕迹(“珠光体灵魂”).在温度低于奥氏体形成终了温度区,由于原为退火组织,加热时不能发生组织变化,故为淬火前原始组织.

若表面淬火前原始组织为正火状态的45钢,则表面淬火以后其金相组织沿截面变化将要复杂得多.如果采用的是淬火烈度很大的淬火介质,即只要加热温度高于临界点,凡是奥氏体区均能淬成马氏体,按其金相组织分为四区,表面马氏体区(M),往里为马氏体加铁素体(M+F),再往里为马氏体加铁索体加珠光体区,中心相当于温度低于奥氏体开始形成温度区为淬火前原始组织,即珠光体加铁索体。在全马氏体区,金相组织也有明显区别,在紧靠相变点Ac3区,相当于原始组织铁索体部位为腐蚀颜色深的低碳马氏体区,相当于原来珠光体区为不易腐蚀的隐晶马氏体区,二者颜色深浅差别很大(图4-5b)。由此移向淬火表面,低碳

马氏体区逐渐扩大,颜色逐渐变浅,而隐晶马氏体区颜色增深,靠近表面变成中碳马氏体(如图4-5a)。

图4-5 45钢表面淬火后不同加热温度区的金相组织

若45钢表面淬火前原始组织为调质状态,由于回火索氏体为粒状渗碳化均匀分布在铁素体基体上的均匀组织,因此表面淬火后不会出现由于上述那种碳浓度大体积不均匀性所造成的淬火组织的不均匀.在截面上相当于Acl与Ac3,温度区的淬火组织中,未溶铁索体也分布得比较均匀.在淬火加热温度低于Ac1,至相当于调质回火温度区,如图4-6中C区,由于其温度高于原调质回火温度而又低于临界点,因此将发生进一步回火现象。表面淬火将导致这一区域硬度下降(图4—6).这一部分的回火程度取决于参数M,其区域大小取决于表面淬火加热时沿截面的温度梯度。加热速度愈快,沿截面的温度梯度愈陡,该区域愈小.由于加热速度快,加热时间短,参数M小,回火程度也减小.

表面淬火淬硬层深度一般计至半马氏体(50%M)区,宏观的测定方法是沿截面制取金相试样,用硝酸酒精腐蚀,根据淬硬区与未淬硬区的颜色差别来确定(淬硬区颜色浅);也可借测定截面硬度来决定。

图4-6原始组织为调质状态的45钢表面淬火后沿截面硬度

2.表面淬火后的性能

(1)表面硬度

快速加热,激冷淬火后的工件表面硬度比普通加热淬火高。例如激光加热淬火的45钢硬度比普通淬火的可高4个洛氏硬度单位;高频加热喷射淬火的,其表面硬度比普通加热淬火的硬度也高2~3个洛氏硬度单位。这种增高硬度现象与加热温度及加热速度有关.当加热速度一定,在某一温度范围内可以出现增加硬度的现象,提高加热速度,可使这一温度范围移向高温,看来这和快速加热时奥氏体成分不均匀性、奥氏体晶粒及亚结构细化有关。

(2)耐磨性

快速加热表面淬火后工件的耐磨性比普通淬火的高。快速表面淬火的耐磨性优于普通淬火的。看来,这也与其奥氏体晶粒细化、奥氏体成分的不均匀,表面硬度较高及表面压应力状态等因素有关。

(3)疲劳强度

采用正确的表面淬火工艺,可以显著地提高零件的抗疲劳性能。例如40Gr钢,调质加表面淬火(淬硬层深度0,9mm)的疲劳极限为324N/mm2,而凋质处理的仅为235N/mm2。

表面淬火还可显著地降低疲劳试验时的缺口敏感性。表面淬火提高疲劳强度的原因,除了由于表层本身的强度增高外,主要是因为在表层形成很大的残余压应力。表面残余压应力愈大,工件抗疲劳性能愈高。

3.表面淬火淬硬层深度及分布对工件承载能力的影响

虽然表面淬火有上述优点,但使用不当也会带来相反效果。例如淬硬层深度选择不当,或局部表面淬火硬化层分布不当,均可在局部地方引起应力集中而破坏。

(1)表面淬火硬化层与工件负载时应力分布的匹配即表面淬火淬硬层深度必须与承载相配。

(2)表面淬硬层深度与工件内残余应力的关系

由第三章所采用类似的分析方法可知,表面淬火时由于仅表面加热,仅表面发生胀缩,故表面将承受压应力。淬火冷却时表面热应力为拉应力,而表面组织应力为压应力,二者叠加结果,表面残余应力为压应力。这种内应力由于表面部分加热和冷却时的胀缩和组织转变时的比容变化所致,显然其应力大小及分布与淬硬层深度有关.试验表明,在工件直径一定的情况下,随着硬化层深度的增厚,表面残余压应力先增大,达到一定值后,若再继续增厚硬化层深度,表面残余压应力反而减小。残余应力还与沿淬火层深度的硬度分布有关,即与马氏体层的深度、过渡区的宽度及工件截面尺寸之间的比例有关。

高频淬火原理及工艺解析

高频淬火含义与原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一、含义 高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小。 二、原理 利用电流的集肤效应,在零件表面形成电流进而加热工件,实现心部和表面不同的热处理状态; 其中根据电流频率的不同分为工频、中频和高频。分别针对不同的淬硬深度和工件大小。高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热

零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。 产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个趋肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000℃,而心部温度升高很小。 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展.

表面淬火工艺

淬火.退火.正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。 ②细化晶粒,消除因铸、锻、焊引起的组织缺陷,均匀钢的组织和成分,改善钢的性能或为以后的热处理作组织准备。 ③消除钢中的内应力,以防止变形和开裂。 1

淬火工艺

淬火工艺 钢的淬火是将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或在一定范围内发生马氏体不稳定组织结构转变的热处理工艺。 一. 淬火工件的工艺流程 一般工件:淬火→清洗→回火→喷砂(或喷丸等)表面清理→检验。 轴类零件及易变形工件:淬火→清洗→回火→校直→去应力处理→喷砂→检验。 二. 淬火前的准备 (1)核对工件数量、材质及尺寸,并检查工件有无裂纹、碰伤、缺边、锐边、尖角及锈蚀等影响淬火质量的缺陷。 (2)根据图样及工艺文件,明确淬火的具体要求,如硬度、局部淬火范围等。(3)根据淬火要求,设计选用合适的工夹具,有的工件进行适当的绑扎,在易产生裂纹的部位,采取相应的防护措施,如用铁皮或石棉绳包扎及堵孔等。(4)表面不允许氧化、脱碳的工件,应在盐浴炉或预抽真空保护气氛炉中加热,或采取以下防护措施: a. 涂料防护 b. 将工件装入盛有木炭或已使用过的铸铁屑的铁箱中,加盖密封。 (5)大批工件必须作单件或小批量试淬,制订工艺后方可进行批量淬火,并在生产过程中经常抽检。 三. 装炉 (1)允许不同材质但具有相同加热工艺的工件装入同一炉中加热。 (2)装炉工件均应干燥、不得有油污及其他脏物。 (3)截面大小不同的工件装入同一炉时,大件应放在炉膛后部,大、小工件分别计算保温时间。(4)装炉时必须将工件有规律摆放在装炉架或炉底板上,用钩子、钳子或专用工具堆放,不得将工件直接抛入炉内,以免碰伤工件或损坏炉衬。 (5)细长工件必须在井式炉或盐炉中垂直吊挂加热,以减少变形。 (6)在箱式炉中装工件加热时,一般为单层排列,工件间隙10~30mm。小件允许适当堆放,但保温时间应适当增加。

表面淬火工艺原理4-2

4.2 表面淬火工艺原理 一、钢在非平衡加热时的相变特点 如前所述,钢在表面淬火时,其基奉条件是有足够的能量密度提供表面加热,使表面有足够快的速度达到相变点以上的温度。因此,表面淬火时,钢处于非平衡加热。 钢在非平衡加热时有如下特点: 1.在一定的加热速度范围内,临界点随加热速度的增加而提高。 在快速加热时均随着加热速度的增加而向高温移动。但当加热速度大到某一范围时,所有亚共析钢的转变温度均相同.加热速度愈快,奥氏体形成温度范围愈宽,但形成速度快;形成时间短.加热速度对奥氏体开始形成温度影响不大,但随着加热速度的提高,显著提高了形成终了温度.原始组织愈不均匀,最终形成温度提得愈高. 2.奥氏体成分不均匀性随着加热速度的增加而增大 如前所述,随着加热速度的增大,转变温度提高,转变温度范围扩大.随着转变温度的升高,与铁素体相平衡的奥氏体碳浓度降低,而与渗碳体相平衡的奥氏体碳浓度增大.因此,与铁素体相毗邻的奥氏体碳浓度将和与渗碳体相毗邻的奥氏体中碳浓度有很大差异。由于加热速度快,加热时间短,碳及合金元素来不及扩散,将造成奥氏体中成分的不均匀,且随着加热速度的提高,奥氏体成分的不均匀性增大。例如0.4%C碳钢,当以130℃/s的加热速度加热至900℃时,奥氏体中存在着1.6%C的碳浓度区.显然,快速加热时,钢种、原始组织对奥氏体成分的均匀性有很大影响.对热传导系数小,碳化物粗大且溶解困难的高合金钢采用快速加热是有困难的. 3.提高加热速度可显著细化奥氏体晶粒. 快速加热时,过热度很大,奥氏体晶核不仅在铁素体一碳化物相界面上形成,而且也可能在铁素体的亚晶界上形成,因此使奥氏体的成核串增大。又由于加热时间极短,奥氏体晶粒来不及长大.当用超快速加热时,可获得超细化晶粒。

热处理--表面淬火技术

我所关注的表面工程领域——表面淬火技术 一、表面淬火技术的原理和分类 采用特定热源将钢铁材料表面快速加热到Ac3(对亚共析钢)或者Ac1(对过共析钢)之上,然后使其快速冷却并发生马氏体相变,形成表面强化层的工艺过程,就称为表面淬火技术。实际上,不仅仅是钢铁,凡是能通过整体强化的金属材料,原则上都可以进行表面淬火。需要注意的是,表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织,使其表面硬度、耐磨性和疲劳强度均高。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些合金钢。 对于表面淬火的使用材料,原则上,碳的质量分数在0.35%--1.20%的中、高碳钢及基体相当于中碳钢的普通灰铸铁、球墨铸铁、可锻铸铁、合金铸铁均可以实现表面淬火,但中碳钢与球墨铸铁是最适宜于表面淬火的材料。 根据加热方法不同,表面淬火可分为感应加热(高频、中频、工频)表面淬火、火焰加热表面淬火、激光加热表面淬火、电子束表面淬火、接触电阻加热表面淬火、电解液加热表面淬火等。工业上应用最多的为感应加热、火焰加热、激光加热表面淬火。这里我主要介绍了感应加热、激光加热表面淬火技术,以及感应加热表面淬火国内外的发展现状及趋势。 二、感应加热表面淬火 感应加热表面淬火法是采用一定方法使工件表面产生一定频率的感应电流,将零件表面迅速加热,然后迅速淬火冷却的一种热处理操作方法。生产中把工件放入由空心铜管绕成的感应线圈中,当感应线圈通以交流电时,便会在工件内部感应产生频率相同、方向相反的感应电流。感应电流在工件内自成回路,故称为“涡流”。涡流在工件截面上的分布是不均匀的,表面电流密度最大,心部电流密度几乎为零,这种现象称为集肤效应。由于钢本身具有电阻,因而集中于工件表面的涡流,几秒种可使工件表面温度升至800~1000℃,而心部温度仍接近室温,在随即喷水(合金钢浸油)快速冷却后,就达到了表面淬火的目的。 根据输出加热电流频率的不同可将感应加热表面淬火分为高频感应加热淬

中频表面淬火工艺技术报告

关于中频表面淬火工艺的技术报告 热处理是机械制造中热加工工艺的一种。它对保证机械产品的质量,延长使用寿命,有着重大的作用。钢的热处理就是利用钢在加热、保温和冷却作用下,其内部发生组织状态(晶体结构、组织形态)、物理状态(比容、残余内应力等)和化学成分分布的变化,而使工件具有预期的工艺性能、机械性能、物理性能和化学性能,以达到便于冷热加工,提高使用寿命,充分发挥材料潜力的目的。钢的热处理基本工艺包括退火、正火、淬火、回火和化学热处理等。根据在车间实习和工作情况,我将主要负责车间中频表面淬火工序的工艺编制。所以将重点放在中频表面淬火工序上。 一、感应加热原理及分类 中频加热是感应表面加热的一种。感应表面加热是利用导体(零件)在高频磁场作用下产生的感应电流(涡流损耗)以及导体内磁场的作用(磁滞损耗)引起导体自身发热而进行加热的。根据设备的频率不同分为:①高频加热,频率为100~500千赫。淬硬层深度为0.3~3㎜,加工工件最小直径为Φ28㎜;②中频加热,一般采用8000赫兹和2500赫兹二种,淬硬层深度:8000赫兹 1.3-5.5㎜,加工工件最小直径为Φ16㎜;2500赫兹 2.4-10㎜,加工工件最小直径为Φ28㎜;③工频加热,频率为50赫兹,淬硬层深度为17-70㎜,加工工件最小直径为Φ200㎜。目前,我车间使用的设备是中频立式淬火机床,频率为8000赫兹。而多年不用的高频淬火机床在车间搬、拆迁过程中已经拆除了。 二、感应加热表面淬火工艺及选择 感应加热工艺参数包括着热处理参数和电参数。热处理参数包括加热温度、加热时间、加热速度以及淬火层深度。电参数包括设备的频率、零件单位面积功率等。 感应加热淬火工艺中几个主要问题: 1、确定零件的技术要求 表面淬火零件的技术要求包括:表面硬度、淬火层深度及淬硬区分布、淬火层组织等。 ⑴.表面硬度:感应淬火后零件的表面硬度要求与材料的化学成分和使用的条件有关。 ⑵.淬火层深度:淬火层深度主要是根据零件的机械性能确定的。 ⑶.淬硬区分布:按零件的几何形状与工作条件的不同,各种表面淬火零件的硬化区部分和尺寸有不同的要求。 ⑷.金相组织:按零件的材料及工作条件,规定各格的等级范围。按评级标准进行金相评级。 2、加热温度的选择 感应加热速度快,与一般加热相比,必须选用较高的加热速度,适宜的加热温度是与钢材的化学成分、原始组织状态及加热速度等因素有关。我车间由于设备的限制,只能采取目测加热温度的方法。 3、设备频率的选择 频率的选择主要是根据淬火层深度和零件的尺寸大小来确定。当设备给定或选定以后,设备的频率就是一个不可调的参数。我车间的设备只有立式淬火机床一台,故工艺选择中不再考虑设备频率。 4、感应加热方法及工艺操作 感应加热方法基本分为两种: ⑴.同时加热法,这种加热法是被加热的表面同时共热升温,零件需要加热的整个部分都被感应器包围着。在大批量生产时,为充分发挥设备潜力,提高生产效率,只要设备输出功率足够的条件下,尽可能采用同时加热。 ⑵.连续加热法,零件表面的加热和冷却时连续不断进行的。连续加热生产率较低,但加

表面热处理方法

表面热处理方法、特点和应用 表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性(即表面淬火), 或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表面硬度比前者更高(即化学热处理)的方法。 火焰表面淬火 用乙炔-氧或煤气-氧的混合气体燃烧的火焰,喷射到零件表面上,快速加热,当达到淬火温度后,立即喷水或用乳化液进行冷却 淬透层深度一般为2-6mm,过深往往引起零件表面严重过热,易产生淬火裂纹。 表面硬度:钢可达HRC65,灰铸铁为HRC40-48,合金铸铁为HRC43-52 这种方法简便,无需特殊设备,但易过热,淬火效果不稳定,因而限制了它的应用 适用于单件或小批生产的大型零件和需要局部淬火的工具或零件,如大型轴类、大模数齿轮等 常用钢材为中碳钢,如35、45及中碳合金结构钢(合金元素<3%),如40Cr,65Mn等,还可用于灰铸铁、合金铸铁件。 碳含量过低,淬火后硬度低,而碳和合金元素过高,则易碎裂,因此,以含碳量右0.35-0.5%之间的碳素钢最适宜。 感应加热表面淬火;将工件放入感应器中,使工件表层产生感应电流,在极短的时间内加热到淬火温度后,立即喷水冷却,使工件表层淬火,从而获得非常细小的针状马氏体组织。 根据电流频率,感应加热表面淬火,可以分为: 高频淬火;100-1000kHz. 中频淬火;1-10kHz. 工频淬火;50Hz 1表层硬度比普通淬火高2-3HRC,并具有较低的脆性: 2疲劳强度,冲击韧性都有所提高,一般工件可提高20-30%: 3变形小: 4淬火层深度易于控制: 5淬火时不易氧化和脱碳: 6可采用较便宜的低淬透性钢: 7操作易于实现机械化和自动化,生产率高

热处理工艺的分类

热处理工艺的分类 金属热处理工艺大体可分为、表面热处理和化学热处理三大类。根据加热、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。同一种金属采用不同的热处理工艺,可获得不同的组织,从而具有不同的性能。钢铁是工业上应用最广的金属,而且钢铁显微组织也最为复杂,因此钢铁热处理工艺种类繁多。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和四种基本工艺。 整体热处理工艺的手段 退火是将工件加热到适当温度,根据材料和工件采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的和使用性能,或者为进一步淬火作组织准备。 正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。 为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进 行长时间的保温,再进行冷却,这种工艺称为回火。 退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 “四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得 一定的强度和韧性,把淬火和结合起来的工艺,称为。某些合金淬火形成后,将其置于室温或稍高的适当温度下保持较长时间,以提高合金的硬度、强度或电性磁性等。这样的热处理工艺称为。 把形变与热处理有效而紧密地结合起来进行,使工件获得很好的强度、韧性配合的方法称为;在负压气氛或真空中进行的热处理称为,它不仅能使工件不氧化,不脱碳,保持处理后工件表面光洁,提高工件的性能,还可以通入渗剂进行化学热处理。 表面热处理是只加热工件表层,以改变其表层力学性能的金属热处理工艺。为了只加热工件表层而不使过多的热量传入工件内部,使用的热源须具有高的,即在单位面积的工件上给予较大的热能,使工件表层或局部能短时或瞬时达到高温。表面热处理的主要方法有火焰淬火和热处理,常用的热源有氧乙炔或氧丙烷等火焰、、激光和电子束等。 化学热处理是通过改变工件表层化学成分、组织和性能的金属热处理工艺。化学热处理与表面热处理不同之处是后者改变了工件表层的化学成分。化学热处理是将工件放在含碳、氮或其它的介质(气体、液体、固体)中加热,保温较长时间,从而使工件表层 渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 热处理是和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善的组织和应力状态,以利于进行各种冷、。

高频淬火原理与应用

高频淬火原理及应用 线圈通以高频电流,产生高频磁场,在铁磁性材料中产生感生电流,由于趋肤效应,感生电流聚积于材料的表面产生热,达到相变温度。激冷达到淬火目的。 感应加热与其它加热炉传导、对流或辐射使工件到达加热温度相比,它具有完全不同的加热原理。其基本原理是:把加热材料(即工件)置于通有交流电流的线圈内,由于交变磁场的作用工件内部会产生感应电势,在感生电势的作用下工件内会产生涡流,依靠这些涡流的能量达到加热目的。 通过热高频淬火多数用于工业金属零件表面淬火,是使工件表面产生一定的感应电流,迅速加热零件表面,然后迅速淬火的一种金属热处理方法。感应加热设备,即对工件进行感应加热,以进行表面淬火的设备。感应加热的原理:工件放到感应器内,感应器一般是输入中频或高频交流电(1000-300000Hz或更高)的空心铜管。产生交变磁场在工件中产生出同频率的感应电流,这种感应电流在工件的分布是不均匀的,在表面强,而在内部很弱,到心部接近于0,利用这个集肤效应,可使工件表面迅速加热,在几秒钟内表面温度上升到800-1000ºC,而心部温度升高很小

词语解释 感应加热频率的选择:根据热处理及加热深度的要求选择频率,频率越高加热的深度越浅。 一、高频(10KHZ以上)加热的深度为0.5-2.5mm, 一般用于中小型零件的加热,如小模数齿轮及中小轴类零件等。 二、中频(1~10KHZ)加热深度为2-10mm,一般用于直径大的轴类和大中模数的齿轮加热。 三、工频(50HZ)加热淬硬层深度为10-20mm,一般用于较大尺寸零件的透热,大直径零件(直径300mm以上,如轧辊等)的表面淬火。 感应加热淬火表层淬硬层的深度,取决于交流电的频率,一般是频率高加热深度浅,淬硬层深度也就浅。频率f与加热深度δ的关系,有如下经验公式:δ=20/√f(20°C);δ=500/√f(800°C)。 式中:f为频率,单位为Hz;δ为加热深度,单位为毫米(mm)。 感应加热表面淬火具有表面质量好,脆性小,淬火表面不易氧化脱碳,变形小等优点,所以感应加热设备在金属表面热处理中得到了广泛应用。 感应加热设备是产生特定频率感应电流,进行感应加热及表面淬火处理的设备。

表面淬火材料的硬度及淬火深度检测方法

上海中研仪器制造厂 https://www.360docs.net/doc/0f7824005.html,/ 钢铁零件表面淬火硬度及淬火深度检测方法 A、首先熟悉以下两个名词: 1、有效硬化层深度(DS):是指从零件表面到维氏硬度等于极限硬度那一层之间的距离。 2、极限硬度:是指零件表面所要求的最低硬度乘以系数,通常HV1试验力系数可以选用 0.8,也可以选用0.9或者更高(如零件表面硬度320HV,那么极限硬度 =320X0.8=256HV)。 B、试验力的选择 通常选用显微维氏硬度计,试验力通常选用HV1(9.807N),也可选用4.9N-49N范围内。 C、检测 1、检测应在规定试样表面的一个或者多个区域内进行,并在图纸上注明。 2、检测试样的制备: 应在垂直淬硬面切取试样,切断面作为检测面。检测面应做好磨抛处理,使其达到光洁如镜。在切割、磨抛过程中要注意避免工件过热、变形、出现倒角等。详见上海中研仪器制造厂技术文章栏目内的《金相试样制备流程》,这里不做过多阐述。 3、硬度检测: 硬度压痕应当打在垂直于表面的一条或多条平行线上,而且宽度为1.5mm区域内,最靠近表面的压痕中心与表面的距离为0.15mm,从表面到各逐次压痕中心的距离应每次增加0.1mm。当表面硬化层深度大时,各压痕中心的距离可以大一些,但在接近极限硬度区域附近,仍应保持压痕中心之间的距离为0.1mm。 4、测量结果: 用垂直表面横截面上的硬度变化曲线来确定有效硬化层深度。由绘制的硬度变化曲线,确定从零件表面到硬度值等于极限硬度的距离,这个距离就是感应淬火或火焰淬火后有效硬化层深度。 备注:一个区域内有多条硬度变化曲线时,应取各曲线测得的硬化层深度平均值,作为有效硬化层深度。有效硬化层深度用字母DS表示,深度单位为mm,例如硬化层深度0.5mm 可以写成DS0.5。 技术支持邮箱:zhongyanyiqi@https://www.360docs.net/doc/0f7824005.html,

金属热处理工艺的分类及代号

金属热处理工艺的分类及代号

金属热处理工艺的分类及代号(GB/T12693-90) 1.分类:热处理分类由基础分类和附加分类组成. (1)基础分类 根据工艺类型、工艺名称和实践工艺的加热方法,将热处理工艺按三个层次进行分类,见附录表 1-1. (2)附加分类 对基础分类中某些工艺的具体条件的进一步分类.包括退火、正火、淬火、化学热处理工艺加热介质(附录表1-2);退火冷却工艺方法(附录1-3);淬火冷却介质或冷却方法(附录表(1-4);渗碳和碳氮共渗的后续冷却工艺(附录表1-5),以及化学热处理中非金属、渗金属、多元共渗、熔渗四种工艺按元素的分类. 2.代号 (1)热处理工艺代号标记规定如下: 5热处理 X工艺类型 X工艺名 称 X 加热方法 附加分类工艺代号 (2)基础工艺代号 用四位数字表示.第一位数字“5”为机械制造工艺分类与代号中表示热处理的工艺代号;第二,三,四位数字分别代表基础分类中的第二,三,四层次中的分类代号。当工艺中某个层次不需分类时,该层次用0代号。 (3)附加工艺代号 它用英文字母代表。接在基础分类工艺代号后面。具体代号见附录表1-2至附录表1-5。 (4)多工序热处理工艺代号

多工序热处理工艺代号用破折号将各工艺代号连接组成,但除第一工艺外,后面的工艺均省略第一位数字“5”,如5151-331G表示调质和气体渗碳。 (5)常用热处理工艺代号见附录表1-6。 附录表1-1.热处理工艺分类及代号 工艺总称代号工艺类 型代 号 工艺名称代 号 加热方法代号 热处理 5 整热处理 体 1 退火 1 加热炉 1 正火 2 淬火 3 感应 2 正火和淬火 4 调质 5 火焰 3 稳定化处理 6 固溶处理,水韧处理7 固溶处理和时效8 表面热处 理 2 表面淬火和回火 1 电阻 4 物理气相沉淀 2 化学气相沉淀 3 激光 5 等离子体化学气相沉淀 4 化学热处 理 3 渗碳 1 电子束 6 碳氮共渗 2 渗氮 3 等离子体 7 氮碳共渗 4 渗其他非金属 5 其他8 渗金属 6 多元共渗7 溶渗8 附录表1-2.加热介质及代号 加热介质固体液体气体真空保护气氛可控气氛流态床代号S L G V P C F

金属热处理及表面处理工艺规范

北京奇朔科贸有限公司 部分金属材料热处理及表面处理工艺规范 第一版 编写:赵贵波 审核: 批准: 北京奇朔科贸有限公司 二零一二年六月

目录 1.0 热处理的工艺分类及代号---------------------------------------------------------------------3 1.1 基础分类-----------------------------------------------------------------------------------------------3 1.2 附加分类-----------------------------------------------------------------------------------------------3 1.3 热处理工艺代号--------------------------------------------------------------------------------------4 1.4 图样中标注热处理技术条件用符号--------------------------------------------------------------7 2.0 金属材料的热处理方法和应用目的-------------------------------------------------------8 2.1 钢的淬火-----------------------------------------------------------------------------------------------8 2.2 热处理的过程方法和应用目的--------------------------------------------------------------------9 3.0 部分金属材料的热处理规范-----------------------------------------------------------------17 3.1 渗碳钢的热处理工艺--------------------------------------------------------------------17 3.2 渗氮钢的热处理工艺--------------------------------------------------------------------------------20 3.3 调质钢的热处理工艺-------------------------------------------------------------------------------21 3.4 -弹簧钢的热处理工艺------------------------------------------------------------------------------23 3.5 轴承钢的热处理工艺-------------------------------------------------------------------------------25 3.6 合金工具钢的热处理工艺------------------------------------------------------------------------- 26 3.7 碳素工具钢的热处理工艺--------------------------------------------------------------------------29

高频淬火和中频淬火的区别

高频淬火和中频淬火的区别 1、高频淬火淬硬层浅(1.5~2mm)、硬度高、工件不易氧化、变形小、淬火质量好、生产效率高,适用于摩擦条件下工作的零件,如一般较小的齿轮、轴类(所用材料为45号钢、40Cr); 2、中频淬火淬硬层较深(3~5mm),适用于承受扭曲、压力负荷的零件,如曲轴、大齿轮、磨床主轴等(所用材料为45号钢、40Cr、9Mn2V和球墨铸铁)。 感应加热表面淬火,是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺 感应加热表面淬火时,将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用,工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬 感应加热时,工件截面上感应电流的分布状态与电流频率有关。电流频率愈高,集肤效应愈强,感应电流集中的表层就愈薄,这样加热层深度与淬硬层深度也就愈薄 因此,可通过调节电流频率来获得不同的淬硬层深度。常用感应加热种类及应用见表5-3 感应加热速度极快,只需几秒或十几秒。淬火层马氏体组织细小,机械性能好。工件表面不易氧化脱碳,变形也小,而且淬硬层深度易控

制,质量稳定,操作简单,特别适合大批量生产 常用于中碳钢或中碳低合金钢工件,例如45、40Cr、40MnB等。也可用于高碳工具钢或铸铁件,一般零件淬硬层深度约为半径的1/10时,即可得到强度、耐疲劳性和韧性的良好配合。感应加热表面淬火不宜用于形状复杂的工件,因感应器制作困难 表5-3 感应加热种类及应用范围 感应加热类型常用频率一般淬硬层深度/m m 应用范围 高频感应加热 200~1000kHz 0.5~2.5 中小模数齿轮及中小尺寸的轴类零件 中频感应加热 2500~8000Hz 2~10 较大尺寸的轴和大中模数齿轮 工频感应加热火 50Hz 10~20 较大直径零件穿透加热,大直径 零件如轧辊、火车车轮的表面淬超音频感应加热 30~36kHz 淬硬层能沿工件轮廓分中小模数齿轮 表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性(即表面淬火), 或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表面硬度比前者更高(即化学热处理)的方法。

感应淬火与火焰淬火的区别

感应淬火与火焰淬火的区别 感应淬火的原理 感应加热表面淬火,是利用电磁感应、集肤效应、涡流和电阻热等电磁原理,使工件表层快速加热,并快速冷却的热处理工艺 感应加热表面淬火时,将工件放在铜管制成的感应器内,当一定频率的交流电通过感应器时,处于交变磁场中的工件产生感应电流,由于集肤效应和涡流的作用,工件表层的高密度交流电产生的电阻热,迅速加热工件表层,很快达到淬火温度,随即喷水冷却,工件表层被淬硬 感应加热时,工件截面上感应电流的分布状态与电流频率有关。电流频率愈高,集肤效应愈强,感应电流集中的表层就愈薄,这样加热层深度与淬硬层深度也就愈薄因此,可通过调节电流频率来获得不同的淬硬层深度。 感应淬火与火焰淬火的区别和优势 表面热处理是通过改变零件表层组织,以获得硬度很高的马氏体,而保留心部韧性和塑性(即表面淬火),或同时改变表层的化学成分,以获得耐蚀、耐酸、耐碱性,及表面硬度比前者更高(即化学热处理)的方法。 感应淬火:感应加热速度极快,只需几秒或十几秒。淬火层马氏体组织细小,机械性能好。工件表面不易氧化脱碳,变形也小,而且淬硬层深度易控制,质量稳定,操作简单,特别适合大批量生产。常用于中碳钢或中碳低合金钢工件,例如45、40Cr、40Mn B等。也可用于高碳工具钢或铸铁件,一般零件淬硬层深度约为半径的1/10时,即可得到强度、耐疲劳性和韧性的良好配合。感应加热表面淬火不宜用于形状复杂的工件,因感应器制作困难 表1-1 感应加热种类及应用范围 感应加热类型常用频率 一般淬硬层深 度/mm 应用范围 高频200~1000kHz 0.5~2.5 中小模数齿轮及中小尺寸的轴类零件

表面淬火与化学热处理工艺异同点

表面淬火与化学热处理工艺异同点 摘要:介绍表面淬火与化学热处理的工艺的不同以及各自的分类、加工方法。 关键词:表面淬火化学热处理异同点 表面淬火只对工件的表面或部分表面进行热处理,所以只改变表层的组织。而心部或其它部分的组织仍保留原来的低硬度、高塑性和高韧性的性能,这样工件截面上由于组织不同性能也就不同。表面淬火便于实现机械化、自动化,质量稳定,变形小,热处理周期短,费用少,成本低,还可用碳钢代替一些台金钢。 化学热处理是将工件表面渗进了某些化学元素的原子,改变了表层的化学成份,使表面能得到高硬度或某些特殊的物理、化学性能。而心部组织成份不变,仍保留原来的高塑性。高韧性的性能,这样在工件截面上就有截然不同的化学成份与组织性能。化学热处理生产周期长,不便于实现机械化、自动化生产,工艺复杂,质量不够稳定,辅助材料消耗多、费用大、成本高,许多情况下还需要贵重的合金钢。化学热处理只在获得表面层的更高硬度与某些特殊性能及心部的高韧性等方面优于表面淬火。 表面淬火: 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。三维网技术论坛3 N: A0 ? E/ p$ X+ i1 W! _1 K$ z 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。

热处理种类应用

1.热处理工艺的分类 金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 8.5补充手段之二 1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 2.正火:指将钢材或钢件加热到或(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 3.淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 4.回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。

演示文档感应加热表面淬火基本原理.doc

感应加热表面淬火基本原理 感应加热表面淬火的应用及基本原理分析。 一、应用 承受扭转、弯曲等交变负荷作用的工件,要求表面层承受比心部更高的应力或耐磨性,需对工件表面提出强化要求,适于含碳量We=0.40~0.50%钢材。 二、工艺方法 快速加热与立即淬火冷却相结合。 通过快速加热使待加工钢件表面达到淬火温度,不等热量传到中心即迅速冷却,仅使表层淬硬为马氏体,中心仍为未淬火的原来塑性、韧性较好的退火(或正火及调质)组织。 三、主要方法 感应加热表面淬火(高频、中频、工频),火焰加热表面淬火,电接触加热表面淬火,电解液加热表面淬火,激光加热表面淬火,电子束加热表面淬火。 四、感应加热表面淬火 (一)基本原理: 将工件放在用空心铜管绕成的感应器内,通入中频或高频交流电后,在工件表面形成同频率的的感应电流,将零件表面迅速加热(几秒钟内即可升温800~1000度,心部仍接近室温)后立即喷水冷却(或浸油淬火),使工件表面层淬硬。(如下图所示) (二)加热频率的选用 室温时感应电流流入工件表层的深度δ(mm)与电流频率f(HZ)的关系为 频率升高,电流透入深度降低,淬透层降低。 常用的电流频率有: 1、高频加热:100~500KHZ,常用200~300KHZ,为电子管式高频加热,淬硬层深为0.5~2. 5mm,适于中小型零件。 2、中频加热:电流频率为500~10000HZ,常用2500~8000HZ,电源设备为机械式中频加热装置或可控硅中频发生器。淬硬层深度~10 mm。适于较大直径的轴类、中大齿轮等。 3、工频加热:电流频率为50HZ。采用机械式工频加热电源设备,淬硬层深可达10~20mm,适于大直径工件的表面淬火。

热处理工艺——表面淬火、退火工艺、正火工艺

热处理工艺——表面淬火、退火工艺、正火工艺 ◆表面淬火 ? 钢的表面淬火 有些零件在工件时在受扭转和弯曲等交变负荷、冲击负荷的作用下,它的表面层承受着比心部更高的应力。在受摩擦的场合,表面层还不断地被磨损,因此对一些零件表面层提出高强度、高硬度、高耐磨性和高疲劳极限等要求,只有表面强化才能满足上述要求。由于表面淬火具有变形小、生产率高等优点,因此在生产中应用极为广泛。 根据供热方式不同,表面淬火主要有感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火等。 ? 感应加热表面淬火 感应加热就是利用电磁感应在工件内产生涡流而将工件进行加热。感应加热表面淬火与普通淬火比具有如下优点: 1.热源在工件表层,加热速度快,热效率高 2.工件因不是整体加热,变形小 3.工件加热时间短,表面氧化脱碳量少 4.工件表面硬度高,缺口敏感性小,冲击韧性、疲劳强度以及耐磨性等均有很大提高。有利于发挥材料地潜力,节约材料消耗,提高零件使用寿命 5.设备紧凑,使用方便,劳动条件好 6.便于机械化和自动化 7.不仅用在表面淬火还可用在穿透加热与化学热处理等。 ? 感应加热的基本原理 将工件放在感应器中,当感应器中通过交变电流时,在感应器周围产生与电流频率相同的交变磁场,在工件中相应地产生了感应电动势,在工件表面形成感应电流,即涡流。这种涡流在工件的电阻的作用下,电能转化为热能,使工件表面温度达到淬火加热温度,可实现表面淬火。 ? 感应表面淬火后的性能 1.表面硬度:经高、中频感应加热表面淬火的工件,其表面硬度往往比普通淬火高 2~3 个单位(HRC)。 2.耐磨性:高频淬火后的工件耐磨性比普通淬火要高。这主要是由于淬硬层马氏体晶粒细小,碳化物弥散度高,以及硬度比较高,表面的高的压应力等综合的结果。 3.疲劳强度:高、中频表面淬火使疲劳强度大为提高,缺口敏感性下降。对同样材料的工件,硬化层深度在一定范围内,随硬化层深度增加而疲劳强度增加,但硬化层深度过深时表层是压应力,因而硬化层深度增打疲劳强度反而下降,并使工件脆性增加。一般硬化层深δ=(10~20)%D。较为合适,其中D。为工件的有效直径。 ◆退火工艺 退火是将金属和合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。退火后组织亚共析钢是铁素体加片状珠光体;共析钢或过共析钢则是粒状珠光体。总之退火组织是接近平衡状态的组织。 ? 退火的目的 ①降低钢的硬度,提高塑性,以利于切削加工及冷变形加工。

热处理分类

热处理的作用就是提高材料的机械性能、消除残余应力和改善金属的切削加工性。按照热处理不同的目的,热处理工艺可分为两大类:预备热处理和最终热处理。 1. 预备热处理 预备热处理的目的是改善加工性能、消除内应力和为最终热处理准备良好的金相组织。其热处理工艺有退火、正火、时效、调质等。 (1)退火和正火 退火和正火用于经过热加工的毛坯。含碳量大于0.5%的碳钢和合金钢,为降低其硬度易于切削,常采用退火处理;含碳量低于0.5%的碳钢和合金钢,为避免其硬度过低切削时粘刀,而采用正火处理。退火和正火尚能细化晶粒、均匀组织,为以后的热处理作准备。退火和正火常安排在毛坯制造之后、粗加工之前进行。 (2)时效处理 时效处理主要用于消除毛坯制造和机械加工中产生的内应力。

为避免过多运输工作量,对于一般精度的零件,在精加工前安排一次时效处理即可。但精度要求较高的零件(如座标镗床的箱体等),应安排两次或数次时效处理工序。简单零件一般可不进行时效处理。 除铸件外,对于一些刚性较差的精密零件(如精密丝杠),为消除加工中产生的内应力,稳定零件加工精度,常在粗加工、半精加工之间安排多次时效处理。有些轴类零件加工,在校直工序后也要安排时效处理。 (3)调质 调质即是在淬火后进行高温回火处理,它能获得均匀细致的回火索氏体组织,为以后的表面淬火和渗氮处理时减少变形作准备,因此调质也可作为预备热处理。 由于调质后零件的综合力学性能较好,对某些硬度和耐磨性要求不高的零件,也可作为最终热处理工序。 2. 最终热处理 最终热处理的目的是提高硬度、耐磨性和强度等力学性能。 (1)淬火 淬火有表面淬火和整体淬火。其中表面淬火因为变形、氧化及脱碳较小而应用较广,而且表面淬火还具有外部强度高、耐磨性好,而内部保持良好的韧性、抗冲击力强的优点。为提高表面淬火零件的机械性能,常需进行调质或正火等热处理作为预备热处理。其一般工艺路线为:下料--锻造--正火(退火)--粗加工--调质--半精加工--表面淬火--精加工。 (2)渗碳淬火 渗碳淬火适用于低碳钢和低合金钢,先提高零件表层的含碳量,经淬火后使

相关文档
最新文档