万有引力中的估算问题

万有引力中的估算问题
万有引力中的估算问题

万有引力中的常见估算问题

例一:1789年英国著名物理学家卡文迪许首先估算出了地球的平均密度。根据你学过的知识,能否知道地球密度的大小。

变式训练1、已知太阳到地球与地球到月球的距离的比值约为390,月球绕地球旋转的周期约为27天。利用上述数据以及日常的天文知识,可估算出太阳对月球与地球对月球的万有引力的比值约为( )

A.0.2

B.2

C.20

D.200

2、地核的体积约为整个地球体积的16%,地核的质量约为整个地球质量的34%。试估算,地核的平均密度为多少?(结果取两位有效数字,引力常量G=6.67×10-11 N·m2/kg2,地球表面的重力加速度g=10 m/s2,地球半径R=6.4×106 m)

例二.(2014浙江理综)长期以来“卡戎星(Charon)”被认为是冥王星唯一的卫星,它的公转轨道半径r1=19 600 km,公转周期T1=6.39天。2006年3月,天文学家新发现两颗冥王星的小卫星,其中一颗的公转轨道半径r2=48 000 km,则它的公转周期T2最接近于( )

A.15天

B.25天

C.35天

D.45天

获取信息能力

1、P

1、P

2

为相距遥远的两颗行星,距各自表面相同高度处各有一颗卫星s

1

、s

2

做匀速圆周运动。图中

纵坐标表示行星对周围空间各处物体的引力产生的加速度a,横坐标表示物体到行星中心的距离r的

平方,两条曲线分别表示P

1、P

2

周围的a与r2的反比关系,它们左端点横坐标相同。则( )

A.P

1的平均密度比P

2

的大

B.P

1的“第一宇宙速度”比P

2

的小

C.s

1的向心加速度比s

2

的大

D.s

1的公转周期比s

2

的大

2、研究表明,地球自转在逐渐变慢,3亿年前地球自转的周期约为22小时。假设这种趋势会持续下去,地球的其他条件都不变,未来人类发射的地球同步卫星与现在的相比( )

A.距地面的高度变大

B.向心加速度变大

C.线速度变大

D.角速度变大

3、登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星。地球和火星公转视为匀速圆周运动,忽略行星自转影响。根据下表,火星和地球相比( )

A.火星的公转周期较小

B.火星做圆周运动的加速度较小

C.火星表面的重力加速度较大

D.火星的第一宇宙速度较大

4、由于卫星的发射场不在赤道上,同步卫星发射后需要从转移轨道经过调整再进入地球同步轨道。当卫星在转移轨道上飞经赤道上空时,发动机点火,给卫星一附加速度,使卫星沿同步轨道运行。已知同步卫星的环绕速度约为3.1×103 m/s,某次发射卫星飞经赤道上空时的速度为1.55×103 m/s,此时卫星的高度与同步轨道的高度相同,转移轨道和同步轨道的夹角为30°,如图所示。发动机给卫星的附加速度的方向和大小约为( )

A.西偏北方向,1.9×103 m/s

B.东偏南方向,1.9×103 m/s

C.西偏北方向,2.7×103 m/s

D.东偏南方向,2.7×103 m/s

5、地球上空有人造地球同步通讯卫星,它们向地球发射微波。但无论同步卫星数目增到多少个,地球表面上总有一部分面积不能直接收到它们发射来的微波,问这个面积S 与地球表面积S 0之比至少有多

大?结果保留两位有效数字。(已知地球半径R 0=6.4×106 m,半径为R,高为h 的球缺的表面积为

S 1=2πRh,球面积为S=4πR 2)

6、有一空间探测器对某一星球进行探测,已知行星半径为R=1 750 km,探测器靠近行星表面运行的周期为T=2 h,发现该星球表面无生命存在,在其表面上却覆盖着一层厚厚的干冰。因此科学家提出用化学方法将干冰分解为碳和氧气从而在星球表面上产生大气,由于行星对大气的吸引作用,行星表面形成了一定的大气压强,如果一秒钟分解干冰可得Δm=106 kg 的氧气,要在行星表面附近得到压强为0.2 atm,则至少需要多少年的时间才能完成?(大气层厚度与行星半径相比很小,结果保留两位有效数字)

高中物理《万有引力定律》知识点

高中物理《万有引力定律》知识点 万有引力是由于物体具有质量而在物体之间产生的一种相互作用。它的大小和物体的质量以及两个物体之间的距离有关。物体的质量越大,它们之间的万有引力就越大;物体之间的距离越远,它们之间的万有引力就越小。 两个可看作质点的物体之间的万有引力,可以用以下公式计算:F=Gmm/r^2,即万有引力等于引力常量乘以两物体质量的乘积除以它们距离的平方。其中G代表引力常量,其值约为6.67×10的负11次方单位N·m2/kg2。为英国科学家卡文迪许通过扭秤实验测得。 万有引力的推导:若将行星的轨道近似的看成圆形,从开普勒第二定律可得行星运动的角速度是一定的,即:ω=2π/T 如果行星的质量是m,离太阳的距离是r,周期是T,那么由运动方程式可得,行星受到的力的作用大小为mrω^2=mr(4π^2)/T^2 另外,由开普勒第三定律可得 r^3/T^2=常数k' 那么沿太阳方向的力为 mr(4π^2)/T^2=mk'(4π^2)/r^2 由作用力和反作用力的关系可知,太阳也受到以上相同大小的力。从太阳的角度看,

(太阳的质量m)(k'')(4π^2)/r^2 是太阳受到沿行星方向的力。因为是相同大小的力,由这两个式子比较可知,k'包含了太阳的质量m,k''包含了行星的质量m。由此可知,这两个力与两个天体质量的乘积成正比,它称为万有引力。 如果引入一个新的常数(称万有引力常数),再考虑太阳和行星的质量,以及先前得出的4·π2,那么可以表示为万有引力=Gmm/r^2 两个通常物体之间的万有引力极其微小,我们察觉不到它,可以不予考虑。比如,两个质量都是60千克的人,相距0.5米,他们之间的万有引力还不足百万分之一牛顿,而一只蚂蚁拖动细草梗的力竟是这个引力的1000倍!但是,天体系统中,由于天体的质量很大,万有引力就起着决定性的作用。在天体中质量还算很小的地球,对其他的物体的万有引力已经具有巨大的影响,它把人类、大气和所有地面物体束缚在地球上,它使月球和人造地球卫星绕地球旋转而不离去。 重力,就是由于地面附近的物体受到地球的万有引力而产生的。 任意两个物体或两个粒子间的与其质量乘积相关的吸引力。自然界中最普遍的力。简称引力,有时也称重力。在粒子物理学中则称引力相互作用和强力、弱力、电磁力合称

万有引力定律公式总结

万有引力公式 线速度 角速度 向心加速度 向心力 两个基本思路 1.万有引力提供向心力:r m r n m ma r T m r m r v m r M G ωππω======22222 2244m 2.忽略地球自转的影响: mg R GM =2 m (2 g R GM =,黄金代换式) 一、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2= ) 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r 。(r m r Mm G 2 2ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T 。(T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度: 已知环绕天体的质量m 、周期T 、轨道半径r 。中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力

r T m r Mm G 2224π= 则2 324GT r M π= ——① 又3 3 4R V M πρρ? == ——② 联立两式得:3 23 3R GT r πρ= 当R=r 时,有2 3GT π ρ= 二、星球表面重力加速度、轨道重力加速度问题 1.在星球表面: 2 R GM mg =(g 为表面重力加速度,R 为星球半径) 2.离地面高h: 2 ) (h R GM g m += '(g '为h 高处的重力加速度) 联立得g'与g 的关系: 2 2 )('h R gR g += 三、卫星绕行的向心加速度、速度、角速度、周期与半径的关系 1.ma r M G =2m ,则2 a r M G =(卫星离地心越远,向心加速度越小) 2.r v m r Mm G 2 2=,则r GM v = (卫星离地心越远,它运行的速度越小) 3.r m r Mm G 22ω=,则3r GM =ω(卫星离的心越远,它运行的角速度越小) 4.r T m r Mm G 22 24π=,则GM T 3 2r 4π= (卫星离的心越远,它运行的周期越大)

万有引力场

第五章 万有引力 5-1 月球的质量是地球质量的1/81。直径为地球的3/11,计算质量为65kg 的人在月球上所受的月球引力。 解:设月球,地球的质量分别为21M ,M ,它们的半径分别为21,r r ,人的质量为m ,由万有引力定律可知 : 人在月球表面受力为: 2 1 1r m M G F ?? =,由21)811(M M =,2121113 21132r r r r =?=得 2 22222729121)113(811 r m M G r m M G F ??==,而g r M G =222则 N mg F 106729 121=?= 5-2 根据地球的半径g R 和引力常数G 的值,估算地球的质量和平均密度。(已知 22116107.6,104.6--???=?=kg m N G m R g ) 解:设地球的质量为g M 由题意可知 2 E E R G g μ≈ 由密度的定义:V m = ρ知地球的平均密度为 332105.53 4-??=== m kg R m V m E E E πρ 5-3 如图5-3所示,有两个半径分别为1R 和2R 的同心薄壁球壳,质量分别为'1m 和'2m 。将质量为m 的质点P 置于距球心O 分别为c B A r r r ,,处,求(1)质点P 所受的引力;(2)如去质点在无限远处的引力势能为零,计算质点P 在以上三处的引力势能。

解:(1)A 点在两球壳内部,此处质点所受的引力为0=A F 。 B 点在两球壳之间,此处质点只受内部球壳的引力:2 1'B B r m m G F = C 点在两球壳的外面,此时质点受两个球壳的引力: 2 21)''(c C r m m m G F += (2)由引力势能? ∞ = r P Fdr E 可知质点在A 、B 、C 各点的势能为 )' '( )''( )''( 212 212 2112 2 2 2 1 1 C r C C B R C R r B r B R C R R B R r A r A r m m Gm dr F E R m r m Gm dr F dr F dr F E R m R m Gm dr F dr F dr F dr F E C B B A A +-=?=+-=?+?=?=+-=+?+?=?=????????∞ ∞ ∞ ∞ ?∞ 5-4 如图5-4所示,在一半径为R 、质量为m ’、密度均匀的球体中挖了一个半径为R/2的球形空腔,在P 点处放置一质量为m 的质点,求质点所受的引力。 解:设打球未被挖空时,对质点P 的引力为F ,打球被挖去一个小球之后,对质点P 的引力为1F ,只有一个小球时 ,小球对质点P 的引力为2F 则 21F F F += 被挖出的小球质量为: '8 1)2(343 4'''33m R R m m =?= ππ 由万有引力定律得: 2 22 )2 ('' ,'R r m m G F r m m G F -== 由以上式子可得 ])21(811['2 2 21r R r m m G F F F --=-= 5-5 当一物体从地球表面竖直向上或向下移动一小距离时,计算重力加速度变化规律。 解:(1)物体在地表面上移动高度为h 时,所受的万有引力为: 2 1) (h R GMm G F += 此处重力加速度为: 图5-4

高中物理公式大全全集万有引力

五、万有引力 1、开普勒三定律: ⑴开普勒第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上 ⑵开普勒第二定律(面积定律):太阳和行星的连线在相等的时间内扫过相等的面积 ⑶开普勒第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等 对T 1、T 2表示两个行星的公转周期,R 1、R 2表示两行星椭圆轨道的半长轴,则周期定律可表示为32 312221R R T T = 或k T R =3 3,比值k 是与行星无关而只与太阳有关的恒量 【注意】:⑴开普勒定律不仅适用于行星,也适用于卫星,只不过此时k T R =33 ‘ ,比值k ’ 是 由行星的质量所决定的另一恒量。 ⑵行星的轨道都跟圆近似,因此计算时可以认为行星是做匀速圆周运动 ⑶开普勒定律是总结行星运动的观察结果而总结归纳出来的规律,它们每一条都 是经验定律,都是从观察行星运动所取得的资料中总结出来的。 例题:飞船沿半径为R 的圆周绕地球运动,其周期为T ,如果飞船要返回地面,可在轨道上的某一点A 处,将速率降低到适当数值,从而使飞船沿着以地心为焦点的椭圆轨道运动,椭圆和地球表面在B 点相切,如图所示,如果地球半径为R 0,求飞船由A 点到B 点所需要的时间。 解析:依开普勒第三定律知,飞船绕地球做圆周(半长轴和半短轴相等的特殊椭圆)运动时,其轨道半径的三次方跟周期的平方的比值,等于飞船绕地球沿椭圆轨道运动时,其半长轴的三次方跟周期平方和比值,飞船椭圆轨道的半长轴为 2 R R +,设飞船沿椭圆轨道运动的周期一、知识网络 二、 画龙点睛 概念

难题分析-万有引力定律

难题分析-万有引力定律 我国史记《宋会要》记载:我国古代天文学家在公元1054年就观察到超新星爆炸。这一爆炸后的超新星在公元1731年被英国一天文爱好者用望远镜观测到,是一团云雾状的东西,外形象一个螃蟹,人们称为“蟹状星云”。它是超大行星爆炸后向四周抛出的物体形成的。在1920年它对地球上的观察者张开的角度为360″。由此推断:“蟹状星云”对地球 上的观察者所张开角度每年约增大0.24″,合2.0×10-6 rad,它到地球距离约为5000光年。请你估算出此超新星爆炸发生于在公元前 年,爆炸抛射物的速度大约为 m/s 。 3946 ±10年 ,1.5×106 海洋占地球面积的7100,它接受来自太阳的辐射能比陆地要大得多。根据联合国教科文组织提供的材料,全世界海洋能的可再生量,从理论上说近800亿千瓦。其中海洋潮汐能含量巨大.海洋潮汐是由于月球和太阳引力的作用而引起的海水周期性涨落现象。 理论证明:月球对海水的引潮力成正比,与月潮月m F 与月地3r 成反比,即 地月 月潮月3r m K F = 。同理可证地日 日潮日3r m K F = 。 潮汐能的大小随潮汐差而变,潮汐差越大则潮汐能越大。加拿大的芬迪湾,法国的塞纳河口,我国的钱塘江,印度和孟加拉国的恒河口等等,都是世界上潮汐差大的地区。1980年我国建成的浙江温岭江厦潮汐电子工业站,其装机容量为3000kW ,规模居世界第二,仅 次于法国的浪斯潮汐电站。已知地球的半径为6.4×106 m.月球绕地球可近似看着圆周运动。通过估算再根据有关数据解释为什么月球对潮汐现象起主要作用? ()1050.1,1099.1,1035.783022km r kg m kg m ?=?=?=日地日月 答案: 由以下两式:地月 月潮月3r m K F = 地日 日潮日3r m K F = 不难发现月球与地球的距离月地r 未知,可以把月球绕地球的运转近似的看着圆周运动,月球的公转周期约29d. ┄┄┄①1/ 则有月地月 月地r T m r m m G 2 22 4π=┄┄┄┄②1/ 和2 地地R mm G mg =┄┄┄┄┄③1/ 得3 122 ??? ? ? ?=T gR r 地月带 ┄④1/ 代入数据得m r 81084.3?=地月┄┄┄┄┄┄┄┄┄⑤1/ 再根据所给的理论模型有: 18.23 ≈??? ? ???=月地日地日月潮日 月潮r r m m F F ┄┄┄┄⑥1/ 即月球的引力是太阳潮力的2.18倍,因此月球对潮汐起主要作用.┄┄⑦1 / 来源: 题型:计算题,难度:综合

万有引力的高斯定理1

万有引力场的高斯定理 容晓晖 物理工程学院2010级物理学类二班 邮箱:295771197@https://www.360docs.net/doc/0f9364066.html, 在大一上学期学习力学,在学到简谐运动那一章时,胡老师曾举个一个例子,是摘自老版本大学物理学的一道书上例题,题目是这样的: 将地球看做一个半径为R 的均匀球体,密度为ρ,假定沿直径开一条通道,若有质量为m 的质点沿通道做无摩擦运动,证明此运动为简写运动。(题目示意图如下) 例题图 当时做这道题时不知道如何列出质点的受力方程,后来老师直接讲到质点的受力大小仅与质点所在圆面内包围的质量有关,而与外部的质量无关。列出受力大小公式,经过化简发现受到的万有引力大小是一个和质点所在面的半径r 成正比的○1,即质点在地球内部受到了一个线性回复力的作用,方向和质点相对于平衡位置(地心)的位移方向相反,即质点做的是简谐运动。具体的解题公式和过程不再写出,这些不是本文章的重点。 场景转换到大一下学期(现在),在老师讲到电磁学中静电场的高斯定理时,惊奇的发现: ∑?? = = Φ) (01 cos 内S i E q dS E εθ 这个公式告诉我们:通过一个任意闭合曲面S 的电通量E Φ等于该面所包围的所有电荷的代数和Σq 除以ε0,与闭合面外的电荷无关。这就是著名的电场中的高斯定理的表述。 54页至59页,这里不再抄写证明。 高斯提出了电通量的概念,并根据库仑定律推导出来,使很多电场问题步骤和思路大大简化,并提炼出了这个公式。 学到这里时我就突然想到了本文最开始的那道有关万有引力的题目,并且想到牛顿的万有

引力定律公式——2 2 1r m m G F =万和库仑定律公式——2 21c r q q k =F 有着十分相似的形 式,既然库仑定律能够推导出电场的高斯定理,那么高斯定理应该在万有引力场中同样适用。 在这里先给几个定义和公式: 万有引力强度,用g 表示,定义式为2r m 中万 G m F g == ,但正方向为从内到外,与 g 实际方向相反。对于球状质点系,通过单位表面积的引力通量是: -g r 4r 4*g - S 2 2 ==Φ=Φππ万d 1, 万有引力通量, ???-=ΦS S gcos θ万(注意负号) 2, 仿照0 41πε = k ,令0 41g G π= ,这里的0g 姑且命名为真空介万常数,呵呵,根 据真空介电常数改的,大小约为1.193*10^9。 下面进行公式推导,目的是证明: ) (S i S g m g 1g 1S gcos 中内万m m S i = = = ?-=Φ∑????θ成立。 推导证明公式成立: 同样仿照课本上的证明过程(《电磁学》(赵凯华、陈熙谋版)第54页至59页),从球面开始证明: ?????? ??= = = === ?-=ΦS i 02 2 2 2 2 2 S m g 1g r m 4414r m r m r m S gcos 中中中中中万m r g r G dS G dS G S S πππθ即 ) (S i S g m g 1g 1S gcos 中内万m m S i = = = ?-=Φ∑????θ 上为第一种情况:通过包围质点的同心球体的万有引力通量都为m 中/g 0 另外两种情况:通过包围质点的任意闭合面的万有引力通量都等于m 中/g 0,和通过不包围点电荷的任意闭合面的万有引力通量恒为0.因为过程和课本上的极为相似,均不再这里证明,有兴趣的可以参考课本。

万有引力定律难点分析

物理教师Vol.22No.2第22卷第2期 PHYSICSTEACHER(2001) 万有引力定律难点分析马志明 (江苏省南通市启秀中学,南通226001) 1重力、万有引力、向心力的联系与区别1.1 假设地球是一个质量均匀分布的球体,其质量为M,半径为R,地球表面上的物体质量为m,所处纬度为,如图1所示.根据万有引力定律可知F引=G(Mm/R),方向如图1所示?由于m物体随地球一起以角 2 G(Mm/⑵.当m静止不动时,此时万有引力作用就体现成重力形式,物体将会向地面加速运动(即自由落体运动).由于m不随地球一起自转,F引与G是同一个力.当m 在离地心r处恰好作匀速圆周运动,此时,F引全部用来充当向心力,有F引=F向.由上述分析可见,在地球上方的物体,重力G,匀速圆周运动向心力,万有引力实际上是同一个力,即万有引力.因此,在处理天体运动(如地球卫星问题)时,这三个力就本质来讲是同一种力. 地球表面上物体的三力关系 2001 年

离心现象的分析 当一质量为m,离地心距离为r的物体以某一速度v在运动时,如图2. 若F引G(Mm/R2),即v>GM/R时,物体将远离地球.直到mv2/r=G(Mm/r2)时(r 为物体离地心距离)物体将以v= GM/r绕行速度作圆周运动 (说明:严格来讲物体绕地球作椭圆运动,地心是椭圆的一个焦点,在高中阶段我们设想物体到达离地心r时,有一装置使物体速度方向变为与地平线平行,从而物体能绕地球作圆周运动)由此可知,当v> GM/R [例2]某人造卫星距地高h,地球半径为R,质量为M,地面重力加速度为g,万有 引力恒量为G,(1)试用h、R、M、G表示卫星的周期T;(2)试用h、R、g表示线速度v.解:F向=ma向, 第⑴问中,F向用GMm/(R+h)2表示, a 向=(2 /T)2(R+h),则

(完整版)万有引力与航天重点知识、公式总结

万有引力与航天重点规律方法总结 一.三种模型 1.匀速圆周运动模型: 无论是自然天体(如地球、月亮)还是人造天体(如宇宙飞船、人造卫星)都可看成质点,围绕中心天体(视为静止)做匀速圆周运动 2.双星模型: 将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自 转动的向心力。 3.“天体相遇”模型: 两天体相遇,实际上是指两天体相距最近。 二.两种学说 1.地心说:代表人物是古希腊科学家托勒密 2/日心说:代表人物是波兰天文学家哥白尼 三.两个定律 1.开普勒定律: 第一定律(又叫椭圆定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳位于椭圆 的一个焦点上 第二定律(又叫面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫 过相同的面积。 第三定律(又叫周期定律):所有行星绕太阳运动的椭圆轨道的半长轴R 的三次方跟公 转周期T 的二次方的比值都相等。 表达式为:)4(2 23 π GM K K T R == k 只与中心天体质量有关的 定值与行星无关 2.牛顿万有引力定律 1687年在《自然哲学的数学原理》正式提出万有引力定律 ⑴.内容:宇宙间的一切物体都是相互吸引的.两个物体间引力的方向在它们的连线上,引力的大小跟它们的质量的乘积成正比,跟它们之间的距离的二次方成反比. ⑵.数学表达式: r F Mm G 2 =万 ⑶.适用条件: a.适用于两个质点或者两个均匀球体之间的相互作用。(两物体为均匀球体时,r 为两球心间的距离) b. 当0→r 时,物体不可以处理为质点,不能直接用万有引力公式计算 c. 认为当0→r 时,引力∞→F 的说法是错误的 ⑷.对定律的理解 a.普遍性:任何客观存在的有质量的物体之间都有这种相互作用力 b.相互性:两个物体间的万有引力是一对作用力和反作用力,而不是平衡力关系。 c.宏观性:在通常情况下万有引力非常小,只有在质量巨大的星球间或天体与天体附 近的物体间,它的存在才有实际意义. d.特殊性:两个物体间的万有引力只与它们本身的质量、它们之间的距离有关.与所在 空间的性质无关,与周期及有无其它物体无关. (5)引力常数G :

万有引力知识点总结

知识点一 万有引力应用 两条线索 (1)万有引力=向心力 (2)重力=向心力 G 2R Mm = mg ?GM=gR 2 (黄金代换式) 1、(中心天体质量密度)一卫星绕某一行星表面附近做匀速圆周运动,其线速度大小为0v 假设宇航员在该行星表面上用弹簧测力计测量一质量为m 的物体重力,物体静止时,弹簧测力计的示数为N ,已知引力常量为G,则这颗行星的质量为 A . GN mv 2 B. GN mv 4 C . Gm Nv 2 D. Gm Nv 4 【解析】行星对卫星的万有引力提供其做匀速圆周运动的向心力,有R v m R 22m GM '= '① 行星对处于其表面物体的万有引力等于物体重力有, mg R =2 GMm ② 根据题意有N=mg ③,解以上三式可得GN mv 4 M =,选项B 正确。 2、(多天体比较)假设地球是一半径为R 、质量分布均匀的球体。一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零。矿井底部和地面处的重力加速度大小之比为 A .R d - 1 B .R d +1 C .2)(R d R - D .2)( d R R - 【答案】A 【解析】在地面上质量为m 的物体根据万有引力定律有:mg R Mm G =2 ,从而得R G R R G g πρπρ34342 3 ??=??=。根据题意,球壳对其内部物体的引力为零,则矿井底部的物体m ′只受到其以下球体对它的万有引力同理有 )(34) (2 d R G d R M G g -=-'='πρ,式中3 )(34d R M -='πρ。两式相除化简R d R d R g g -=-='1。答案A 。 3、(多天体比较)火星探测项目我过继神舟载人航天工程、嫦娥探月工程之后又一个重大太空探索项目。假设火星探测器在火星表面附近圆形轨道运行周期为T ,神州飞船在地球表面附近圆形轨道运行周期为2T ,火星质量与地球质量之比为p ,火星半径与地球半径之比为q ,则T 、2T 之比为 2222222 24[8]2[9]4[10][11][12]Mm v G m m r m r r r T v mgr m m r m r r T πωπω======g g

万有引力定律公式总结

万有引力定律知识点 班级: 姓名: 一、三种模型 1、匀速圆周运动模型:无论自然天体还是人造天体都可以看成质点,围绕中心天体做匀速圆周运动。 2、双星模型:将两颗彼此距离较近的恒星称为双星,它们相互之间的万有引力提供各自转动的向心力。 3、“天体相遇”模型:两天体相遇,实际上是指两天体相距最近。 二、两种学说 1、地心说:代表人物是古希腊科学托勒密 2、日心说:代表人物是波兰天文学家哥白尼 三、两个定律 第一定律(椭圆定律):所有行星绕太阳的运动轨道都是椭圆,太阳位于椭圆的每一个焦点上。 第二定律(面积定律):对每一个行星而言,太阳和行星的连线,在相等时间内扫过相同的面积。 第三定律(周期定律):所有行星绕太阳运动的椭圆轨道半长轴R 的三次方跟公转周期T 的二次方的比值都相等。 (表达式 ) 四、基础公式 线速度:v ==== 角速度:== == 向心力:F=m =m(2r=m(2 )2r= m(2)2r=m =m 向心加速度:a= = (2r= (2)2r= (2 )2r== 五、两个基本思路 1.万有引力提供向心力:ma r T m r m r v m r M G ====22 2224m πω 2.忽略地球自转的影响: mg R GM =2m (2g R GM =,黄金代换式) 六、测量中心天体的质量和密度 测质量: 1.已知表面重力加速度g ,和地球半径R 。(mg R GM =2m ,则G gR M 2=)一般用于地球 2.已知环绕天体周期T 和轨道半径r 。(r T m r Mm G 2224π= ,则2 3 24GT r M π=) 3.已知环绕天体的线速度v 和轨道半径r 。(r v m r Mm G 22=,则G r v M 2=) 4.已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=) 5.已知环绕天体的线速度v 和周期T (T r v π2=,r v m r M G 22m =,联立得G T M π2v 3=) 测密度:

万有引力定律及其应用完美版

万有引力定律及其应用 教学目标: 1.掌握万有引力定律的内容并能够应用万有引力定律解决天体、卫星的运动问题 2.掌握宇宙速度的概念 3.掌握用万有引力定律和牛顿运动定律解决卫星运动问题的基本方法和基本技能 教学重点:万有引力定律的应用 教学难点:宇宙速度、人造卫星的运动 教学方法:讲练结合,计算机辅助教学 教学过程: 一、万有引力定律:(1687年) 适用于两个质点或均匀球体;r 为两质点或球心间的距离;G 为万有引力恒量(1798年由英国物理学家卡文迪许利用扭秤装置测出)2211/1067.6kg m N G ??=- 二、万有引力定律的应用 1.解题的相关知识: (1)在高考试题中,应用万有引力定律解题的知识常集中于两点:一是天体运动的向心力来源于天体之间的万有引力,即222r v m r Mm G ==r T m 22 4πr m 2ω=;二是地球对物体的万有引力近似等于物体的重力,即G 2R mM =mg 从而得出GM =R 2g 。 (2)圆周运动的有关公式:ω=T π2,v=ωr 。 讨论:1)由222r v m r Mm G =可得:r GM v = r 越大,v 越小。 2)由r m r Mm G 22ω=可得:3r GM =ω r 越大,ω越小。 3)由r T m r Mm G 222??? ??=π可得:GM r T 32π= r 越大,T 越大。

4)由向ma r Mm G =2可得:2 r GM a =向 r 越大,a 向越小。 点评:需要说明的是,万有引力定律中两个物体的距离,对于相距很远因而可以看作质点的物体就是指两质点的距离;对于未特别说明的天体,都可认为是均匀球体,则指的是两个球心的距离。人造卫星及天体的运动都近似为匀速圆周运动。 2.常见题型 万有引力定律的应用主要涉及几个方面: (1)测天体的质量及密度:(万有引力全部提供向心力) 由r T m r Mm G 222?? ? ??=π 得2324GT r M π= 又ρπ?=33 4R M 得3233R GT r πρ= 【例1】中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,观测到它的自转周期为T =30 1s 。问该中子星的最小密度应是多少才能维持该星的稳定,不致因自转而瓦解。计算时星体可视为均匀球体。(引力常数G =6.67?1011-m 3/kg.s 2 ) 解析:设想中子星赤道处一小块物质,只有当它受到的万有引力大于或等于它随星体所需的向心力时,中子星才不会瓦解。 设中子星的密度为ρ,质量为M ,半径为R ,自转角速度为ω,位于赤道处的小物块质量为m ,则有 R m R GMm 22ω= T πω2= ρπ33 4R M = 由以上各式得23GT π ρ= ,代入数据解得:314/1027.1m kg ?=ρ。 点评:在应用万有引力定律解题时,经常需要像本题一样先假设某处存在一个物体再分析求解是应用万有引力定律解题惯用的一种方法。 (2)行星表面重力加速度、轨道重力加速度问题:(重力近似等于万有引力) 表面重力加速度:2002R GM g mg R Mm G =∴= 轨道重力加速度:()()22h R GM g mg h R GMm h h +=∴=+

(完整版)万有引力习题与答案

1 万有引力定律 注意事项: 1、 第I 卷选择题部分必须使用2B 铅笔填涂在答题卡上;第II 卷非选择题部分必须使用黑色签字笔书写在答题 纸上,字题工整、笔迹清晰。 2、 本试卷共150分,考试时间100分钟。 第I 卷(选择题 共40分) 一、共10小题;每小题4分,共40分。在每小题给出的四个选项中,有的小题只有一个选项正确,有的小题有多个选项正确。全部选对的得4分,选不全的得2分,选错或不选的得0分。 1.若人造卫星绕地球做匀速圆周运动,则下列说法中正确的是 ( ) (A )卫星的轨道半径越大,它的运行速度越大 (B )卫星的轨道半径越大,它的运行速度越小 (C )卫星的质量一定时,轨道半径越大,它需要的向心力越大 (D )卫星的质量一定时,轨道半径越大,它需要的向心力越小 2.可以发射这样一颗人造地球卫星,使其圆轨道 ( ) (A )与地球表面上某一纬度线(非赤道)是共面同心圆 (B )与地球表面上某一经度线所决定的圆是共面同心圆 (C )与地球表面上的赤道线是共面同心圆,且卫星相对地球表面是静止的 (D )与地球表面上的赤道线是共面同心圆,但卫星相对地球表面是运动的 3. 对于人造地球卫星,可以判断 ( ) (A )根据gR v =,环绕速度随R 的增大而增大 (B )根据r v = ω,当R 增大到原来的两倍时,卫星的角速度减小为原来的一半 (C )根据2 R GMm F =,当R 增大到原来的两倍时,卫星需要的向心力减小为原来的41 (D )根据R mv F 2 =,当R 增大到原来的两倍时,卫星需要的向心力减小为原来的21 4. 甲、乙两个做匀速圆周运动的卫星,角速度和线速度分别为ω1、ω2和v 1、v 2,如果它们的轨道半径之比R 1:R 2=1:2,则下列说法中正确的是 ( ) (A )1:22:21=ωω (B )ω1:ω2=2:1 (C )1:2:21=v v (D )2: 1:21=v v 5. 火星有两颗卫星,分别是火卫一和火卫二,他们的轨道近似为圆。已知火卫一的周期为7小时39分,火卫二的周期为30小时18分,则两颗卫星相比 ( ) (A )火卫一距火星表面较近 (B )火卫二的角速度较大 (C )火卫一的运动速度较大

高斯定理在万有引力场的推广

1 问题的提出与闭合面外的质量无关。 将地球看做一个半径为R的均 3 对万有引力场中的高斯定理的应用 匀球体,密度为ρ,假定沿直径开应用一:求万有引力场场强。 一条通道,若有质量为m的质点沿(1)单个质点: 。 通道做无摩擦运动,证明此运动为 简谐运动。列出受力大小公式,经 (相当于质量集中在球壳中心)。 过化简发现受到的万有引力大小是 (3)均匀质量的实心球体:当rR时,。 个线性回复力的作用,方向和质点 (4)无限长的棒:表示质量的线密度)。相对于平衡位置(地心)的位移方向相反,即质点做的是简谐 运动。 (5)无限大的平面: 。 联想到静电场的高斯定理: 通过 (6)两个无限大的平行平面:两板之间;两板之外一个任意闭合曲面S的电通量等于该面所包围的所有电荷的 (表示质量的面密度)。 代数和Σq除以ε,与闭合面外的电荷无关。这就是著名的电场 应用二:求万有引力场中的引力位,或引力位差。 中的高斯定理的表述。 (1)单个质点:(无限远为零势能点)。 既然牛顿的万有引力定律和库仑定律公式 有着十分相似的形式,并且库仑定律能够推导出电(2)均匀质量球壳:当rR时,场的高斯定理,那么高斯定理应该在万有引力场中同样适用。 2 万有引力场中的高斯定理简单证明过程 (3)均匀质量的实心球体:当rR时, (无限远为零势能点)。为,但正方向为从内到外,与实际方向相 反。 (4)无限长的棒:(表示质量的线密度)。 对于球状质点系,通过单位表面积的引力通量是: (5)无限大的平面: 。 (6)两个无限大的平行平面:两板之间(1)万有引力通量,(注意负号)。 两(外)边(表示质量的面密度)。 (2)仿照,令,这里的命 应用三:反物的质猜想。 名为真空介电常数。推导证明:如果在已知正质量和一个高斯面的总的通量的前提下,或 与能够证明具有-m的物质(反物质)的存在,甚至能够借此发 现这种反物质,因为公式中的质量和是代数和。 4 结语 世界是和谐统一的,科学是纯粹完美的,他山之石可以攻 玉,奥斯特的电流磁效应催生了法拉第的电磁感应定律的伟大提出万有引力场的高斯定理:通过一个任意闭合曲面S的电发现,电磁理论中的高斯定理在万有引力场中的应用也有物理 通量等于该面所包围的所有质量(的代数)和Σm除以g, 0理论和哲学思考的创新价值。 高斯定理 在万有引力场的推广 ◇鹤壁职业技术学院 赵三平 高斯定理是大学物理课程中非常经典的 理论,在电磁学体系中具有举足轻重的地 位,其联系万有引力场和电磁场,发现两者 外形相似内涵相通。本文用数学推理的方 法、定义、推导、延伸、推广,在万有引力 场中取得一系列重要的发现和应用。 。

万有引力定律的推导及完美之处

万有引力定律的推导及完美之处 现在由开普勒第一定律来求行星所受的力的量值。既然轨道为椭圆,我们就可把轨道方程写为 1cos P r e θ=+ 或1cos e P P μθ=+ 把这关系式1cos e P P μθ=+代入比耐公式 2222()d F h d m μμμθ+=- ,就得到 222222 22()d mh h m F mh d P P r μμμμθ=-+=-=- 这表明行星所受力是引力,且与距离平方成反比。 乍一看来,似乎不需要开普勒第三定律就已经能推出胡克的万有引力公式。其实不然,我们并不能把 22h m F P r =-化成22k m F r =-,因为式22h m F P r =-中的h 和P 对每一个行星来讲都具有不同的数值(2r h θ=,1r μ=,P 为椭圆曲线正焦弦长度的一半),而式中的2k 是一个与行星无关的常数。 开普勒第一定律:行星绕太阳作椭圆运行,太阳位于椭圆的一个焦点上。 开普勒第二定律:行星和太阳之间的连线,在相等的时间内所扫过的面积相等。 开普勒第三定律:行星公转的周期的平方和轨道半长轴的立方成正比。 为了能把22h m F P r =-化为 22k m F r =-,就得利用开普勒第三定律,由行星公转的周期得 22324T P a h π= 虽然h 和P 都是和行星有关的常数,但根据开普勒第三定律中2 3T a 是与行星无关的常数,可以得到2P h (或2 h P )是一个与行星无关的常数(即跟行星质量无关,而是由太阳决定了行 星轨道的性质)。因而可以令22h k P =,我们就可以把22h m F P r =-化为 22k m F r =-, 即 2222h m k m F P r r =-=-

万有引力定律教学设计

《万有引力定律》教学设计 山东省莒南第一中学朱淑娟 【教材依据】 人教版高中物理必修二第六章第三节 【教材分析】 1、万有引力定律这一节承上启下,承接上章匀速圆周运动,开启之后要学习的卫星的运动规律。 2、万有引力定律这一节是本章的核心,这节内容是对上两节课教学内容的进一步推演,也是下节课教学内容的基础,是本章的教学重点。 3、教材在尊重历史事实的前提下,通过一些逻辑思维的铺垫,让学生以自己现有的知识基础,经历一次“发现”万有引力定律的过程。 【学情分析】 1.高一学生已经学习了牛顿的三个定律、圆周运动的知识、开普勒三定律,已经积累了一定的知识。理论上已经具备了接受万有引力定律的能力。 2. 在上一节中,学生经历了太阳与行星间引力的探究过程,学生对天体运动的研究产生了极大的兴趣和求知欲。 3.另一方面我国在航天事业上成就突出,捷报频传,极大的激发了学生学习有关宇宙、航天、卫星知识的兴趣。 【教学目标】 一、知识与技能 1、了解万有引力定律得出的思路和过程,知道重物下落和天体运动的统一性。 2、理解万有引力定律的含义并会用万有引力定律公式解决简单的引力计算问题。 3、知道万有引力定律公式的适用范围。 4、理解万有引力常量的意义及测定方法,了解卡文迪许实验室。 二、过程与方法 1、在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与推理论证等方法。 2、培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。 三、情感态度与价值观 1、通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,提高学生科学价值观。 2、经过万有引力常量测定的学习,让学生体会科学的方法论和物理常量数量级的重要性。 【教学重点】 1、月-地检验的推导过程。 2、万有引力定律的内容及表达式。 【教学难点】 1、对万有引力定律的理解。 2、使学生能把地面上的物体所受重力与月地之间存在的引力是同性质的力联系起来。【教学设计思想】

万有引力是怎么来的

万有引力是怎么来的 云南云维集团大为制焦电仪黄兆荣 摘要:本文从原子结构入手,简单说明万有引力产生的原因,从实验入手,论证了万有引力与电磁力的统一,并说明电子、地球等运动规律。 关键词:引力电磁力摩擦 一、概述:大家都知道万有引力,是任何一个物质之间都存在的一种吸引力;我们也都 知道万有引力的计算公式: F引=G *m1m2/r2 (1) 那么这个计算公式正确吗? 下面用实验来验证;在干燥的环境中,禁止空气流动, 1、用木材、竹片或金属做一个小框,在用细线在上面悬挂多种物质如:泥土块、小石块、木片、玻璃片、塑料、金属片等(同样的重量)。然后再用同样的物质去一一接近上述悬挂的各种物体,可以发现物体之间的引力是不同的。应为: F引=AG *m1m2/r2 2、用与毛皮摩擦的玻璃棒、塑料棒、木棒等去接近悬挂的物体,会发现任何物体都与摩擦后的玻璃棒、毛皮之间产生引力叫电引力,比不摩擦的引力大得多。 3、再用与毛皮摩擦后的各种物体接触悬挂各种的上述物体,看到一定大小的物体表现为排斥了。 4、再一次重复第3条实验,第二次看到一定大小的物体之间表现为排斥力。通过上述实验我们可以得出这样的结论。质量m/电压v之比,在一定的范围内表现为排斥力,当大于或小于这个范围表现为引力。 A、为什么摩擦会产生电,电磁力就会吸引其他物质、那么电磁力和引力是同一个力? 物体摩擦是物体之间做相对运动,摩擦就是物体表面凸凹不平接触时产生的现象,摩擦会产生电、光、振动现象,振动都有频率的,在外力的作用下发生质量和能量的转换,而产生热能,电、光、声音等现象。摩擦就会产生能量的消耗,可以用下面的公式来证明:mc2=E 即:物体的质量差*光速的平方等=物质能量 物质是由原子组成,原子是由原子核和绕原子核做自由运动的电子组成,原子核带正电、电子带负电,正负电荷相互抵消,因此原子核和电子组成一个对外不显电性的整体。同时,我们还知道同性想斥、异性相吸。这些內容都好似正确的吗?如果正确,那么原子核和自由电子就会连成一个整体,电子就不可能饶原子核做自由运动了。 只要有电荷,就会产生电场,因此原子核产生正电场,电子产生负电场,电子都是在自由运动的,原子核产生正电场和电子产生的负电场就不可能完全抵消,所以原子总是有电性(引力)的,从而物质对外也总是显电性的,这就是我们通常看到的物体之间的相互吸引的作用力,也就是万有引力产生的原理。原子核和自由电子之所以相互吸引,是因为原子核带电性高于核外的自由电子的带电性,会吸引其他物质的特性 从上述实验中可以看出物质的的质量与电压之比在一定的范围内的,表现出排斥力,大于或小于该范围内物体电引力。物质的运动总是在一定的电场内部进行的,当运动m/v 在一定的范围内,电子的运动远离原子核时,引力就越来越大,当引力达到最大时,物质的

(完整word版)高中物理万有引力定律知识点总结和典型例题精选

万有引力定律 人造地球卫星 『夯实基础知识』 1.开普勒行星运动三定律简介(轨道、面积、比值) 丹麦天文学家 第一定律:所有行星都在椭圆轨道上运动,太阳则处在这些椭圆轨道的一个焦点上; 第二定律:行星沿椭圆轨道运动的过程中,与太阳的连线在单位时间内扫过的面积相等; 第三定律:所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等.即k T r =23 开普勒行星运动的定律是在丹麦天文学家弟谷的大量观测数据的基础上概括出的,给出了行星运动的规律。 2.万有引力定律及其应用 (1) 内容:宇宙间的一切物体都是相互吸引的,两个物体间的引力大小跟它们的质量成积成正比,跟它们的距离平方成反比,引力方向沿两个物体的连线方向。 2r Mm G F =(1687年) 2211/1067.6kg m N G ??=-叫做引力常量,它在数值上等于两个质量都是1kg 的物体相距1m 时的相互 作用力,1798年由英国物理学家卡文迪许利用扭秤装置测出。 万有引力常量的测定——卡文迪许扭秤 实验原理是力矩平衡。 实验中的方法有力学放大(借助于力矩将万有引力的作用效果放大)和光学放大(借助于平面境将微小的运动效果放大)。 万有引力常量的测定使卡文迪许成为“能称出地球质量的人”:对于地面附近的物体m ,有2E E R m m G mg =(式中R E 为地球半径或物体到地球球心间的距离),可得到G gR m E E 2 =。 (2)定律的适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 当两个物体间的距离无限靠近时,不能再视为质点,万有引力定律不再适用,不能依公式算出F 近为无穷大。 (3) 地球自转对地表物体重力的影响。 体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,

高中物理_3 万有引力定律教学设计学情分析教材分析课后反思

6.3万有引力定律 一、猜想万有引力定律 二、月地检验 三、万有引力定律 四、万有引力与重力的关系 【例题1】估算两个质量 50 kg 的同学相距 0.5 m 时之间的万有引力约有多大? 【例题2】那么太阳与地球之间的万有引力又是多大呢?(太阳的质量为M = 2.0×1030 kg,地球质量为m = 6.0×1024 kg,日、地之间的距离为r= 1.5×1011 m) 【当堂达标】 1. 对于万有引力的表达式,下列说法正确的是()

A .公式中G 为引力常量,它是由实验测得的,而不是人为规定的 B .当r 趋近于零时,万有引力趋近于无穷大 C .M 与m 受到的引力总是大小相等的,与M 、m 是否相等无关 D .M 与m 受到的引力总是大小相等、方向相反的,是一对平衡力 2、如图所示,r 虽然大于两球的半径,但两球的半径不能忽略,而球的质量分布均匀,大小分别为m 1与m 2,则两球间万有引力的大小 为 ( ) 3.地球绕地轴自转时,对静止在地面上的某一个物体,下列说法正确的是( ) A.物体的重力并不等于它随地球自转所需要的向心力 B.在地面上的任何位置,物体向心加速度的大小都相等,方向都指向地心 C.在地面上的任何位置,物体向心加速度的方向都垂直指向地球的自转轴 D.物体随地球自转的向心加速度随着地球纬度的减小而增大 4.火星的质量和半径分别约为地球的和,地球表面的重力加速度为g ,则火星表面的重力加速度约为( ) 122A m m G r 、 1221B m m G r 、12212C ()m m G r r 、 122 12D ()m m G r r r 、

相关文档
最新文档