万有引力的推导(最终)

万有引力的推导(最终)
万有引力的推导(最终)

常微分 用万有引力定律推导开普勒三定律

万有引力推导开普勒定律 万有引力定律的阐明: 任意两个质点由通过连心线方向上的力相互吸引。该引力大小与它们质量的乘积成正比,与它们距离的平方成反比,与两物体的化学组成和其间介质种类无关。 开普勒定律的阐明: ①椭圆定律:所有行星绕太阳的轨道都是椭圆,太阳在椭圆的一个焦点上。 ②面积定律:行星和太阳的连线在相等的时间间隔内扫过相等的面积。 ③所有行星绕太阳一周的恒星时间()的平方与它们轨道长半轴(ai)的立 方成比例,即 一、开普勒第二定律导引: 由于太阳超重于行星,我们可以假设太阳是固定的。用方程式表示为: ; 其中,是太阳作用于行星的万有引力、是行星的质量、是太阳的质量、是行星相对于太阳的位移向量、是的单位向量。 牛顿第二定律声明:物体受力后所产生的加速度,和其所受的浮力成正比, 和其质量成反比。用方程式表示: 。 合并这两个方程式: (1) 思考位置向量,随时间微分一次可得到速度向量,再微分一次则 可得到加速度向量: 在这里,我们用到了单位向量微分方程式:

, 。(2) 合并方程式 (1) 与 (2) ,可以得到向量运动方程式: 取各个分量,我们得到两个常微分方程式,一个是关于径向加速度,另一个是关于切向加速度: ,(3) 。(4) 导引开普勒第二定律只需切向加速度方程式。试想行星的角动量。 由于行星的质量是常数,角动量随时间的导数为: 。 角动量也是一个运动常数,即使距离与角速度都可能会随时间变化。从 时间到时间扫过的区域: 。 行星太阳连线扫过的区域面积相依于间隔时间。 所以,开普勒第二定律是正确的。 二、开普勒第一定律导引: 设定。这样,角速度是: 。 随时间微分与随角度微分的关系为: 。 随时间微分径向距离:

万有引力定律的建立过程及意义

万有引力定律的建立过程及意义 万有引力定律的发现,是17世纪自然科学最伟大的成果之一。苹果的落地引起了牛顿科学的遐想,在通过大量数学计算后推导出了著名万有引力定律。 然而万有引力定律的确立,却并非牛顿一个人的功劳。在牛顿研究万有引力之前,已有不少人从事这个问题的研究,如第谷、开普勒。此外和牛顿同时代的科学家,如胡克、哈雷、惠更斯、伦恩等,对万有引力定律的建立也有贡献。正如牛顿本人所说:“我之所以有这样的成就,因为我是站在巨人们的肩膀上的。” 丹麦天文学家第谷花费多年时间进行观测行星,编制了篇幅庞大、高度精确的星表。而后德国数学家、天文学家、物理学家开普勒对第谷的星表进行整理研究,最终提出了行星运动三定律。这些对于牛顿提出万有引力定律具有至关重要的作用。此外,惠更斯的向心力公式,胡克、哈雷、伦恩重力问题的研究都给予了牛顿不少启发。 1665-1666年,因为瘟疫流行,牛顿从剑桥大学回到家乡。而看到苹果偶然落地引发了牛顿思考引力问题。之后1684年,牛顿做了《论运动》的演讲,明确叙述了向心力定律,证明了椭圆轨道运动的平方反比关系。此后不久,又在一篇关于物体在均匀介质中的运动的论文中定义了质量概念,并探讨了引力与质量的关系。这些将牛顿引向了万有引力定律的发现。 牛顿设想了从高山上平抛一个铅球的理想实验,他认为当发射速度足够大时,铅球将可能绕地球运动而不再落回地面,指出月球也可以由于重力或者其他力的作用使其偏离直线形成围绕地球的运转。牛顿通过一个靠近地面的“小月球”的运动的思想实验,论证了“使月球保持在它轨道上的力就是我们通常称的为‘重力’的那个力。” 接着,牛顿根据向心力公式和开普勒三定律推导了平方反比关系。牛顿证明,由面积速度定律可以得出物体受中心力的作用,由轨道定律可以得出物体这个中心力是吸引力,由周期定律可以得出这个吸引力与半径的平方成反比。并且通过同磁力的类比,得出“这些指向物体的力应与这些物体的性

从开普勒定律到万有引力定律

从开普勒定律到牛顿万有引力定律 [摘要]:在高中阶段甚至大学的普通物理中,从开普勒三定律到万有引力定律的推导都是在简化之后的圆轨道上进行的。本文从椭圆轨道出发,推导出了万有引力定律。 [关键词]:万有引力定律、开普勒定律、行星运动、椭圆轨道、极坐标 [正文] 高中阶段,由于缺少数学知识,从开普勒定律到万有引力的推导只能在简化之后的圆轨道上进行。甚至大学阶段,普通物理的教材中,也采用了这个方法。本文力图从原始的椭圆轨道入手,导出万有引力定律。当然,这个过程不可能不涉及高等数学的知识。首先我们做一个准备工作,然后再集中考虑推导的过程。如果“准备”中的知识已完全清楚,则可以直接考虑定律的推导了。 第一部分 准备 一、极坐标中的椭圆方程 椭圆定义为到定点的距离与到定直线的距离之比为常数e 的点的集合。 如图1所示,在极坐标中,Ox 为极轴l 是垂直于极轴的定直线,它与O 点的距离为p 。由椭圆的定义可知: e r p r =+θ cos 整理可得: θ cos 1e pe r -= (1) 二、极坐标中的位置矢量 x O θ 图1 l r

极坐标中,r 表示从原点到曲线上一点的距离,如果我们以原点O 为参考,则r 实际上只表示出了位置矢量的大小。为了明确其方向,我们沿着r 所在的直线做出单位矢量i 作为径向单位向量。另外,将i 旋转2 π 得到j 作为横向单位向量。显然物体的位置矢量可表示为: ri =r (2) 上式中等号右边的r 表示的是位矢的大小,i 表示的位矢的方向。但是应当注意的是,不管是r 还是i ,都不一定是常量。这和直角坐标系中的单位向量是常量是有区别的。 另外,r 和i 都是θ的函数,在运动学中θ又是时间t 的函数。所以,r 和i 都是时间t 的函数,所以我们也可以说位置矢量r 是时间的函数。 在这里,我们必须清楚的是,极坐标中的矢量表示和用极坐标表示函数关系并不完全是一回事。若用极坐标表示数量关系,我们只需要用标量式()θr r =即可,在表示矢量时,我们不得不在这个基础上加上了单位向量i 。 三、极坐标中的速度和加速度 下面我们先求单位向量对时间的导数。 在图3中,以Ox 方向为x 轴,O 为原点,垂直Ox 向上为y 轴建立直角坐标系,用ξ、 η表示沿x 轴、y 轴的单位向量,则i 、j 可分别表示为: θηθξsin cos +=i x 图3 r i j θd θ O Δi θd x O θ 图2 r i j

万有引力定律的推导及完美之处

万有引力定律的推导及完美之处 现在由开普勒第一定律来求行星所受的力的量值。既然轨道为椭圆,我们就可把轨道方程写为 1cos P r e θ=+ 或1cos e P P μθ=+ 把这关系式1cos e P P μθ=+代入比耐公式 2222()d F h d m μμμθ+=- ,就得到 222222 22()d mh h m F mh d P P r μμμμθ=-+=-=- 这表明行星所受力是引力,且与距离平方成反比。 乍一看来,似乎不需要开普勒第三定律就已经能推出胡克的万有引力公式。其实不然,我们并不能把 22h m F P r =-化成22k m F r =-,因为式22h m F P r =-中的h 和P 对每一个行星来讲都具有不同的数值(2r h θ=,1r μ=,P 为椭圆曲线正焦弦长度的一半),而式中的2k 是一个与行星无关的常数。 开普勒第一定律:行星绕太阳作椭圆运行,太阳位于椭圆的一个焦点上。 开普勒第二定律:行星和太阳之间的连线,在相等的时间内所扫过的面积相等。 开普勒第三定律:行星公转的周期的平方和轨道半长轴的立方成正比。 为了能把22h m F P r =-化为 22k m F r =-,就得利用开普勒第三定律,由行星公转的周期得 22324T P a h π= 虽然h 和P 都是和行星有关的常数,但根据开普勒第三定律中2 3T a 是与行星无关的常数,可以得到2P h (或2 h P )是一个与行星无关的常数(即跟行星质量无关,而是由太阳决定了行 星轨道的性质)。因而可以令22h k P =,我们就可以把22h m F P r =-化为 22k m F r =-, 即 2222h m k m F P r r =-=-

由万有引力定律推导开普列三定律

由万有引力定律推导开普列三定律 ——————《牛顿定律及万有引力》1,牛顿定律定义 牛顿运动定律包含以下三个定律: 牛顿第一运动定律: 孤立质点保持静止或做匀速直线运动;用公式表示为: , 式中为合力,为速度,为时间。 牛顿第二运动定律: 动量为的质点,在外力的作用下,其动量随时间的变化率同该质点所受的外力成正比,并与外力的方向相同;用公式表达为:。根据动量的定义, 。

若质点的质量不随时间变化(即),则质点运动的加速度的大小同作用在该质点上的外力的大小成正比,加速度的方向和外力的方向相同;用公式表达为: 。 牛顿第三运动定律: 相互作用的两个质点之间的作用力和反作用力总是大小相等,方向相反,作用在同一条直线上; 用公式表达为:(式中表示质点受到的质点的作用力,表示质受到的质点的反作用力)。 开普列定律定义 开普勒在《宇宙谐和论》上的原始表述:绕以太阳为焦点的椭圆轨道运行的所有行星,其各自椭圆轨道半长轴的立方与周期的平方之比是一个常量。 常见表述:

绕同一中心天体的所有行星的轨道的半长轴的三次方( )跟它的公转周期的二次方( )的比值都相等,即,(其中M 为中心天体质量,k 为开普勒常数,这是一个只与被绕星体有关的常量[2] ,G 为引力常量,其2006年国际推荐数值为 )不确定度为。 2,推导过程 万有引力定律是用开普勒第三定律导出的,因此不能再用万有引力定律来推导开普勒第三定律,循环论证是不严谨的。开普勒第三定律是开普勒根据第谷的观测数据来计算出来的,没有见过推导,推导过程只能是与万有引力定律的联系,不能叫推导。 所以由万有引力定律推导开普勒第三定律 推导过程是逆历史发展顺序的。 首先由万有引力=向心力 r m Mm 2r 2 2??? ??=T G π 瞬间得出

万有引力定律的发现过程

万有引力定律的发现过程 自哥白尼建立日心说到开普勒提出行星运动三定律,行星运动的基本规律已被发现,给进一步从动力学方面考察行星的运动提供了条件.到17世纪后半期,已有一些学者,其中包括著名物理学家胡克。认为天体之间存在着相互作用的引力,行星的运动是由太阳对它们的引力引起的。胡克等人甚至推测到太阳对行星的引力的大小跟行星与太阳之间的距离的平方成反比、但是他们都不能证明行星所做的椭圆运动是平方反比律的.对引力大小的数量级也一无所知。1684年,这个问题在英国皇家学会争论颇为激烈,天文学家哈雷和数学家雷恩都不能解决这个疑难,胡克虽然声称他已得解,却拿不出一个公式.同年8月,哈雷带着这个问题来请教牛顿,才知道牛倾已经解决了这个问题。在哈雷的敦促下,牛顿于1684年12月写出了了《论运动》一文,阐明了他在地面物体动力学和天体力学方面获得的成就。 1687年,他又发表了著名的《自然哲学的数学原理》,全面地总结了他的研究成果,他所发现的万有引力定律,也在这部著作中得到了系统而深刻的论证.这些论证对于在物理理论中已经确立的定律,新的假说、实验观测和理论推导之间的相互作用,提供了一个极好的范例.研究牛顿留给人们的文献可以看到,他发现万有引力定律的思路大体如下:(1)牛顿首先证明了,一个运动物体,如果受到一个指向固定中心的净力作用,不论这个力的性质和大小如何,它的运动一定服从开普勒第二定律(即等面积定律);反过来,行星运动都服从开普勒第二定律,它们就都受到一个向心力时作用. (2)牛顿又证明,一个沿椭圆轨道运动的物体,如果受到指向椭圆焦点的向心力,这个力一定跟物体与焦点的距离的平方成反比. (3)牛顿认为,行星所受的向心力来源于太阳的引力;卫星所受的向心力来源于行星的引力而地球吸引月球的引力,跟地球吸引树上的苹果和任何一个抛出的物体时显示出来的重力,是同一种力.这就是说,天体的运动跟地面上物体的运动,有着共同的规律,地球重力,也是随着与地心距离的增大按平方反比律而减弱的,牛顿通过计算证明,由于月球与地球的距离是地球半径的60倍,月球轨道运动的向心加速度应该等于地面上重力加速度的。 这就是著名的月地检验,它跟实际测量的结果符合得相当好. 1/ 2

(完整版)万有引力定律-知识点

万有引力定律及其应用 二.万有引力定律 (1)内容:宇宙间的一切物体都是互相吸引的,两个物体间的引力大小,跟它们的质量的乘积成正比,跟它们的距离的平方成反比. (2)公式:F =G 2 21r m m ,其中2211/1067.6kg m N G ??=-,称为为有引力恒量。 (3)适用条件:严格地说公式只适用于质点间的相互作用,当两个物体间的距离远远大于物体本身的大小时,公式也可近似使用,但此时r 应为两物体重心间的距离.对于均匀的球体,r 是两球心间的距离. 注意:万有引力定律把地面上的运动与天体运动统一起来,是自然界中最普遍的规律之一,式中引力恒量G 的物理意义是:G 在数值上等于质量均为1千克的两个质点相距1米时相互作用的万有引力. 三、万有引力和重力 重力是万有引力产生的,由于地球的自转,因而地球表面的物体随地球自转时需要向心力.重力实际上是万有引力的一个分力.另一个分力就是物体随地球自转时需要的向心力,如图所示,由于纬度的变化,物体做圆周运动的向心力F 向不断变化,因而表面物体的重力随纬度的变化而变化,即重力加速度g 随纬度变化而变化,从赤道到两极逐渐增大.通常的计算中因重力和万有引力相差不大,而认为两者相等,即m 2g =G 2 21r m m , g=GM/r 2 常用来计 算星球表面重力加速度的大小,在地球的同一纬度处,g 随物体离地面高度的增大而减小,即g h =GM/(r+h )2 ,比较得g h =( h r r +)2 ·g 在赤道处,物体的万有引力分解为两个分力F 向和m 2g 刚好在一条直线上,则有 F =F 向+m 2g , 所以m 2g=F 一F 向=G 2 21r m m -m 2R ω自2 因地球目转角速度很小G 2 21r m m ? m 2R ω自2 ,所以m 2g= G 2 21r m m 假设地球自转加快,即ω自变大,由m 2g =G 2 21r m m -m 2R ω自2 知物体的重力将变 小,当G 2 21r m m =m 2R ω自2 时,m 2g=0,此时地球上物体无重力,但是它要求地球 自转的角速度ω自= 1 3 Gm R ,比现在地球自转角速度要大得多. 四.天体表面重力加速度问题 设天体表面重力加速度为g,天体半径为R ,由mg=2Mm G R 得g=2 M G R ,由此推得两个不同天体 表面重力加速度的关系为2121 2212 g R M g R M =* 五.天体质量和密度的计算 原理:天体对它的卫星(或行星)的引力就是卫星绕天体做匀速圆周运动的向心力.

高中物理万有引力知识点

万有引力与航天 编辑:李鸿书 一、行星的运动 1、开普勒的行星运动定律 (1)开普勒第一定律(轨道定律) 所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上.不同行星椭圆轨道则是不同的. 开普勒第一定律说明了行星的运动轨道是椭圆,太阳在此椭圆的一个焦点上,而不是位于椭圆的中心.不同的行星位于不同的椭圆轨道上,而不是位于同一椭圆轨道,再有,不同行星的椭圆轨道一般不在同一平面内(2)开普勒第二定律(面积定律) 对任意一个行星来说, 它与太阳的连线在相等的 时间内扫过相等的面积. 如右图所示,行星沿着椭圆轨道运行,太阳位于椭 圆的一个焦点上. 如果时间间隔相等,即3412t t t t -=-,那么B A S S =, 由此可见,行星在远日点a 的速率最小,在近日点b 的速率最大. (3)开普勒第三定律(周期定律) 所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比值都相等.若 用a 代表椭圆轨道的半长轴,T 代表公转周期.即k a 23 =T (其中,比值k 是一个与行 星无关的常量) 2、对行星运动规律的理解 (1)开普勒第二定律可以用来确定行星的运行速率,如上图所示,如果时间间隔相等,即3412t t t t -=-,由开普勒第二定律,可得速度之比等于到中心天体距离的反比,即 A B B A R R V V = (2)开普勒三定律不仅适用于行星,也适用于其他天体,例如对于木星的所有 卫星来说,它们的23 a T 一定相同,但常量k 的值跟太阳系各行星绕太阳运动的k 值

不同.开普勒恒量k 的值只跟(行星运动时所围绕的)中心天体的质量有关 (3)要注意长轴是指椭圆中过焦点与椭圆相交的线段,半长轴即长轴的一半,注意它和远日点到太阳的距离不同. (4)由于大多数行星绕太阳运动的轨道与圆十分接近,因此,在中学阶段的研究可以按圆周运动处理,这样开普勒三定律就可以这样理解: ①大多数行星绕太阳运动的轨道十分接近圆,太阳处在圆心; ②对某一行星来说,它绕太阳做圆周运动的速率不变,即行星做匀速圆周运动; ③所有行星轨道半径的三次方跟它的公转周期的二次方的比值都相等,即 k a 2 3 =T .如绕同一中心天体运动的两颗行星的轨道半径分别为R ?、R ?, 公转周期分别为T ?、T ?,则有22 3 2 2131T R T R = 二、万有引力定律 1.太阳与行星间引力的推导 牛顿在前人对惯性研究的基础上,认为:以任何方式改变速度(包括方向)都需 要力。因此,使行星沿圆或椭圆运动,需要指向圆心或椭圆焦点的力,这个力应该是太阳对它的引力.所以,牛顿利用他的运动定律把行星的向心加速度与太阳对它的引力联系起来了 (1)假设地球以太阳为圆心做匀速圆周运动,那么太阳对地球的引力就为做匀速圆周运动的地球提供向心力.设地球的质量为m,运动线速度为v,地球到太阳的距离为r,太阳的质量为M.则由匀速圆周运动的规律可知 r mv 2=F ① T r 2v π= ② 由①②得 2 2mr 4T F π= ③ 又由开普勒第三定律 k r 3 2 =T ④ 由③④得 22 r m k 4π=F ⑤ 即2 r m ∝F ⑥ 这表明:太阳对不同行星间的引力,跟行星的质量成正比,跟行星与太阳距离的平方成反比, (2)根据牛顿第三定律,力的作用是相互的,且等大反向,因此地球对太阳的引力 'F 也应与太阳的质量成正比,且'F =-F 即2'r m ∝F ⑦ (3)比较⑥⑦式不难得出2r Mm ∝F , 写成等式2r Mm G F =,式中G 是比例系数,

万有引力定律推导过程

万有引力定律推导过程 新课程、新教材,新在教育理念及教师的教学方式、学生的学习方式。就课堂教学而言,具体体现在教学目标的设定、教学内容的挖掘、教学手段的选择和教学过程的设计。“万有引力定律”的教学设计为例,使知识的获得过程体现出来。认识是一个过程,而不是一件产品”。教师教学生,不是要学生把结果记录下来,而是要使他参与知识构建的过程,所以,最有效的教学过程是体验的过程。体验思维创造的过程,体验应用实践的过程,体验学习的艰辛与喜悦,体验科学的壮美与神奇 万有引力定律的得出体现了牛顿的科学智慧;牛顿是一位对概念、规律的普遍意义极其敏感的大科学家。万有引力定律不是一般的推导而得,学习一下物理学史就可以知道,是在多种研究的基础上归纳出来的,他在《原理》中用几何和求极限相结合的方法论证了万有引力定律,而限于学生知识水平,不可能照搬牛顿的论证,而且考虑这个环节比较难,我还让他们先自己预习了一下。前面的推导他们都能理解,关键是太阳质量的加入,他们就开始觉得不好理解,再加上公式从等号变成正比符号、再变回等号,爱钻牛角尖的学生(其实学物理学得好的高中生好些都有点爱钻牛角尖)就觉得不能接受这种推导过程,反而是不太爱思 考问题的学生觉得容易接受。尤其是得出了、之后,怎么就 推断出,即F与质量的乘积成正比,与距离的平方成反比,而不是与 距离的四次方成反比而限于学生知识水平,不可能照搬牛顿的论证,为了使学生更好的体会牛顿的思想,更易于让学生接受定律的推理,我做了如下设计: 以地球绕太阳运动为例加以说明,太阳的质量为M.把地球绕太阳的运动简化为匀速圆周运动,太阳对地球的引力提供地球运动的向心力.如图所示,设地球质量为m,运行速率为v,周期为T,地球与太阳之间的距离为r,地球运动所需的向心力为, F= 天文观测中难以直接得到行星运动的速度v,但可以得到行星公转的周期T,因此应该由 圆周运动关系式 2r v T π =和向心力公 太阳地球 M r F m v

万有引力定律讲解

《万有引力定律》教学设计 浙江省苍南县灵溪第二高级中学陈和锋 【教材分析】 万有引力定律的发现过程犹如一部壮丽的科学史诗,它歌颂了前辈科学家的科学精神,也展现了科学发展过程中科学家们富有创造性而又严谨的科学思维,是发展学生思维能力难得的好材料,本节课内容充分利用这些材料发展学生的科学思维能力。教科书在尊重历史事实的前提下,通过一些逻辑思维的铺垫,让学生以自己现有的知识基础身于历史的背景下,经历一次“发现”万有引力的过程: 从上述物理学史进程中,可以看出《万有引力定律》这节内容是对上两节课教学内容的进一步推演,并与之构成本章的第一单元内容。同时,本节内容也是下节课教学内容的基础,是本章的教学重点,在高中物理中占有重要地位。 【学生分析】 从知识结构来看,在学习万有引力定律前,学生已经对力、重力、向心力、太阳对行星的引力、加速度、重力加速度(即自由落体运动的加速度)、向心加速度等概念有了较好的理解,并且掌握自由落体运动和圆周运动等运动规律,能熟练运动牛顿运动定律解决动力学问题。已经完全具备深入探究和学习万有引力定律的起点能力。

从知识建构的历史进程来看,在上一节中学生经历了太阳与行星间引力的探究过程,从中向学生渗透了发现问题、提出问题、猜想假设、推理论证等方法思想,依照学生的认知心理特点,同时根据上节课“说一说”中的问题,很容易在他们脑中形成这样一个问题:太阳与行星间引力规律是否适用于我们与地球间的相互作用?从而为我们进一步演绎万有引力定律“发现之旅”,确定了转接点,也引入本节新课内容。 然高一学生其思维方式容易停滞在知识接受层面,而忽视概念间、规律间的相互联系,且很多学生不能建立明确的动态的物理图像或物理情景,进而无法通过同化和顺应,完成知识的建构过程。因此,在教学过程中要注重从学生实际入手,依据学生认知规律,注重创设物理情景,创造和谐、民主、自由课堂气氛,进行探究教学。 【教学目标】 一、知识与技能 1、了解万有引力定律得出的思路和过程,知道重物下落和天体运动的统一性。 2、理解万有引力定律的含义并会用万有引力定律公式解决简单的引力计算问题。 3、知道万有引力定律公式的适用范围。 4、理解万有引力常量的意义及测定方法,了解卡文迪许实验室。 二、过程与方法 1、在万有引力定律建立过程的学习中,学习发现问题、提出问题、猜想假设与推理论证等方法。 2、培养学生研究问题时,抓住主要矛盾,简化问题,建立理想模型的处理问题的能力。 三、情感态度与价值观 1、通过牛顿在前人的基础上发现万有引力定律的思考过程,说明科学研究的长期性,连续性及艰巨性,提高学生科学价值观。 2、经过万有引力常量测定的学习,让学生体会科学的方法论和物理常量数量级的重要性 【教学重点】 1、月-地检验的推到过程。 2、万有引力定律的内容及表达公式。

3.从开普勒定律到万有引力定律

从开普勒定律到牛顿万有引力定律的推导过程 高中阶段,由于缺少数学知识,从开普勒定律到万有引力的推导只能在简化之后的圆轨道上进行。甚至大学阶段,普通物理的教材中,也采用了这个方法。本文力图从原始的椭圆轨道入手,导出万有引力定律。当然,这个过程不可能不涉及高等数学的知识。首先我们做一个准备工作,然后再集中考虑推导的过程。如果“准备”中的知识已完全清楚,则可以直接考虑定律的推导了。 第一部分 准备 一、极坐标中的椭圆方程 椭圆定义为到定点的距离与到定直线的距离之比为常数e 的点的集合。 如图1所示,在极坐标中,Ox 为极轴l 是垂直于极轴的定直线,它与O 点的距离为p 。由椭圆的定义可知: e r p r =+θ cos 整理可得: θ cos 1e pe r -= (1) 二、极坐标中的位置矢量 极坐标中,r 表示从原点到曲线上一点的距离,如果我们以原点O 为参考,则r 实际上只表示出了位置矢量的大小。为了明确其方向,我们沿着r 所在的直线做出单位矢量i 作为径向单位向量。另外,将i 旋转 2 π 得到j 作为横向单位向量。显然物体的位置矢量可表示为: ri =r (2) 上式中等号右边的r 表示的是位矢的大小,i 表示的位矢的方向。但是应当注意的是, x O θ 图1 l r

不管是r 还是i ,都不一定是常量。这和直角坐标系中的单位向量是常量是有区别的。 另外,r 和i 都是θ的函数,在运动学中θ又是时间t 的函数。所以,r 和i 都是时间t 的函数,所以我们也可以说位置矢量r 是时间的函数。 在这里,我们必须清楚的是,极坐标中的矢量表示和用极坐标表示函数关系并不完全是一回事。若用极坐标表示数量关系,我们只需要用标量式()θr r =即可,在表示矢量时,我们不得不在这个基础上加上了单位向量i 。 三、极坐标中的速度和加速度 下面我们先求单位向量对时间的导数。 在图3中,以Ox 方向为x 轴,O 为原点,垂直Ox 向上为y 轴建立直角坐标系,用ξ、 η表示沿x 轴、y 轴的单位向量,则i 、j 可分别表示为: θηθξsin cos +=i ,θηθξηπθξπθcos sin 2sin 2cos +-=??? ? ? ++??? ??+=j 因此 ()()()dt d dt d d d dt d dt di θ θηθξθθθηθξθηθξcos sin sin cos sin cos +-=?+=+= 对比j 的表达式有, j dt di θ =……………………………………………(3) x 图3 r i j θd θ O Δi θd x O θ 图2 r i j

牛顿万有引力推导过程个人报告

个人学习报告 1.牛顿万有引力的发现 从向心力定律到万有引力定律,还要实现两个过渡:⑴由向心力概念向万有 引力概念的过渡⑵把向心力定律由地面推广到一切天体之间。 第一个过渡首先表现在《原理》第三卷的命题Ⅴ的“注释”:“使天体保持在某轨道中的力至今都称为向心力,但是现在越来越变得明显了,它只能是一种引力(gravitation force),此后我们将称之为重力(gravity)。因为由哲学推理规则1、2和4,使月亮保持在它的轨道上的向心力将推广到一切行星上去。” 第二个过渡也是首先表现在《原理》第三卷中,它是应用了作用力和反作用力定律才得以实现的。牛顿在命题Ⅴ的推论1中写道:“有一种重力作用指向所有的行星和卫星。因为,毫无疑问,金星、水星以及其他所有星球,与木星和土星都是同一类星体,而由于所有的吸引(由定律Ⅲ)都是相互的,木星也为其所有卫星所吸引,土星也为其所有卫星所吸引,地球为月球所吸引,太阳也为其所有的行星所吸引。”在《原理》第一卷中,牛顿在定理XXXⅥ中的系2中明确得出“在任何不等的距离上,吸引力与吸引的球除以中心距的平方成正比”,这就是发现万有引力定律的雏形。而《原理》第三卷的定理Ⅶ的说明中写道:“一切行星以重力相互吸引,我们在前面已经证明了,个别论之,也证明了吸引这些行星之一的重力与距行星中心的距离的平方成反比。因此,可得出趋向于一切行星的重力与它们含的物质成正比。”这表明,牛顿终于得出重力或万有引力与质量乘积成正比距离的平方成反比,即发现了万有引力定律:F=GMm/r2 (G为引力常数,M、m为物体的质量,r为物体间的距离) 万有引力定律建立后获得了极大的成功,解决了当时地球形状的争论;根据万有引力定律,哈雷早就计算和预言的哈雷彗星在1758年发现了;1798年卡文迪许(H·Cavendish,1731~1810)测出了万有引力恒量;1846年法国天文学家莱维利叶(U·J·J·Leverrier)和英国天文学家亚当斯(J·C·Adams)利用万有引力定律用计算的方法发现了海王星;1930年3月14日用同样的方法发现了冥王星……本世纪以来对几百万光年宇宙结构的研究都证明了万有引力定律的正确性。 牛顿以万有引力定律为基础,建立了严密的天体力学理论体系,对长期以来使人们迷惑不解的支配天体运动的原因作出了精确的定量解答。在牛顿以前,无论东方还是西方,天与地的区分是根深蒂固的,没有任何一项成果能够说明天上运动和地上运动服从同一个规律的,牛顿的万有引力定律揭开了人类自然科学史上极其辉煌的一页。

万有引力定律优秀教案

六万有引力和天体运动 (一)开普勒行星定律 1.第一定律——轨道定律 所有行星围绕太阳运动的轨道都是椭圆,太阳处于所有椭圆的一个焦点上。 因此地球公转时有近日点和远日点 2.第二定律——面积定律 太阳和行星的连线在相等的时间内扫过的面积相等。 因此行星的公转速率是不均匀的,在近日点最快,在远日点最慢。 3.第三定律——周期定律 所有行星椭圆轨道的半长轴R的三次方与公转周期T的平方的比值都相等。 R 3 T 2 = k k是与行星无关,而与太阳有关的量。 (1)若公转轨道为圆,那么R就是指半径。 (2)第三定律针对的是绕同一中心天体运动的各星体,若中心天体不同,不能死套周期定律: 例如比较地球和火星,就有R地3 T地2 = R火3 T火2 = k k是一个与中心天体太阳有关的常数,与行星无关。 例如比较月球和人造卫星,就有R月3 T月2 = R卫3 T卫2 = k ′ k ′是一个与中心天体地球相关的常数,与卫星无关。 例如行星的卫星并非主要绕太阳运动,不能直接和行星比较,即R地3 T地2 ≠ R月3 T月2 例1.已知日地距离为1.5亿千米,火星公转周期为1.88年,据此可推算得火星到太阳的距离约为A. 1.2亿千米 B. 2.3亿千米 C. 4.6亿千米 D. 6.9亿千米 解:B (二)万有引力定律 1.基本概念 (1)表述:自然界中任何两个物体都是相互吸引的——引力普遍存在;

引力的大小跟这两个物体的质量的乘积成正比,跟它们的距离的二次方成反比——F万∝m1m2 R 2 (2)公式:F万=G m1m2 R 2 其中G称为引力常量,适用于任何物体,由卡文迪许首先测出。它在数值上等于两个质量都是1kg的质点相距1m时的相互作用力:G=6.67×10-11N·m2/kg2。 (3)定律的适用范围: ①定律只适用于质点间的相互作用,公式中的R是所研究的两质点间的距离。 ②定律还可用于两均匀球体间的相互作用,公式中的R是两球心间的距离。 ③定律还可用于一均匀球体和球体外另一质点间的相互作用,公式中的R是球心与质点间的距离。 例2.已知月球中心到地球中心的距离约是地球半径的60倍,两者质量之比M月∶M地=1∶81。问由地球飞往月球的飞船距月球中心多远时,地球与月球对飞船的万有引力的合力恰好为零? 解:设飞船质量为m,所求距离为d,据平衡条件有 G M月m d 2= G M地m (60R地-d)2 解得d=6 R地 2.万有引力和重力 (1)地面上物体的重力mg是地球对该物体的万有引力的一个分力。 随着纬度的升高,物体所需向心力减小,物体的重力逐渐增大。 事实上,地球表面的物体受到的万有引力和重力十分接近。 例如,在赤道上的一个质量为1kg的物体,用F万=G Mm R 2计算出来的万 有引力是9.830N,用F向=m 4π2 T 2 R计算出来的的向心力是0.034N,那么物体受到的重力是mg=F万-F向 =9.796N。因此 (2)在地面及附近,可认为 mg=G Mm R 2 那么重力加速度g=G M R 2——黄金代换

(整理)万有引力定律的发现与探究过程分析.

万有引力定律的发现与探究过程分析 ——兼论如何在教学中展示知识形成过程 北京教育学院吴剑平 引言 物理学的发端始于人类对理解星体运行的追求。三百多年前,万有引力定律的发现堪称人类文明与理性探索进程中最壮丽的诗篇,其所体现出的科学智慧的震撼力,至今仍为世人所叹服。李政道先生在回答是什么使他走上献身物理学研究的道路时曾说过,是物理学中那些具有普适性的物理法则和概念深深打动了他,激发了他深入探究的兴趣。万有引力定律就是这样一条具有简约性和普适性的自然法则,它第一次把看似毫不相关的地上与天上运动统一起来,第一次揭示大自然的对称和谐与物理规律表达简洁而含蓄的内在美,并作为牛顿的“从运动现象研究自然力”的又一个科学思辨范例,而不断为历代科学家所效仿。因此万有引力定律的教学绝不能仅限于具体知识的讲解、记忆与实际的(习题)应用,更应强调人类对天体运动的认识以及建立万有引力定律的探究过程,把教学重点放在“引导学生体会万有引力定律发现过程中的思路和方法”上。然而,除了教材与教参已有的介绍外,我们对物理学史上这段辉煌史实真正了解多少?我们能否把握整个发现过程中的探索脉络,并将从中领悟到的思想精髓介绍给学生?由此看来,要教好新教材中的万有引力定律一章,适当扩展相应的知识背景,了解有关牛顿引力理论的现代评述,就显得十分必要了。 本专题将着重探讨以下几个问题:(1)如何正确评价“地心说”与“日心说”的作用?(2)开普勒是如何导出行星三定律的?(3)牛顿如何从开普勒三定律推导出引力的平方反比定律(圆轨道、椭圆轨道)?(4)牛顿是如何解决引力定律的普适性的? 一、行星视运动及其天文观测常识 讨论开普勒三定律与万有引力定律离不开人类对行星运动的天文观测,这其中涉及我们不十分熟悉的天文知识。 1.天球及其坐标系 研究天体位置和运动而引进的假想圆球。由于天体与观察者距离远大于地球的移动距离,可将其视作散布于以观察者(地球)为中心的一个圆球面上。实际应上是将天体投影到半径任取(可视作无穷大)的天球面上。为定量表示天体投影在天球上位置和运动,需要建立以地球为中心的参考系,常用的坐标系有: (1)赤道坐标系:地球赤道平面延伸后与天球相交的大圆称作天赤道,地轴(自转轴)延伸线与天球相交两点称作北南天极,过天极的大圆称为赤经圈,与天赤道平行小圆称作赤纬圈。 (2)黄道坐标系:以地球绕太阳公转的轨道平面称为黄道面,其与天球相交的大圆称作黄道,地球轨道面的法线与天球交点称为北南黄极,该坐标系同样划分有黄经圈与黄纬圈。 赤道面与黄道面有23027/的交角,两者相交的两点称作春分点与秋分点。如图1所示。 黄极 黄道

万有引力定律是怎样发现的

万有引力定律是怎样发现的 摘要 本文概括了牛顿发现万有引力定律的全过程。从牛顿用几何法证明引力平方反比定律时起,通过发现运动第二定律,证明了万有引力与质量的比例关系之后,才发现的。牛顿从1665年至1685年,花了整整20年的漫长时间,才得出万有引力定律。 关键词:艾萨克?牛顿万有引力定律引力平方反比定律 万有引力定律的发现过程从牛顿用几何法证明引力平方反比定律时起,通过发现运动第二定律,证明了万有引力与质量的比例关系之后,才发现的,中间包括地月检验等验证阶段。这个发现过程与哈累的关心、督促和帮助分不开的。 哈雷是数学家和著名的天文学家,早年毕业与牛津大学的皇后学院。中学时代就在伦敦研究过磁针变化(1672)。1675年从事行星和恒星的精测图表工作。1676年11月至1678年11月去美国的圣?海伦纳(St Helena),在增补已有的南天星表之后,带回一副完整的星表目录。1679年当选皇家学会会员。1680年去巴黎,并在那里遇到卡西尼的天文学家,目睹了1681年彗星出现的情况,并进行观测。1684年初,他根据开普勒第三定律,得出向心力必定与距离的平方成反比。为了从几何上加以证明,他在1月的一个星期三,在雷恩的家中与雷恩和胡克聚会。他们讨论了行星运动问题,如分析行星运动为什么必须考虑引力对切向运动的影响和怎样才能得出引力平方反比关系等。这后一个问题在当时他们三个都是了解的。但是,谈到从这个关系怎样才能推导出轨道的形状时,哈雷问胡克,胡克说他能证明,但只有别人都证明不了时他才去做。当时,哈雷说他愿意提供价值40先令的一本书作为奖励,奖励在两个月内能得出结果的人,可是却无人能解决这个问题。于是,1684年8月哈雷到剑桥去拜访牛顿。根据史料,当时牛顿说他在5年前已经证明了这个问题,但是没有找到这份手稿,在8-10月间写出了证明手稿,这就是《论运动》一文手稿。在这个手稿中,牛顿用几何法和极限概念,证明了椭圆轨道上的引力平方反比定律。 《论运动》一文的手稿

相关文档
最新文档