微积分复习及解题技巧

微积分复习及解题技巧
微积分复习及解题技巧

《微积分》复习及解题技巧

第一章 函数

一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2

二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示)

对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0

④反正(余)弦函数式:自变量 ≤1

在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。

典型例题:《综合练习》第二大题之1

补充:求y=x

x 212-+的定义域。(答案:2

12<≤

-x )

三、判断函数的奇偶性:

典型例题:《综合练习》第一大题之3、4

第二章 极限与连续

求极限主要根据: 1、常见的极限:

2、利用连续函数:

初等函数在其定义域上都连续。 例:

3、求极限

的思路:

可考虑以下9种可能:

①0

0型不定式(用罗彼塔法则) ②

2

0C =0 ③∞

0=0

④01

C =∞ ⑤21C C ⑥∞

1C =0

0∞=∞ ⑧2C ∞=∞ ⑨∞

型不定

式(用罗彼塔法则)

1sin lim 0

=→x x

x e x x

x =???

?

?+∞→11lim )0(01

lim >=∞→αα

x

x )

()(0

lim 0

x

f x f x x =→11

lim 1

=→x x 1)

()

(lim =→x g x f x α??

???∞

≠=→)0(0

)(11lim 常数C C x f x α??

???∞

≠=→)0(0)(22lim 常数C C x g x α

特别注意:对于f (x )、g (x )都是多项式的分式求极限时,解法见教材P70下总结的“规律”。

以上解法都必须贯穿极限四则运算的法则!

典型例题:《综合练习》第二大题之3、4;第三大题之1、3、5、7、8

补充1:若1)

1(sin 2

21

lim =++-→b ax x x x ,则a= -2 ,b= 1 . 补充2:21

221211111lim lim e x x x x x

x x x

x =?

?????

?

?-+=??? ??-+-?-∞→∞→

补充3:

2

1121121121121...513131121)12)(12(1...751531311lim lim lim =??? ??+-=

???

??+--++-+-=??????+-++?+?+?∞→∞→∞→n n n n n n n n 补充4:

1ln lim 1

-→x x x 1

11

lim 1

=→x x (此题用了“罗彼塔法则”)

型0

第三章 导数和微分

一、根据导数定义验证函数可导性的问题: 典型例题:《综合练习》第一大题之12 二、求给定函数的导数或微分: 求导主要方法复习:

1、求导的基本公式:教材P123

2、求导的四则运算法则:教材P110—111

3、复合函数求导法则(最重要的求导依据)

4、隐函数求导法(包括对数函数求导法) 6、求高阶导数(最高为二阶) 7、求微分:dy=y / dx 即可

典型例题:《综合练习》第四大题之1、2、7、9 补充:设y=22)(1arctgx x ++,求dy. 解:∵2222

1211122112

1

x arctgx

x

x x arctgx x x y +++=+?

+?+?=' ∴dy=)121(

2

2

x

arctgx x x dx y ++

+=?'dx

第四章中值定理,导数的应用

一、关于罗尔定理及一些概念关系的识别问题:

典型例题:《综合练习》第一大题之16、19

二、利用导数的几何意义,求曲线的切、法线方程:

典型例题:《综合练习》第二大题之5

二、函数的单调性(增减性)及极值问题:

典型例题:《综合练习》第一大题之18,第二大题之6,第六大题之2

第五章 不定积分 第六章 定积分

Ⅰ理论内容复习: 1、原函数:)()(x f x F ='

则称F (x )为f (x )的一个原函数。 2、不定积分:

⑴概念:f (x )的所有的原函数称f (x )的不定积分。

?+=C x F dx x f )()(

注意以下几个基本事实:

())()(x f dx x f ='? ?+='C x f dx x f )()(

?=dx x f dx x f d )()(

?+=C x f x df )()(

⑵性质:??≠=?)0()()(a dx x f a dx x f a 注意 []???±=±dx x g dx x f dx x g x f )()()()( ⑶基本的积分公式:教材P206 3、定积分: ⑴定义 ⑵几何意义

⑶性质:教材P234—235性质1—3 ⑷求定积分方法:牛顿—莱布尼兹公式 Ⅱ习题复习:

一、关于积分的概念题:

典型例题:《综合练习》第一大题之22、24、25、第二大题之11、14

二、求不定积分或定积分: 可供选用的方法有——

⑴直接积分法:直接使用积分基本公式

⑵换元积分法:包括第一类换元法(凑微分法)、第二类换元法 ⑶分部积分法

典型例题:《综合练习》第五大题之2、3、5、6 关于“换元积分法”的补充题一:

??++=++=+C x x d x x dx 12ln 21

)12(1212112 关于“换元积分法”的补充题二:?-3

x xdx

解:设x -3=t 2,即3-x =t , 则dx=2tdt.

∴?

-3

x xdx

=??+dt t t t 2)3(2=C t t +++?+612121

2 =C t t ++63

23=C x x +-+-36)3(3

23

关于“换元积分法”的补充题三:

?+8

031x

dx

解:设x=t 3

,即

t =3

x ,则dx=3t 2dt.

当x=0时,t=0; 当x=8时,t=2. 所以

?+8

031x dx =0

21ln )1(21313)1(313202

202????????++-=??????++-=+t t dt t t t dt t =3ln3

(此题为定积分的第二类换元积分法,注意“换元必换限”,即变量x 换成变量t 后,其上、下限也从0、8变为0、2) 关于“分部积分法”的补充题一:

???

+-=-==C e x dx e xe xde dx xe x

x x x x )1( 关于“分部积分法”的补充题二:

C x arctgx dx x

x xarctgx arctgxdx ++-=+?

-=??2

2

1ln 2111 关于“分部积分法”的补充题三:

?

e

xdx x 1

ln

=???? ?

?-=???? ??-=???? ??-=???121211ln 21ln 1ln 21ln 21221212212e x e xdx e x x x d x e x x xdx e

e e =)1(41)2121(211212122222+=+-=???

? ??-e e e e x e (此题为定积分的分部积分法)

三、定积分的应用(求曲线围成的平面图形面积): 典型例题:《综合练习》第六大题之4

注意:此题若加多一条直线y=3x ,即求三线所围平面图形的面积,则解法为——(草图略)

S=??-+-3

12

1

0)3()3(dx x x dx x x =??-+3

121

0)3(2dx x x dx x

=13312301212322??? ??-+?x x x =????????? ??--??? ???-?+3123273192

31

=3

13

(平方单位)

使用指南——本复习参考资料应当与人手一册的《综合练习题》配套使用并服从于《综合练习题》。另外,请注意如下几点:

①本复习参考资料中的蓝色字体的“补

充”题是以往年级的部分应试复习题,对今年

9月份考试的同志来说,仅仅作为参考补充。

②《综合练习题》是我们复习重点中的重点,请

对照答案将所有

..题目

..完整地做一遍(使题目与答案相结合而不要相分离,以便需要时加快查

找的速度和准确度)。

③请将上述做好的

...《综合练习题》随身携带,经常复习、记忆,为应试作好准备;

④考试时请注意审题,碰到实在不会做的大题,

如果你发现只是《综合练习题》上的题目改变

了数字,那么请将你能够知道的、原来那个题

目的解法步骤完整地写出来,也能获得该题一

部分的分数。对于填空、选择这样的小题,尽

你所能去做,不要留下空白!

微积分试题及答案(5)

微积分试题及答案 一、填空题(每小题2分,共20分) 1. =∞→2 arctan lim x x x . 2. 设函数??? ??=<<-=0 , 10 )21()(1 x k x ,x x f x 在0=x 处连续,则=k 。 3. 若x x f 2e )(-=,则=')(ln x f 。 4. 设2sin x y =,则=)0() 7(y 。 5. 函数2 x y =在点0x 处的函数改变量与微分之差=-?y y d 。 6. 若)(x f 在[]b a ,上连续, 则=?x a x x f x d )(d d ; =? b x x x f x 2d )(d d . 7. 设函数)3)(2)(1()(---=x x x x f ,则方程0)(='x f 有 个实根。 8. 曲线x x y -=e 的拐点是 。 9. 曲线)1ln(+=x y 的铅垂渐近线是 。 10. 若 C x x x f x ++=? 2d )(,则=)(x f 。 二、单项选择(每小题2分,共10分) 1. 设x x f ln )(=,2)(+=x x g 则)]([x g f 的定义域是( ) (A )()+∞-,2 (B )[)+∞-,2 (C )()2,-∞- (D )(]2,-∞- 2. 当0→x 时,下列变量中与x 相比为高阶无穷小的是( ) (A )x sin (B )2 x x + (C )3x (D )x cos 1- 3. 函数)(x f 在],[b a 上连续是)(x f 在],[b a 上取得最大值和最小值的( ) (A )必要条件 (B )充分条件 (C )充分必要条件 (D )无关条件 4. 设函数)(x f 在]0[a , 上二次可微,且0)()(>'-''x f x f x ,则x x f ) ('在区间)0(a ,内是( ) (A )不增的 (B )不减的 (C )单调增加的 (D )单调减少的 5. 若 C x x x f +=?2d )(,则=-?x x xf d )1(2 。 (A )C x +-2 2)1(2 (B )C x +--2 2)1(2

大一高等数学期末考试试卷及答案详解

大一高等数学期末考试试卷 一、选择题(共12分) 1. (3分)若2,0, (),0x e x f x a x x ?<=?+>?为连续函数,则a 的值为( ). (A)1 (B)2 (C)3 (D)-1 2. (3分)已知(3)2,f '=则0 (3)(3) lim 2h f h f h →--的值为( ). (A)1 (B)3 (C)-1 (D) 12 3. (3分)定积分22 π π-?的值为( ). (A)0 (B)-2 (C)1 (D)2 4. (3分)若()f x 在0x x =处不连续,则()f x 在该点处( ). (A)必不可导 (B)一定可导(C)可能可导 (D)必无极限 二、填空题(共12分) 1.(3分) 平面上过点(0,1),且在任意一点(,)x y 处的切线斜率为23x 的曲线方程为 . 2. (3分) 1 241 (sin )x x x dx -+=? . 3. (3分) 20 1 lim sin x x x →= . 4. (3分) 3223y x x =-的极大值为 . 三、计算题(共42分) 1. (6分)求2 ln(15) lim .sin 3x x x x →+ 2. (6分)设2 ,1 y x =+求.y ' 3. (6分)求不定积分2ln(1).x x dx +?

4. (6分)求3 (1),f x dx -? 其中,1,()1cos 1, 1.x x x f x x e x ?≤? =+??+>? 5. (6分)设函数()y f x =由方程0 cos 0y x t e dt tdt +=??所确定,求.dy 6. (6分)设2()sin ,f x dx x C =+?求(23).f x dx +? 7. (6分)求极限3lim 1.2n n n →∞ ? ?+ ??? 四、解答题(共28分) 1. (7分)设(ln )1,f x x '=+且(0)1,f =求().f x 2. (7分)求由曲线cos 22y x x π π??=-≤≤ ???与x 轴所围成图形绕着x 轴 旋转一周所得旋转体的体积. 3. (7分)求曲线3232419y x x x =-+-在拐点处的切线方程. 4. (7 分)求函数y x =+[5,1]-上的最小值和最大值. 五、证明题(6分) 设()f x ''在区间[,]a b 上连续,证明 1()[()()]()()().22b b a a b a f x dx f a f b x a x b f x dx -''=++--? ? 标准答案 一、 1 B; 2 C; 3 D; 4 A. 二、 1 31;y x =+ 2 2 ;3 3 0; 4 0. 三、 1 解 原式205lim 3x x x x →?= 5分 5 3 = 1分 2 解 22ln ln ln(1),12 x y x x ==-++ 2分

微积分复习附解题技巧

《微积分》复习及解题技巧 第一章 函数 一、据定义用代入法求函数值: 典型例题:《综合练习》第二大题之2 二、求函数的定义域:(答案只要求写成不等式的形式,可不用区间表示) 对于用数学式子来表示的函数,它的定义域就是使这个式子有意义的自变量x 的取值范围(集合) 主要根据: ①分式函数:分母≠0 ②偶次根式函数:被开方式≥0 ③对数函数式:真数式>0 ④反正(余)弦函数式:自变量 ≤1 在上述的函数解析式中,上述情况有几种就列出几个不等式组成不等式组解之。 典型例题:《综合练习》第二大题之1 补充:求y=x x 212-+的定义域。(答案:2 12<≤ -x ) 三、判断函数的奇偶性: 典型例题:《综合练习》第一大题之3、4

第二章 极限与连续 求极限主要根据: 1、常见的极限: 2、利用连续函数: 初等函数在其定义域上都连续。 例: 3、求极限 的思路: 可考虑以下9种可能: ①0 0型不定式(用罗彼塔法则) ② 2 0C =0 ③∞ 0=0 ④01 C =∞ ⑤21C C ⑥∞ 1C =0 ⑦ 0∞=∞ ⑧2C ∞=∞ ⑨∞ ∞ 型不定 式(用罗彼塔法则) 1sin lim 0 =→x x x e x x x =??? ? ?+∞→11lim )0(01 lim >=∞→αα x x ) ()(0 lim 0 x f x f x x =→11 lim 1 =→x x 1) () (lim =→x g x f x α?? ???∞ ≠=→)0(0 )(11lim 常数C C x f x α?? ???∞ ≠=→)0(0)(22lim 常数C C x g x α

定积分及微积分基本定理练习题及答案

1.4定积分与微积分基本定理练习题及答案 1.(2011·一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x ≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系是 ( ) A .a2,c =??02sinxdx =- cosx|02=1-cos2∈(1,2), ∴c

大一微积分期末试卷及答案

微积分期末试卷 选择题(6×2) cos sin 1.()2 ,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π→-=--== >、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小 3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001() 5"()() ()()0''( )<0 D ''()'()0 6x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线 C既有铅直又有水平渐近线 D既有铅直渐近线 1~6 DDBDBD 一、填空题 1d 12lim 2,,x d x ax b a b →++=x x2 21 1、( )= x+1 、求过点(2,0)的一条直线,使它与曲线y= 相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+14、y拐点为:x5、若则的值分别为: x+2x-3

1 In 1x + ; 2 322y x x =-; 3 2 log ,(0,1),1x y R x =-; 4(0,0) 5解:原式=11 (1)() 1m lim lim 2 (1)(3) 3 4 77,6 x x x x m x m x x x m b a →→-+++== =-++∴=∴=-= 二、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0 sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函数f(x)在 [] 0,1上二阶可导且 ' ()0A ' B ' (f x f f C f f <===-令(),则必有 1~5 FFFFT 三、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 解:原式=2 2 2 1 1 1 3 3 2 (2)lim lim lim 12x x x x x x e e x e x x --→→→-===+∞- 2 若3 4 ()(10),''(0)f x x f =+求 解:3 3 2 2 3 3 3 3 2 3 2 2 3 3 4 3 2 '()4(10)312(10) ''()24(10)123(10)324(10)108(10)''()0 f x x x x x f x x x x x x x x x x f x =+?=+=?++??+?=?+++∴= 3 2 4 lim (cos )x x x →求极限

微积分试题及答案

微积分试题及答案

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 21x y x =+函数是有界函数 ( ) 2、 有界函数是收敛数列的充分不必要条件 ( ) 3、lim ββαα=∞若,就说是比低阶的无穷小( )4可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分)1、1sin x y x =求函数 的导数 2、 21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、31)x x +计算( 6、21 0lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2 )100R x x x =-(,总成本函数为2 ()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21 y x x =+的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01lim (),lim ()x x f x A f A x + →+∞→==则 2、证明方程10,1x xe =在区间()内有且仅有一个实数 一、 选择题

1、C 2、C 3、A 4、B 5、D 6、B 二、填空题 1、0x = 2、6,7a b ==- 3、18 4、3 5、20x y +-= 三、判断题 1、√ 2、× 3、√ 4、× 5、× 四、计算题 1、 1sin 1sin 1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )x x x x x x y x e e x x x x x x x x x x x '='='??=-+??? ?=-+(( 2、 22()112(arctan )121arctan dy f x dx x x x dx x x xdx ='=+-++= 3、 解: 2222)2)22230 2323(23)(23(22)(26) (23x y xy y y x y y x y y x y x y yy y x y --'+'=-∴'=--'----'∴''=-

大一微积分期末试题附答案

微积分期末试卷 一、选择题(6×2) cos sin 1.()2,()()22 ()()B ()()D x x f x g x f x g x f x g x C π ==1设在区间(0,)内( )。 A是增函数,是减函数是减函数,是增函数二者都是增函数二者都是减函数 2x 1 n n n n 20cos sin 1n A X (1) B X sin 21C X (1) x n e x x n a D a π →-=--==>、x 时,与相比是( ) A高阶无穷小 B低阶无穷小 C等价无穷小 D同阶但不等价无价小3、x=0是函数y=(1-sinx)的( ) A连续点 B可去间断点 C跳跃间断点 D无穷型间断点4、下列数列有极限并且极限为1的选项为( )n 1 X cos n = 2 00000001 () 5"()() ()()0''( )<0 D ''()'()06x f x X X o B X o C X X X X y xe =<===、若在处取得最大值,则必有( )Af 'f 'f '且f f 不存在或f 、曲线( ) A仅有水平渐近线 B仅有铅直渐近线C既有铅直又有水平渐近线 D既有铅直渐近线 二、填空题 1 d 1 2lim 2,,x d x ax b a b →++=xx2 211、( )=x+1 、求过点(2,0)的一条直线,使它与曲线y=相切。这条直线方程为: x 2 3、函数y=的反函数及其定义域与值域分别是: 2+1 x5、若则的值分别为: x+2x-3

三、判断题 1、 无穷多个无穷小的和是无穷小( ) 2、 0sin lim x x x →-∞+∞在区间(,)是连续函数() 3、 0f"(x )=0一定为f(x)的拐点() 4、 若f(X)在0x 处取得极值,则必有f(x)在0x 处连续不可导( ) 5、 设 函 数 f (x) 在 [] 0,1上二阶可导且 '()0A '0B '(1),(1)(0),A>B>C( )f x f f C f f <===-令(),则必有 四、计算题 1用洛必达法则求极限2 1 2 lim x x x e → 2 若34()(10),''(0)f x x f =+求 3 2 4 lim(cos )x x x →求极限 4 (3y x =-求 5 3tan xdx ? 五、证明题。 1、 证明方程3 10x x +-=有且仅有一正实根。 2、arcsin arccos 1x 12 x x π +=-≤≤证明() 六、应用题 1、 描绘下列函数的图形 21y x x =+

大学高等数学上考试题库及答案

《高数》试卷1(上) 一.选择题(将答案代号填入括号内,每题3分,共30分). 1.下列各组函数中,是相同的函数的是( B ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ()2g x x = (C )()f x x = 和 ()()2 g x x = (D )()|| x f x x = 和 ()g x =1 2.函数()()sin 42 0ln 10x x f x x a x ?+-≠? =+?? =? 在0x =处连续,则a =( B ). (A )0 (B )1 4 (C )1 (D )2 3.曲线ln y x x =的平行于直线10x y -+=的切线方程为( A ). (A )1y x =- (B )(1)y x =-+ (C )()()ln 11y x x =-- (D )y x = 4.设函数()||f x x =,则函数在点0x =处( C ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 5.点0x =是函数4 y x =的( D ). (A )驻点但非极值点 (B )拐点 (C )驻点且是拐点 (D )驻点且是极值点 6.曲线1 || y x = 的渐近线情况是( C ). (A )只有水平渐近线 (B )只有垂直渐近线 (C )既有水平渐近线又有垂直渐近线 (D )既无水平渐近线又无垂直渐近线 7. 211 f dx x x ??' ???? 的结果是( C ). (A )1f C x ?? -+ ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 8. x x dx e e -+?的结果是( A ). (A )arctan x e C + (B )arctan x e C -+ (C )x x e e C --+ ( D )ln()x x e e C -++ 9.下列定积分为零的是( A ).

微积分2方法总结

第七章 矢量代数与空间解析几何 ★类型(一) 向量的运算 解题策略 1. a a a ?=,2.},,{321a a a a = , .||232221a a a a ++= 3. 利用 点积、叉积、混合积的性质及几何意义. ★类型(二) 求直线方程 解题策略 首先考虑直线方程的点向式与一般式,否则再用其它形式. 类型(三) 直线点向式与参数式转化 类型(四) 异面直线 ★类型(五) 点到直线的距离、两直线的夹角 ★类型(六) 求平面方程 解题策略 平面方程的点法式、一般式、平面束. 类型(七) 直线与平面的位置 类型(八)求曲线与曲面方程 解题对策 一般用定义求曲线与曲面方程 疑难问题点拨 一般参数方程?? ???===Γ)()()(:t h z t g y t f x 绕Oz 轴旋转所成旋转曲面∑的方程 .)]}([{)]}([{212122z h g z h f y x --+=+ 证如图4-7, 设),,(z y x M 是曲面 上任意一点,而M 是由曲线Γ上某点),,(1111z y x M (对应的参数为t 1)绕Oz 轴旋转所得到。因此有).(),(),(111111t h z t g y t f x === ,1z z =,2 12122y x y x +=+),()(111z h t t h z -=?=? )]([)],([1111z h g y z h f x --==, 故所求旋转曲面方程为.)]}([{)]}([{212122z h g z h f y x --+=+ 特别地,若Γ绕Oz 轴旋转时,且Γ参数方程表示为???==). (),(z g y z f x 则 ).()(2222z g z f y x +=+ 事实上,由前面的证明过程可知),(),(1111z g y z f x ==1z z =,212122y x y x +=+ ),(),(11z g y z f x ==? 故).()(2222z g z f y x +=+ 图4-7

高等数学上册复习要点及解题技巧

高等数学上册复习要点及解题技巧 第一章:1、极限(夹逼准则) 2、连续(学会用定义证明一个函数连续,判断间断点类型) 第二章:1、导数(学会用定义证明一个函数是否可导)注:连续不一定可导,可导一定连续 2、求导法则(背) 3、求导公式也可以是微分公式 第三章:1、微分中值定理(一定要熟悉并灵活运用--第一节) 2、洛必达法则 3、泰勒公式拉格朗日中值定理 4、曲线凹凸性、极值(高中学过,不需要过多复习) 5、曲率公式曲率半径 第四章、第五章:积分 不定积分:1、两类换元法 2、分部积分法(注意加C ) 定积分: 1、定义 2、反常积分 第六章:定积分的应用 主要有几类:极坐标、求做功、求面积、求体积、求弧长 第七章:向量问题不会有很难 1、方向余弦 2、向量积 3、空间直线(两直线的夹角、线面夹角、求直线方程) 3、空间平面 4、空间旋转面(柱面) 高数解题技巧 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。 ●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 ●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。 ●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。 ●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理 ●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 ●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。 ●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 概率解题的九种思维定势 ●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 ●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式 ●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发 生概率是用全概率公式计算。关键:寻找完备事件组 ●第四句话:若题设中给出随机变量X ~ N 则马上联想到标准化 ~ N(0,1)来处理有关问题。 ●第五句话:求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使 联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而的求法类似。 ●第六句话:欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联 想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的 区域的公共部分。 ●第七句话:涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作 (0-1)分解。即令

定积分及微积分基本定理练习题及答案

定积分与微积分基本定理练习题及答案 1.(2011·宁夏银川一中月考)求曲线y =x2与y =x 所围成图形的面积,其中正确的是( ) A .S =??01(x2-x)dx B .S =??01(x -x2)dx C .S =??01(y2-y)dy D .S =??01(y -y)dy [答案] B [分析] 根据定积分的几何意义,确定积分上、下限和被积函数. [解读] 两函数图象的交点坐标是(0,0),(1,1),故积分上限是1,下限是0,由于在[0,1]上,x≥x2,故函数y =x2与y =x 所围成图形的面积S =??0 1(x -x2)dx. 2.(2010·山东日照模考)a =??02xdx ,b =??02exdx ,c =??02sinxdx ,则a 、b 、c 的大小关系 是( ) A .a2,c =??0 2sinxdx =-cosx|02 =1-cos2∈(1,2), ∴c

大学高等数学上习题(附答案)

《高数》习题1(上) 一.选择题 1.下列各组函数中,是相同的函数的是( ). (A )()()2ln 2ln f x x g x x == 和 (B )()||f x x = 和 ( )g x =(C )()f x x = 和 ( )2 g x = (D )()|| x f x x = 和 ()g x =1 4.设函数()||f x x =,则函数在点0x =处( ). (A )连续且可导 (B )连续且可微 (C )连续不可导 (D )不连续不可微 7. 211 f dx x x ??' ???? 的结果是( ). (A )1f C x ?? - + ??? (B )1f C x ?? --+ ??? (C )1f C x ?? + ??? (D )1f C x ?? -+ ??? 10.设()f x 为连续函数,则()10 2f x dx '?等于( ). (A )()()20f f - (B )()()11102f f -????(C )()()1 202f f -??? ?(D )()()10f f - 二.填空题 1.设函数()21 00x e x f x x a x -?-≠? =??=? 在0x =处连续,则a = . 2.已知曲线()y f x =在2x =处的切线的倾斜角为5 6 π,则()2f '=. 3. ()21ln dx x x = +?. 三.计算 1.求极限 ①21lim x x x x →∞+?? ??? ②() 20sin 1 lim x x x x x e →-- 2.求曲线()ln y x y =+所确定的隐函数的导数x y '. 3.求不定积分x xe dx -?

微积分期末测试题及答案

微积分期末测试题及答 案 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

一 单项选择题(每小题3分,共15分) 1.设lim ()x a f x k →=,那么点x =a 是f (x )的( ). ①连续点 ②可去间断点 ③跳跃间断点 ④以上结论都不对 2.设f (x )在点x =a 处可导,那么0()(2)lim h f a h f a h h →+--=( ). ①3()f a ' ②2()f a ' ③()f a ' ④1()3f a ' 3.设函数f (x )的定义域为[-1,1],则复合函数f (sinx )的定义域为( ). ①(-1,1) ②,22ππ??-???? ③(0,+∞) ④(-∞,+∞) 4.设2 ()()lim 1()x a f x f a x a →-=-,那么f (x )在a 处( ). ①导数存在,但()0f a '≠ ②取得极大值 ③取得极小值 ④导数不存在 5.已知0lim ()0x x f x →=及( ),则0 lim ()()0x x f x g x →=. ①g (x )为任意函数时 ②当g (x )为有界函数时 ③仅当0lim ()0x x g x →=时 ④仅当0 lim ()x x g x →存在时 二 填空题(每小题5分,共15分) sin lim sin x x x x x →∞-=+. 31lim(1)x x x +→∞+=. 3.()f x =那么左导数(0)f -'=____________,右导数(0)f +'=____________. 三 计算题(1-4题各5分,5-6题各10分,共40分) 1.111lim()ln 1 x x x →-- 2.t t x e y te ?=?=? ,求22d y dx 3.ln(y x =,求dy 和22d y dx . 4.由方程0x y e xy +-=确定隐函数y =f (x ) ,求 dy dx . 5.设111 1,11n n n x x x x --==+ +,求lim n x x →∞.

近十份大学微积分下期末试题汇总(含答案)

浙江大学2007-2008学年春季学期 《微积分Ⅱ》课程期末考试试卷 一 、填空题(每小题5分,共25分,把答案填在题中横线上) 1.点M (1,-1, 2)到平面2210x y z -+-=的距离d = . 2.已知2a = ,3b = ,3a b ?= ,则a b += . 3.设(,)f u v 可微,(,)y x z f x y =,则dz = . 4.设()f x 在[0,1]上连续,且()f x >0, a 与b 为常数.()}{,01,01D x y x y = ≤≤≤≤,则 ()() ()() D af x bf y d f x f y σ++?? = . 5.设(,)f x y 为连续函数,交换二次积分次序 2220 (,)x x dx f x y dy -=? ? . 二 、选择题(每小题5分,共20分,在每小题给出的四个选项中只有一个是符合题 目要求的,把所选字母填入题后的括号内) 6.直线l 1: 155 121x y z --+==-与直线l 2:623 x y y z -=??+=?的夹角为 (A ) 2π . (B )3π . (C )4π . (D )6 π . [ ] 7.设(,)f x y 为连续函数,极坐标系中的二次积分 cos 2 0d (cos ,sin )d f r r r r π θθθθ? ? 可以写成直角坐标中的二次积分为 (A )100(,)dy f x y dx ?? (B )1 00(,)dy f x y dx ?? (C ) 10 (,)dx f x y dy ? ? (D )10 (,)dx f x y dy ?? [ ] 8.设1, 02 ()122, 12 x x f x x x ? ≤≤??=??-≤?? ()S x 为()f x 的以2为周期的余弦级数,则5()2S -= (A ) 12. (B )12-. (C )34. (D )3 4 -. [ ] <

微积分求解技巧

有时候就是需要大胆去想,大胆去尝试。你自认为不可能的事情恰恰成为出卷人考察你的把柄。 计算不定积分:x e x x e x x d ) () 1(2 ?-- 我的解法: C xe xe xe xe xe x xe x e x e x x e x x x x x x x x x +-=-=--=--=--=---------????11)1d()1(1)1()d(d )1()1(d )()1(2 222 同类型的题目 C x x x x x x x x x x x x x x x x x x x x x x x x x x x x x +-=---=-=-+=-+=-+?????tan 11)tan 1()tan 1d()tan 1()tan d()tan 1(d tan dtan d )tan 1(tan cos d )sin (cos cos sin 222222再来一题: x x x d ln 1 ln 2?- 我的解法: C x x x x x x x x x x x x x x x x x x x x x x x x x +=++-=-+--=--=---=-?????ln d ln ln 1ln ])1(ln d[ln 1 ln )1(ln ln 1d )1(ln d ln )1(ln d ln 1ln 22 不要把出题人想象的多么神圣,他只是看的题目比你多,仅此而已! 下面一题是用分部积分算的,但是我们可以用微分的性质快速的进行计算。 其实过度的依赖规则就是对思维的桎梏,有时候我们就是要转变思想,打破规则! 再来一个抽象函数的题目:

()ln()()ln()ln()ln() =d d ()()()() ln()d ln()ln()d ln()d[ln()ln()]ln()ln()x a x a x b x b x a x b x x x a x b x b x a x a x b x b x a x a x b x a x b C +++++++=+++++=+++++=++=+++? ???原式 有时候就是要换个角度看问题,避开出题人设置的障碍,虽然这并不是出题人的本意,但是这却是他没有充分考虑的Bug !怪只能怪出题人太笨,脑子不转弯。

微积分试卷及答案4套

微积分试题 (A 卷) 一. 填空题 (每空2分,共20分) 1. 已知,)(lim 1A x f x =+ →则对于0>?ε,总存在δ>0,使得当 时,恒有│?(x )─A│< ε。 2. 已知22 35 lim 2=-++∞→n bn an n ,则a = ,b = 。 3. 若当0x x →时,α与β 是等价无穷小量,则=-→β β α0 lim x x 。 4. 若f (x )在点x = a 处连续,则=→)(lim x f a x 。 5. )ln(arcsin )(x x f =的连续区间是 。 6. 设函数y =?(x )在x 0点可导,则=-+→h x f h x f h ) ()3(lim 000 ______________。 7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。 8. ='? ))((dx x f x d 。 9. 设总收益函数和总成本函数分别为2 224Q Q R -=,52 +=Q C ,则当利润最大时产 量Q 是 。 二. 单项选择题 (每小题2分,共18分) 1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。 (A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a (C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设1 1 )(-=x arctg x f 则1=x 为函数)(x f 的( )。 (A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点

(D) 连续点 3. =+ -∞ →1 3)11(lim x x x ( ) 。 (A) 1 (B) ∞ (C) 2e (D) 3e 4. 对需求函数5 p e Q -=,需求价格弹性5 p E d - =。当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。 (A) 3 (B) 5 (C) 6 (D) 10 5. 假设)(),(0)(lim , 0)(lim 0 x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外) 存在,又a 是常数,则下列结论正确的是( )。 (A) 若a x g x f x x =→) ()(lim 或∞,则a x g x f x x =''→)() (lim 0或∞ (B) 若a x g x f x x =''→)()(lim 0或∞,则a x g x f x x =→) () (lim 0或∞ (C) 若) ()(lim x g x f x x ''→不存在,则)() (lim 0x g x f x x →不存在 (D) 以上都不对 6. 曲线2 2 3 )(a bx ax x x f +++=的拐点个数是( ) 。 (A) 0 (B)1 (C) 2 (D) 3 7. 曲线2 ) 2(1 4--= x x y ( )。 (A) 只有水平渐近线; (B) 只有垂直渐近线; (C) 没有渐近线; (D) 既有水平渐近线, 又有垂直渐近线 8. 假设)(x f 连续,其导函数图形如右图所示,则)(x f 具有 (A) 两个极大值一个极小值 (B) 两个极小值一个极大值 (C) 两个极大值两个极小值 (D) 三个极大值一个极小值 9. 若?(x )的导函数是2 -x ,则?(x )有一个原函数为 ( ) 。 x

安徽大学高等数学期末试卷和答案

安徽大学2011—2012 学年第一学期 《高等数学A(三)》考试试卷(A 卷) (闭卷时间120 分钟) 考场登记表序号 题号一二三四五总分 得分 阅卷人 一、选择题(每小题2 分,共10 分)得分 1.设A为n阶可逆矩阵,则下列各式正确的是()。 (A)(2A)?1 =2A?1 ;(B)(2A?1)T=(2A T)?1 ;(C) ((A?1)?1)T=((A T)?1)?1 ;(D)((A T)T)?1 =((A?1)?1)T。 2.若向量组1, 2 , , r ααα可由另一向量组 ()。 βββ线性表示,则下列说法正确的 是 1, 2 , , sβββ线性表示,则下列说法 正确的是 (A)r≤s;(B)r≥s; (C)秩( 1, 2 , , r1, 2 , , s1, 2 , , r ααα)≤秩(βββ);(D)秩(ααα)≥ 秩( ββ β)。 1, 2 , , sββ β)。 3.设A, B为n阶矩阵,且A与B相似,E为n阶单位矩阵,则下列说法正确的是()。 (A)λE?A=λE?B; (B)A与B有相同的特征值和特征向量; (C)A与B都相似于一个对角矩阵; (D)对任意常数k,kE?A与kE?B相似。 4.设1, 2 , 3 ααα为R3 的一组基,则下列向量组中,()可作为R3 的另一组基。 (A)1, 1 2 ,3 1 2 1, 2 ,2 1 2 α+αα+αα+α。 αα?αα?α;(B)ααα+α; (C) 1 2 , 2 3, 1 3 α+αα+αα?α;(D) 1 2 , 2 3, 1 3 5.设P(A) =0.8 ,P(B) =0.7 ,P(A| B) =0.8 ,则下列结论正确的是()。

高等数学,线性代数,概率解题万能技巧。期末,考研复习必备!!

高数解题技巧。(高等数学、考研数学通用)【欢迎分享】tiantian 高数解题的四种思维定势 ●第一句话:在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。 ●第二句话:在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。 ●第三句话:在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。 ●第四句话:对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。 线性代数解题的八种思维定势 ●第一句话:题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。 ●第二句话:若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。 ●第三句话:若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解因子aA+bE再说。 ●第四句话:若要证明一组向量α1,α2,…,αS线性无关,先考虑用定义再说。 ●第五句话:若已知AB=0,则将B的每列作为Ax=0的解来处理 ●第六句话:若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。 ●第七句话:若已知A的特征向量ξ0,则先用定义Aξ0=λ0ξ0处理一下再说。 ●第八句话:若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。 概率解题的九种思维定势 ●第一句话:如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式 ●第二句话:若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli 试验,及其概率计算公式 ●第三句话:若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组

电子科技大学微积分试题及答案

电子科技大学期末微积分 一、选择题(每题2分) 1、设x ?()定义域为(1,2),则lg x ?()的定义域为() A 、(0,lg2) B 、(0,lg2] C 、(10,100) D 、(1,2) 2、x=-1是函数x ?()=() 22 1x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点 3、试求02lim x x →等于() A 、-1 4 B 、0 C 、1 D 、∞ 4、若 1y x x y +=,求y '等于() A 、 22x y y x -- B 、22y x y x -- C 、22y x x y -- D 、22x y x y +- 5、曲线2 21x y x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射() A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+ C 、2y x = D 、ln y x = (0)x > 二、填空题(每题2分) 1、 __________ 2、、2(1))lim ()1 x n x f x f x nx →∞-=+设 (,则 的间断点为__________ 3、21lim 51x x bx a x →++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________

5、ln 2111x y y x +-=求曲线 ,在点(, )的法线方程是__________ 三、判断题(每题2分) 1、2 2 1x y x =+函数是有界函数 ( ) 2、有界函数是收敛数列的充分不必要条件 ( ) 3、lim β βαα =∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin x y x =求函数 的导数 2、21 ()arctan ln(12 f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x x x x →-求 5、 计算 6、2 1 lim(cos )x x x + →计算 五、应用题 1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x =++,问政府对每件商品征收货物税为多少时,在企业获得利润 最大的情况下,总税额最大(8分) 2、描绘函数21 y x x =+ 的图形(12分) 六、证明题(每题6分) 1、用极限的定义证明:设01 lim (),lim ()x x f x A f A x +→+∞→==则

相关文档
最新文档