压电梁的模态分析

压电梁的模态分析
压电梁的模态分析

/facet,norml

压电梁的模态分析

几何尺寸:梁的长度L1=300mm 宽度W=30mm 厚度H1=2mm 压电片长度L=50mm 宽度W=30mm 厚度H=1mm

采用pzt-5H压电陶瓷片

模态分析结果

一阶振型(f=23.144Hz)

二阶振型(f=137.52Hz)

/prep7

! PZT-5H 材料特性参数

mp,DENS,1,7700 ! 密度, kg/m**3

mp,perx,1,1700 ! 介电常数

mp,pery,1,1700

mp,perz,1,1470

tb,ANEL,1 ! 弹性劲度系数, N/m^2 tbdata,1,12.6E10,7.95E10,8.41E10 ! c11,c12,c13 tbdata,7,12.6E10,8.41E10 ! c11,c33 tbdata,12,11.7E10 ! c33

tbdata,16,2.30E10 ! c44

tbdata,19,2.30E10 ! c44

tbdata,21,2.35E10 ! c66

tb,PIEZ,1 ! 压电(应力)常数, C/m^2 tbdata,3,-6.5 ! e31

tbdata,6,-6.5 ! e31

tbdata,9,23.3 ! e33

tbdata,11,17.0 ! e15

tbdata,13,17.0 ! e15

!定义主结构的材料参数

mp,dens,2,7800

EX,2,209e9

nuxy,2,0.3

! 定义压电复合梁几何模型(L=50mm W=30mm H = 1 mm)

L=50e-3

W=30e-3

H =1e-3 !压电片几何尺寸L1=300e-3

H1=2e-3 !主结构几何尺寸

local,11 ! 建立下层局部坐标+Z 方向

local,12,,,,,,,180 ! 建立上层局部坐标-Z 方向

csys,11 ! 激活局部坐标系11 +y 方向

block,0,L1,0,W,O,H1

block,0,L,0,W,0,-H

block,0,L,0,W,H1,H1+H

vglue,all !将梁同压电片粘结et,1,solid5,3 !定义压电单元

et,2,solid45 !定义主结构单元

!采用映射划分网格连接相邻面

asel,s,loc,z,0

cm,CM_1,area

cmplot,CM_1

accat,CM_1

asel,s,loc,z,H1

cm,CM_2,area

accat,CM_2

!进行网格划分

LESIZE,ALL,5e-3, , , ,1, , ,1,

mat,1 $ type,1 $ esys,11 !对下层压电片网格划分Vmesh,4

mat,2 $ type,2 $ esys,11 !对中间结构网格划分Vmesh,6

mat,1 $ type,1 $ esys,12 !对上层压电片网格划分vmesh,5

nsel,s,loc,z,-H !定义下层电极

cp,1,volt,all

*get,n_bot,node,0,num,min

nsel,s,loc,z,H+H1 !定义上层电极

cp,2,volt,all

*get,n_top,node,0,num,min

nsel,s,loc,z,0 !压电片中间面电压耦合nsel,r,loc,x,0,L

cm,CM_3,node

nsel,s,loc,z,H1

nsel,r,loc,x,0,L

cm,Cm_4,node

cmsel,s,cm_3,node

cmsel,a,cm_4,node

cp,3,volt,all

fini

/solu

antype,modal

modopt,lanb,3

mxpand,3

nsel,s,loc,x,0

d,all,ux,0,,,,uy,uz

d,n_top,volt,0 !上下层电极短路

d,n_bot,volt,0

nsel,all

solve

fini

/post1

Set,list

Set,first

/view,1,-1

/replot

Pldi

ANMODE,10,0.5,0

SET,NXT

PLDI

ANMODE,10,0.5,0

FINISH

高速旋转轮盘模态分析

高速旋转轮盘模态分析 在进行高速旋转机械的转子系统动力设计时,需要对转动部件进行模态分析,求解出其固有频率和相应的模态振型。通过合理的设计使其工作转速尽量远离转子系统的固有频率。而对于高速部件,工作时由于受到离心力的影响,其固有频率跟静止时相比会有一定的变化。为此,在进行模态分析时需要考虑离心力的影响。通过该实验掌握如何用ANSYS进行有预应力的结构的模态分析。 一.问题描述 本实验是对某高速旋转轮盘进行考虑离心载荷引起的预应力的模态分析,求解出该轮盘的前5阶固有频率及其对应的模态振型。轮盘截面形状如图所示,该轮盘安装在某转轴上以12000转/分的速度高速旋转。相关参数为:弹性模量EX=2.1E5Mpa,泊松比PRXY=0.3, 密度DENS=7.8E-9Tn/mm 3。 1-5关键点坐标: 1(-10, 150, 0) 2(-10, 140, 0) 3(-3, 140, 0) 4(-4, 55, 0) 5(-15, 40, 0) L=10+(学号×0.1) RS=5 二.分析具体步骤 1.定义工作名、工作标题、过滤参数 ①定义工作名:Utility menu > File > Jobname ②工作标题:Utility menu > File > Change Title(个人学号) 2.选择单元类型 本实验将选用六面体结构实体单元来分析,但在建模过程中需要使用四边形平面单元,所有需要定义两种单元类型:PLANE42和SOLID45,具体操作如下:

Main Menu >Preprocessor > Element Type > Add/Edit/Delete ①“ Structural Solid”→“ Quad 4node 42” →Apply(添加PLANE42为1号单元) ②“ Structural Solid”→“brick 8node 45” →ok(添加六面体单元SOLID45为2号单元) 在Element Types (单元类型定义)对话框的列表框中将会列出刚定义的两种单元类型:PLANE42、SOLID45,关闭Element Types (单元类型定义)对话框,完成单元类型的定义。 3.设置材料属性 由于要进行的是考虑离心力引起的预应力作用下的轮盘的模态分析,材料的弹性模量EX 和密度DENS必须定义。 ①定义材料的弹性模量EX Main Menu >Preprocessor > Material Props > Material Models> Structural > Linear > Elastic >Isotropic 弹性模量EX=2.1E5 泊松比PRXY=0.3 ②定义材料的密度DENS Main Menu >Preprocessor > Material Props > Material Models>density DENS =7.8E-9 4.实体建模 对于本实例的有限元模型,首先需要建立轮盘的截面几何模型,然后对其进行网格划分,最后通过截面的有限元网格扫描出整个轮盘的有限元模型。具体的操作过程如下。 ①创建关键点操作:Main Menu > Preprocessor > Modeling > Create > Keypoints > In Active CS 列出各点坐标值Utility menu >List > Keypoints >Coordinate only

梁壳组合结构的有限元合理建模

2 梁壳组合结构的有限元建模 2.1 单元类型的选择 对于需要混合使用多种类型单元的梁壳组合结构而言,为了在不同类型的单元间实现无缝连接,保证相互间载荷传递的正确性,根据所分析问题的要求选择合适的单元类型是非常重要的。要实现这一点,最基本的就是要保证所选梁单元和壳单元具有相同的结点自由度类型及数量,进一步的,对于一些特殊类型的结构保证单元具有相同的阶次或相近的形函数形式也是非常重要的。此外,为了保证加强板的作用能被充分考虑,加强板需要用多个单元离散,与之焊接的梁也相应的需要划分多个单元,这可能导致最终的梁单元为深梁,此时就应考虑选用计及剪切变形影响的梁单元。 ANSYS提供了多种用于梁、壳建模的单元类型,以满足不同分析场合的要求。由于工程机械结构的重要性,在设计时不需要考虑其塑性的扩展和利用、其始终处于弹性阶段,因此对梁构件可选用BEAM188单元类型、壳体构件可选用SHELL43单元类型。BEAM188单元与SHELL43单元均为一次单元,每个单元结点均有6个自由度:三个平动自由度(ux,uv,uz)和三个转动自由度(θx ,θv,θz),可以保证受力的正确传递。Shell43单元考虑了剪切变形的影响,适合于中等厚度的壳体建模。Beam188单元是Timoshenko梁单元,采用如下形式的形函数: (1) 式中:ui—某方向位移场;s—ui方向的自然坐标; 梁壳组合结构的有限元合理建模 王强 贵州交通职业技术学院 550008 1 引言 在当前实际应用的工程结构中,出于结构形式、连接条件、承载要求等方面的考虑,很多工程结构都采用梁壳组合结构的形式作为各种外加载荷的支撑件,如工程机械领域的港口起重机、动臂式塔机等的桁架吊臂往往在臂头和臂根焊接钢板以局部加强。此外,为了分析的需要或简化建模与计算,也往往将一些纯板壳焊接结构作为梁壳组合结构进行分析。 对梁壳组合结构进行力学分析以保证其强度和刚度满足使用要求是设计中必不可少的一环。显然要获得此类结构的理论解析解几乎是不可能的,在工程实际中往往要借助于有限元方法。有限元分析中最重要的步骤是有限元模型的建立和约束、载荷的施加,后者需要满足特定行业设计规范的要求,有一定的程式可循,而针对此类结构的特点,快速、合理建模问题还少有谈及。因此,本文以当前应用较为广泛的通用有限元软件ANSYS为平台,探讨复杂梁壳组合结构有限元模型的快速、合理建模方法及在建模过程中应注意的问题,对同类结构的有限元建模提供一些可供借鉴的有益经验。 uiI、uiJ—ui方向的单元始、终结点位移。与Euler-Bernoulli梁相比,其计入了剪切变形对梁弯曲的影响,适合于短粗梁的有限元建模。 2.2 有限元模型的建立 ANSYS提供了两种建模方式:一是首先建立结构的几何模型,通过对几何模型进行有限元网格离散而获得有限元模型;二是首先生成结点,随后由结点直接生成单元而获得有限元模型。至于具体使用何种建模方式或综合使用此两种建模方式应依据结构的实际情况灵活决定。 工程机械等领域中的梁壳组合结构往往以梁为主要承载构件,板壳仅起局部加强作用。有限元方法中的梁单元属线单元,当使用二结点线性梁单元时,其有限元模型的几何表现为一条直线,通常在其形心轴线位置上建立有限元模型。在梁壳组合结构中,梁是主要构件,且需要与其它构件相连,因此在其有限元建模时位置不能改变,即仍应按其形心轴线建模;板壳属附属构件,在对其进行有限元建模时,由于壳体构件需要使用许多单元离散,而通过结点生成单元的方式逐一生成这些单元无疑将非常烦琐,尤其是当加强板较多时,因此对壳体应采用第一种建模方式。 综合上述分析,工程机械中复杂梁壳组合结构的有限元建模有两种方法,本文通过图1(a)中所示结构为例加以说明,图中两根梁之间焊接了一块加强板,在此假设梁为圆管(工程机械的此类结构中的梁大部分为圆管,对其它截面形式的梁建模方法基本相同)。第一种建模方法的步骤如下: (1)在梁的形心线和加强板的中平面位 图3 港口起重机桁架吊臂的有限元模型和分析结果 图1 梁壳组合结构几何模型和有限元模型示意图图2 梁壳组合结构及其有限元模型

连续梁桥汽车冲击系数试验及数值研究

——————————————— 本文为江西省自然科学基金资助。作者简介:张期星(1983-),男,山东人,硕士研究生,从事桥梁结构工程研究(E-mail:zh_q_x123@https://www.360docs.net/doc/107964295.html,);陈水生 连续梁桥汽车冲击系数试验及数值研究 张期星1 ,陈水生2 (1.2华东交通大学土木建筑学院 江西南昌330013) 摘 要:本文主要分析三跨连续梁桥,应用达朗贝尔原理,推导了三轴半车模型下的车桥耦合振动方程,比较了在不同车速和不同跨径作用下的汽车冲击系数,并且对多个连续梁桥汽车冲击系数的实测结果进行了分析。文中采用有限元法离散,将无限自由度系统转化为有限自由度系统,使用Ansys 软件进行了三跨连续梁桥的模态分析,提取出前10阶模态分量和振型频率,利用模态叠加的方法对车桥耦合振动方程进行解耦,并且利用Matlab 软件编程进行了数值模拟,分析了三跨连续梁桥车桥耦合振动特性。在仅仅考虑竖向位移的情况下,主要采用了Newmark 方法,编程得出了不同车速和不同跨径对三跨连续梁桥汽车冲击系数的影响规律:汽车冲击系数随着车速的提高而增加,车速较低时(一般在20km/h-40km/h)冲击系数变化缓慢,当车速大于50km/h 后,冲击系数变化较大;汽车冲击系数随着跨径的增大而降低,跨径越大,其值越接近于1.0。 关键词:三跨连续梁桥;汽车冲击系数;车桥耦合模型 Experimental and numerical study on Impact coefficient of continuous girder bridge under vehicle Zhang Qixing 1 Chen Shuisheng 2 (Institute of Civil construction,East China Jiaotong University,nanchang,Jiangxi330013,China) Abstract :This paper mainly analyses three-span continuous girder bridge. The coupled vibration functions of vehicle and bridge with five degree of freedom vehicle model are derived using the D’Alembert’s principle. The impact coefficient of vehicle are analysed under condition of various span length and speeds of moving vehicle, and the measured results of several continuous girder bridge are analysed. The studies adopt the method of finite element discrete to turn the system of infinite degree of freedom into the system of finite degree of freedom, and analyse the mode of three-span continuous girder bridge under the use of the Ansys software to exact the mode components and frequencies. Then the coupled vibration functions of vehicle and bridge are decoupled with the method of modal superposition, and the coupled vibration characteristics of vehicle and bridge are analysed by the numerical simulation of Matlab software. On the condition of only considering the vertical displacement, it programs by the method of Newmark to conclude the influence law of impact coefficient of vehicle for three-span continuous girder bridge under condition of various span length and speeds of moving vehicle: impact coefficient of vehicle would rise with the rise of speed of vehicle,when the speed of vehicle is relative lower(approximately 20km/h- 40km/h),the value would change slowly,but the speed surpasses 50km/h,it would change obviously; impact coefficient of vehicle would decrease with the rise of span length,and the more large is the span length,the more close to 1.0 is the value. Key word :three-span continuous girder bridge;impact coefficient of vehicle;vechicle-bridge coupled model 0 引言 目前,车辆对桥梁的冲击作用我们通常采用汽车冲击系数μ或者动力增量φ来描述,即在考虑桥梁静载作用下的响应乘以一个相应的动力系数。由于冲击系数关系到桥梁结构设计的安全与经济性能,所以其取值的大小对于桥梁结构在车辆荷载作用下的安全举足轻重。各国旧规范的冲击系数都是采用跨径或加载长度的递减函数来计算的[1],但是影响车辆与桥梁相互作用的因素很多,比如车辆与桥梁整体系统的刚度、质量、阻尼、桥面的不平整度、加载车辆数目、车辆 间距、加载车道、车辆相向行驶、以及车速与跨径的影响等等[2],它是一个非常复杂的问题,所以单纯的考虑桥梁跨径或者加载长度对于汽车冲击系数来讲是很不严密的。因此04规范给出了与桥梁结构基频的关系。 1 三轴半车模型的建立及求解 如图1所示,为三轴半车模型,假定连续梁桥每跨具有相同的跨长、质量和刚度。由达朗贝尔原理得到车辆振动方程 1f 1f 1f 1f c 11c 111f 1c 11c 111f 111z c z k k l z k z )k k (c l z c z )c c (z m +=+?+++?++θθ (1) 2f 2f 2f 2f c 22c 222f 2c 22c 222f 222z c z k k l z k z )k k (c l z c z )c c (z m +=??+++?++θθ(2)

ANSYS中的模态分析与谐响应分析

ANSYS中的模态分析与谐响应分析 作者:未知时间:2010-4-15 8:59:49 模态分析是分析结构的动力特性,与结构受什么样的荷载没有关系,只要给定了质量、弹性模量、泊松比等材料参数,并施加了边界约束就可以得到此状态下的各阶自振频率和振型(也称为模态)。 谐响应分析是分析结构在不同频率的简谐荷载作用下的动力响应,是与结构所受荷载相关的,只是结构所受荷载的都是简谐荷载,而且荷载频率的变化范围在谐响应分析时要给出来。 比如,在ANSYS谐响应分析中要给出这样的语句 FK,3,FX,7071,7071 !指定点荷载的实部和虚部(或者幅值和相位角) HARFRQ,0,2.5, !指定荷载频率的变化范围,也就是说只分析结构所受频率从0到2.5HZ之间的荷载 NSUBST,100, !指定频率从0到2.5之间分100步进行计算 这样,结构所受的这个点荷载的表达式实际上是 F=(7071+i*7071)*exp(i*omiga*t) !式中omiga从0到2.5*2*3.1415926变化 分析得到结果是各点物理量随频率变化的,但物理量的值一般为复数,包括实部的虚部,这可以从后处理LIST结点值看出来。 个人认为进行谐响应分析并不一定要先进行模态分析(也叫振型分析、振型分解等),而直接进行谐响应分析后查看结构的物理量随频率变化曲线时也会看到在结构的自振频率处响应会放大(共振)。如果已经进行过模态分析的话,会发现谐响应分析时的共振频率和模态分析提到的自振频率是一致的。但有些时候模态分析中得到的有些频率在谐响应分析的频响曲线里可能很不明显。因此,只能说在谐响应分析前进行一下模态分析可以对结构的自振特性有个了解,以便验证谐响应分析结果是否合理。 另外,谐响应分析应该是频域分析方法的一个部分。对于相地震那样的时间过程线,直接进行时域分析(ANSYS里用暂态分析)可得到结构随时间的响应。而如果进行频域分析,就应该通过傅立叶变换把时域地震曲线变为由多个简谐荷载的叠加,然后再以此简谐荷载做为谐响应分析时的荷载进行谐响应分析,最后再对谐响应分析得到的结果进行傅立叶逆变换得到时域的结果。不知道这种理解是否正确,我也没有用ANSYS这样做过。如果正确的话,时域分析和频域分析的结果应该是一致的。 模态分析的应用及它的试验模态分析 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模

压电梁的模态分析

/facet,norml 压电梁的模态分析 几何尺寸:梁的长度L1=300mm 宽度W=30mm 厚度H1=2mm 压电片长度L=50mm 宽度W=30mm 厚度H=1mm 采用pzt-5H压电陶瓷片 模态分析结果 一阶振型(f=23.144Hz)

二阶振型(f=137.52Hz) /prep7 ! PZT-5H 材料特性参数 mp,DENS,1,7700 ! 密度, kg/m**3 mp,perx,1,1700 ! 介电常数 mp,pery,1,1700 mp,perz,1,1470 tb,ANEL,1 ! 弹性劲度系数, N/m^2 tbdata,1,12.6E10,7.95E10,8.41E10 ! c11,c12,c13 tbdata,7,12.6E10,8.41E10 ! c11,c33 tbdata,12,11.7E10 ! c33 tbdata,16,2.30E10 ! c44 tbdata,19,2.30E10 ! c44 tbdata,21,2.35E10 ! c66 tb,PIEZ,1 ! 压电(应力)常数, C/m^2 tbdata,3,-6.5 ! e31 tbdata,6,-6.5 ! e31 tbdata,9,23.3 ! e33 tbdata,11,17.0 ! e15 tbdata,13,17.0 ! e15 !定义主结构的材料参数 mp,dens,2,7800 EX,2,209e9 nuxy,2,0.3 ! 定义压电复合梁几何模型(L=50mm W=30mm H = 1 mm) L=50e-3 W=30e-3 H =1e-3 !压电片几何尺寸L1=300e-3 H1=2e-3 !主结构几何尺寸 local,11 ! 建立下层局部坐标+Z 方向 local,12,,,,,,,180 ! 建立上层局部坐标-Z 方向 csys,11 ! 激活局部坐标系11 +y 方向 block,0,L1,0,W,O,H1 block,0,L,0,W,0,-H block,0,L,0,W,H1,H1+H vglue,all !将梁同压电片粘结et,1,solid5,3 !定义压电单元 et,2,solid45 !定义主结构单元 !采用映射划分网格连接相邻面 asel,s,loc,z,0 cm,CM_1,area cmplot,CM_1 accat,CM_1 asel,s,loc,z,H1 cm,CM_2,area accat,CM_2 !进行网格划分 LESIZE,ALL,5e-3, , , ,1, , ,1, mat,1 $ type,1 $ esys,11 !对下层压电片网格划分Vmesh,4 mat,2 $ type,2 $ esys,11 !对中间结构网格划分Vmesh,6 mat,1 $ type,1 $ esys,12 !对上层压电片网格划分vmesh,5

结构模态分析方法

模态分析技术的发展现状综述 摘要:本文首先系统的介绍了模态分析的定义,并以模态分析技术的理论为基础,查阅了大量的文献和资料后,介绍了三种模态分析技术在各领域的应用,以及国内外对于结构模态分析技术研究的发展现状,分析并总结三种模态分析技术的特点与发展前景。 关键词:模态分析技术发展现状 Modality Analysis Technology Development Present Situation Summary Abstract:This article first systematic introduction the definition of modality analysis,and based on modal analysis theory,after has consulted the massive literature and the material.Introduced application about three kind of modality analysis technology in various domains. At home and abroad, the structural modal analysis technology research and development status quo.Analyzes and summarizes three kind of modality analysis technology characteristic and the prospects for development. Key words:Modality analysis Technology Development status 0 引言 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。模态分析的过程如果是由有限元计算的方法完成的,则称为计算模态分析;如果是通过试验将采集的系统输入与输出信号经过参数识别来获得模态参数的,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 1 数值模态分析的发展现状 数值模态分析主要采用有限元法,它是将弹性结构离散化为有限数量的具体质量、弹性特性单元后,在计算机上作数学运算的理论计算方法。它的优点是可以在结构设计之初,根据有限元分析结果,便预知产品的动态性能,可以在产品试制出来之前预估振动、噪声的强度和其他动态问题,并可改变结构形状以消除或抑制这些问题。只要能够正确显示出包含边界条件在内的机械振动模型,就可以通过计算机改变机械尺寸的形状细节。有限元法的不足是计算繁杂,耗资费时。这种方法,除要求计算者有熟练的技巧与经验外,有些参数(如阻尼、结合面特征等)目前尚无法定值,并且利用有限元法计算得到的结果,只能是一个近似值。 正因如此,大多数数学模拟的结构,在试制阶段常应做全尺寸样机的动态试验,以验证计算的可靠程度并补充理论计算的不足,特别对一些重要的或涉及人身安全的结构,就更是如此。 70 年代以来,由于数字计算机的广泛应用、数字信号处理技术以及系统辨识方法的发展 , 使结构模态试验技术和模态参数辨识方法有了较大进展,所获得的数据将促进产品性能的改进、更新[1] 。在硬件上,国外许多厂家研制成功各种类型的以FFT和

各种模态分析方法总结与比较

各种模态分析方法总结与比较 一、模态分析 模态分析是计算或试验分析固有频率、阻尼比和模态振型这些模态参数的过程。 模态分析的理论经典定义:将线性定常系统振动微分方程组中的物理坐标变换为模态坐标,使方程组解耦,成为一组以模态坐标及模态参数描述的独立方程,以便求出系统的模态参数。坐标变换的变换矩阵为模态矩阵,其每列为模态振型。 模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模记分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过 AHA12GAGGAGAGGAFFFFAFAF

模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。 模态分析最终目标是在识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 AHA12GAGGAGAGGAFFFFAFAF

AHA12GAGGAGAGGAFFFFAFAF 二、各模态分析方法的总结 (一)单自由度法 一般来说,一个系统的动态响应是它的若干阶模态振型的叠加。但是如果假定在给定的频带内只有一个模态是重要的,那么该模态的参数可以单独确定。以这个假定为根据的模态参数识别方法叫做单自由度(SDOF)法n1。在给定的频带范围内,结构的动态特性的时域表达表示近似为: ()[]}{}{T R R t r Q e t h r ψψλ= 2-1 而频域表示则近似为: ()[]}}{ {()[]2ωλωψψωLR UR j Q j h r t r r r -+-= 2-2 单自由度系统是一种很快速的方法,几乎不需要什么计算时间和计算机内存。 这种单自由度的假定只有当系统的各阶模态能够很好解耦时才是正确的。然而实际情况通常并不是这样的,所以就需要用包含若干模态的模型对测得的数据进行近似,同时识别这些参数的模态,就是所谓的多自由度(MDOF)法。 单自由度算法运算速度很快,几乎不需要什么计算和计

九跨预应力混凝土连续梁的环境振动试验与模态分析

第33卷第6期福州大学学报(自然科学版)V ol.33N o.6 2005年12月Journal of Fuzhou University(Natural Science)Dec.2005 文章编号:1000-2243(2005)06-0782-04九跨预应力混凝土连续梁的环境振动试验与模态分析 陈宜言1,2,许有胜2,宗周红2 (1.深圳市市政工程设计院,广东深圳 518035;2.福州大学土木建筑工程学院,福建福州 350002) 摘要:介绍了深圳市松岗高架桥———九跨预应力混凝土连续梁桥的现场环境振动试验的概况.利用频域中 的峰值法(PP)和时域中的随机子空间识别法(SSI)分别进行桥梁模态参数识别;利用ANSY S建立了全桥三 维有限元模型并进行了理论模态分析,理论计算和实测结果吻合较好.此类测试与分析有助于桥梁的状态 评估与维修加固. 关键词:预应力混凝土连续梁;环境振动试验;动力特性;理论模态分析;深圳 中图分类号:U448.225文献标识码:A Ambient vibration testing and modal analysis of a prestressed concrete continuous girder bridge with9spans CHE N Y i-yan1,2,X U Y ou-sheng2,Z ONG Zhou-hong2 (1.Shenzhen Municipal Engineering Design Institute,Shenzhen,G uangdong518035,China;2.C ollege of Civil En2 gineering and Architecture,Fuzhou University,Fuzhou,Fujian350002,China) Abstract:An ambient vibration field-testing under traffic-induced excitation on a prestressed con2 crete continuous girder bridge was carried out.The bridge with9-spans is located in S onggang C ounty, Shenzhen,G uangdong Province.The peak picking(PP)method in frequency domain and the stochastic subspace identification(SSI)method in time domain are used for the output-only m odal parameter identification.The3-D finite element m odels(FE M)are constructed by using ANSY S program and a theoretical m odal analysis is then performed to generate natural frequencies and m ode shapes in the3- orthog onal directions.It is further dem onstrated that the results from the FE M agree well with the field tests,which can serve as a referenced m odel in the seismic evaluation or retrofit of the bridge. K eyw ords:prestressed concrete continuous girder bridge;ambient vibration testing;dynamic behavior; theoretical m odal analysis;Shenzhen 1 环境振动试验 1.1 工程概况 松岗高架桥是107国道上的关键桥梁之一,位于深圳市宝安区松岗镇,跨越惠庙线,为部分预应力混凝土矮箱连续梁桥(图1).该桥全长657.15m,跨径组成为(20m+3×24m+20m)+(24m+24m+24 m)+(20m+9×24m+20m)+(20m+7×24m+20m),第二联为桥面变宽段,采用简支体系.桥面宽度为16.5m,分为上下行两幅桥梁.该桥建成于1991年4月,大桥工程按照一级公路桥梁标准设计,设计荷载为汽-超20、挂-120,设计车速为80kmΠh. 由于交通量激增,需要对107国道进行拓宽和改造、提高桥梁通行荷载等级.为了评估旧桥的承载力,为加固改造提供科学依据,在加固前对桥梁进行环境振动试验,本次试验段取用南侧第四联(20m +7×24m+20m). 收稿日期:2005-06-16 作者简介:陈宜言(1959-),男,教授级高工,福州大学兼职教授. 基金项目:深圳市市政工程设计院科技发展资助项目;福建省科技攻关重点资助项目(2003H027)

模态分析意义

模态分析意义模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。振动模态是弹性结构的固有的、整体的特性。如果通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内各阶主要模态的特性,就可能预言结构在此频段内在外部或内部各种振源作用下实际振动响应。因此,模态分析是结构动态设计及设备的故障诊断的重要方法。机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动千姿百态、瞬息变化。模态分析提供了研究各种实际结构振动的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与胯动响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。近十多年来,由于计算机技术、

FFT 分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。在各种各样的模态分析方法中,大致均可分为四个基本过程:(1)动态数据的采集及频响函数或脉冲响应函数分析1)激励方法。试验模态分析是人为地对结构物施加一定动态激励,采集各点的振动响应信号及激振力信号,根据力及响应信号,用各种参数识别方法获取模态参数。激励方法不同,相应识别方法也不同。目前主要由单输入单输出(SISO)、单输入多输出(SIMO)多输入多输出(MIMO)三种方法。以输入力的信号特征还可分为正弦慢扫描、正弦快扫描、稳态随机(包括白噪声、宽带噪声或伪随机)、瞬态激励(包括随机脉冲激励)等。2)数据采集。SISO 方法要求同时高速采集输入与输出两个点的信号,用不断移动激励点位置或响应点位置的办法取得振形数据。SIMO 及MIMO 的方法则要求大量通道数据的高速并行采集,因此要求大量的振动测量传感器或激振器,试验成本较高。3)时域或频域信号处理。例如谱分析、传递函数估计、脉冲响应测量以及滤波、相关分析等。(2)建立结构数学模型根据已知条件,建立一种描述结构状态及特性的模型,作为计算及识别参数依据。目前一般假定系统为线性的。由于采用的识别方法不同,也分为频域建模和时

hypermesh模态分析

HyperWorks在履带车辆传动箱模态分析中的应用 2009年10月22日 Altair 1 引言 系统的模态参数(模态频率、模态阻尼、振型)对系统的动态分析和优化设计具有实用价值。通常由试验模态分析和计算模态分析两种方法。但由于受实验条件和时间的限制,组织实施往往比较困难,而且在测量次数,测量数据的处理准确性方面也难以得到充分的保证,在设计阶段难以实现。基于虚拟样机技术的虚拟实验方法在履带车辆箱体类零部件模态参数测量方面在设计阶段就能为方案优化提供指导,缩短产品开发周期,节省费用。因此,开展在虚拟环境下测试箱体类零部件的模态参数研究与探讨并扩展其应用具有重要意义。本文以某型履带车辆传动箱设计为例,应用HyperMesh为前处理软件,对其进行了有限元网格的划分,进而对箱体的模态进行了分析。 2 箱体有限元模型的建立及模态分析 首先依据传动箱体的尺寸,建立箱体的三维实体模型。利用HyperMesh对传动箱体的实体模型进行有限元网格划分,箱体的材料为铝合金,其密度为 2.66e33kg/m3,泊松系数为0.31,杨氏模量为7.7e72N/m2,强度极限为176.4MPa。整个箱体共划分76151个4面体单元,22262个节点。在此过程中,还必须考虑到箱体有限元模型建立后与各传动轴之间的连接,即柔性体与刚体间的连接。传动箱各轴都是通过轴承与箱体连接的,笔者在有限元模型中应用多点约束(MPC,Multi-point Constraint)来模拟轴承的作用。所谓多点约束是将某节点的依赖自由度定义为其他若干节点独立自由度的函数。多点约束可以用于不相容单元间的载荷传递,表征一些特定的物理现象,比如刚性连接、铰接、滑动等。笔者在箱体有限元模型中各轴孔的中心点处建立一个虚拟杆单元,如图1所示。轴孔内表面各节点的自由度则依赖于对应的虚拟杆单元。各传动轴与箱体间的约束也是在对应的虚拟单元处建立,各传动轴上的作用力则通过相应的虚拟杆单元和多点约束作用于箱体之上。文中建立的包括轴承模型的传动箱箱体有限元模型如图2所示。

ANASYS对带裂缝梁体的模态分析

ANSYS对带裂缝结构模态分析 通过ANASYS 的计算可以有效的解决带裂缝实体梁的工况 利用ANSYS可以对实体进行模态分析的特点,直接建立带裂缝实体梁模型,进行模态分析。取悬臂梁,梁尺寸为mm 200? = 400 ?, ? ? b2000 mm L mm h 取其弹性模量为2.13E10帕,泊松比为0.167,密度为2.5E-6千克每立方毫米, ,取ANSYS计算得到开裂前的一阶自振频率为0.74257Hz。取裂缝位置为L L n ,利用实体楔形模拟裂缝,对实体梁进行如下分析: 裂缝深度为h a n 1.裂缝宽度对模态的影响 分别取裂缝宽度为0.02mm,0.04mm,0.2mm,考察裂缝宽度对梁模态的影响。设定裂缝位置分别为0.1,0.2,0.4,0.6,0.8设定裂缝深度分别为0.1,0.3,0.5分析结果如表1-1所示,其对比图如图1-1所示。 从图表数据分析,得到如下结论:在允许裂缝范围内,裂缝的开裂宽度对结构的模态的影响可以忽略不计。 2.裂缝开裂位置对模态影响 利用1中结论,取裂缝宽度为0.02mm,考察裂缝在上部开裂时是否与下部开裂时不同。结果如图1-1所示,可以看出与下部开裂时完全相同。因此,可以得到当结构几何尺寸固定时,在同一几何方向上的开裂位置不影响其模态。 3.第二条裂缝模态对比一条裂缝时的模态 利用1,2中的结论,取两条均在梁底部的裂缝。第一条裂缝宽度为0.02mm,深度为0.1,位置分别为0.3,0.5,0.7;第二条裂缝宽度为0.02mm,深度分别为0.1,0.3,0.5,位置分别0.1,0.2,0.4,0.6,0.8。分析结果如表3-1。 从图3-1可以看出,模拟值与试验值对照良好,可以说明此方法可行。 从图3-2可以看出,单裂缝自振频率与完好梁自振频率比,同双裂缝自振频率与单裂缝自振频率比是非常接近的。即,再次开裂对结构前一状态的模态影响是基本相同的。 综合1,2,3可以看出,采用实体建模直接构件裂缝的方法分析带裂缝的结构模态是完全可行的,但因为现阶段扩展有限元方法XFEM尚不完善,采用有限元方法建立裂缝又导致需要重新修改实体模型再剖分单元网格,而且,不论是裂缝

模态分析基本内容简介

模态分析是研究结构动力特性一种近代方法,是系统辨别方法在工程振动领域中的应用。模态是机械结构的固有振动特性,每一个模态具有特定的固有频率、阻尼比和模态振型。这些模态参数可以由计算或试验分析取得,这样一个计算或试验分析过程称为模态分析。这个分析过程如果是由有限元计算的方法取得的,则称为计算模态分析;如果通过试验将采集的系统输入与输出信号经过参数识别获得模态参数,称为试验模态分析。通常,模态分析都是指试验模态分析。 概述 振动模态是弹性结构固有的、整体的特性。通过模态分析方法搞清楚了结构物在某一易受影响的频率范围内的各阶主要模态的特性,就可以预言结构在此频段内在外部或内部各种振源作用下产生的实际振动响应。因此,模态分析是结构动态设计及设备故障诊断的重要方法。 机器、建筑物、航天航空飞行器、船舶、汽车等的实际振动模态各不相同。模态分析提供了研究各类振动特性的一条有效途径。首先,将结构物在静止状态下进行人为激振,通过测量激振力与响应并进行双通道快速傅里叶变换(FFT)分析,得到任意两点之间的机械导纳函数(传递函数)。用模态分析理论通过对试验导纳函数的曲线拟合,识别出结构物的模态参数,从而建立起结构物的模态模型。根据模态叠加原理,在已知各种载荷时间历程的情况下,就可以预言结构物的实际振动的响应历程或响应谱。 近十多年来,由于计算机技术、FFT分析仪、高速数据采集系统以及振动传感器、激励器等技术的发展,试验模态分析得到了很快的发展,受到了机械、电力、建筑、水利、航空、航天等许多产业部门的高度重视。已有多种档次、各种原理的模态分析硬件与软件问世。 用处

模态分析的最终目标是识别出系统的模态参数,为结构系统的振动特性分析、振动故障诊断和预报以及结构动力特性的优化设计提供依据。 模态分析技术的应用可归结为以下几个方面: 1) 评价现有结构系统的动态特性; 2) 在新产品设计中进行结构动态特性的预估和优化设计; 3) 诊断及预报结构系统的故障; 4) 控制结构的辐射噪声; 5) 识别结构系统的载荷。 最佳悬挂点 模态试验时,一般希望将悬挂点选择在振幅较小的位置,最佳悬挂点应该是某阶振型的节点。 最佳激励点 最佳激励点视待测试的振型而定,若单阶,则应选择最大振幅点,若多阶,则激励点处各阶的振幅都不小于某一值。如果是需要许多能量才能激励的结构,可以考虑多选择几个激励点。 最佳测试点 模态试验时测试点所得到的信息要求有尽可能高的信噪比,因此测试点不应该靠近节点。在最佳测试点位置其AD DOF(Average Driving DOF Displacement)值应该较大,一般可用EI(Effective Independance)法确定最佳测试点。 模态参数有那些 模态参数有:模态频率、模态振型、模态质量、模态向量、模态刚度和模态阻尼等。 主模态主空间主坐标 无阻尼系统的各阶模态称为主模态,各阶模态向量所张成的空间称为主空间,其相应的模态坐标称为主坐标。 模态截断

悬臂梁模态分析实验报告.doc

精品资料 悬臂梁各阶固有频率及主振形的测定试验 一、实验目的 1、用共振法确定悬臂梁横向振动时的前五阶固有频率; 2、熟悉和了解悬臂梁振动的规律和特点; 3、观察和测试悬臂梁振动的各阶主振型,分析各阶固有频率及其主振型的实测值与理论计算值的误差。 二、仪器和设备 悬臂梁固定支座;脉冲锤1个;圆形截面悬臂钢梁标准件一个;加速度传感器一个;LMS振动噪声测试系统。 三、实验基本原理 瞬态信号可以用三种方式产生,分述如下: 一是快速正弦扫频法.将正弦信号发生器产生的正弦信号,在幅值保持不变的条件下,由低频很快地连续变化到高频.从频谱上看,该情况下,信号的频谱已不具备单一正弦信号的特性,而是在一定的频率范围内接近随机信号. 二是脉冲激励.用脉冲锤敲击试件,产生近似于半正弦的脉冲信号.信号的有效频率取决于脉冲持续时间τ,τ越小则频率范围越大. 三是阶跃激励.在拟定的激振点处,用一根刚度大、重量轻的弦经过力传感器对待测结构施加张力,使其产生初始变形,然后突然切断张力弦,相当于给该结构施加一个负的阶跃激振力. 用脉冲锤进行脉冲激振是一种用得较多的瞬态激振方法,它所需要的设备较

少,信号发生器、功率放大器、激振器等都可以不要,并且可以在更接近于实际工作的条件下来测定试件的机械阻抗. 四、实验结果记录 前五阶固有频率表 阶数固有频率(Hz) 1 8.491 2 54.216 3 154.607 4 304.354 5 494.691 实验测得的前五阶振型图如下: 1阶振型图

2阶振型图 3阶振型图 4阶振型图

5阶振型图 五、理论计算悬臂梁固有频率 圆截面悬臂钢梁有关参数可取:Pa E 11101.2?=,7850=ρkg/3 m 。用直尺测 量悬臂梁的梁长L=1000mm 、梁直径D=12mm 。计算简支梁一、二、三、四阶固有频率和相应的振型,并将理论计算结果填入表。 悬臂梁的振动属于连续弹性体的振动,它具有无限多自由度及其相应的固有频率和主振型,其振动可表示为无穷多个主振型的叠加。对于梁体振动时,仅考虑弯曲引起的变形,而不计剪切引起的变形及其转动惯量的影响,这种力学分析 模型称为欧拉-伯努利梁。 运用分离变量法,结合悬臂梁一端固定一端自由的边界条件,通过分析可求得均质、等截面悬臂梁的频率方程 1 L Lch cos -=ββ (5-1) 式中:L ——悬臂梁的长度。 梁各阶固有频率为 4 2 2(Al EI l f i i ρπ β)= (5-2) 悬臂梁固有圆频率及主振型函数

相关文档
最新文档