4-3光电探测器的放大电路

第四章光电信号处理

4.1光辐射探测过程的噪声

4.2光电探测器的偏置电路

4.3光电探测器的放大电路

4.4微弱信号检测

4.5锁定放大器

4.6取样积分器

4.7光子计数器

1

4.3 光电探测器的放大电路

4.3.1 耦合网络的低噪声设计原则

从光电探测器获取信号,除了要有必要的偏置电路外,还必须有耦合网络才能将探测器输出的信号送到后续的低噪声前放进行放大。

这一节我们讲述耦合网络的类型,以及耦合网络的低噪声设计的原则。

耦合网络除了要符合电子学的设计原则之外,从降低噪声提高输出端信噪比的角度来考虑和分析,为了尽量减少耦合网络带来的噪声,必须满足下列条件:

(1)对于耦合网络中的串联阻抗元件

(2)对于耦合网络中的并联阻抗元件

En 、In 为前置放大器的En-In 模型中En 、In 参量。

??

?<<<

n cs n n cs I E X I E R //??

??

?>>>>n n cp n n cp I E X I E R //

(3)为了减小电阻元件的过剩噪声,(过剩噪声是除了热噪声之外的一种由流过电阻的直流电流所引起的1/f噪声)必须尽量减小流过电阻的电流,或降低电阻两端的直流压降。

由于每一个元件都是一个噪声源,对系统的输出噪声都有贡献,因此为了减小输出端的噪声,提高信噪比,应尽量采用简单的耦合方式。

在可能的情况下,应采用直接耦合方式,从而消除耦合网

络所带来的噪声。

在迫不得已要采用耦合网络时,注意遵循上述原则。

6

变化时,其NF 也是随着变化的。

P A p NF

13

?只考虑前放噪声的条件

前放采取低噪声设计方法,且噪声匹配。 满足级联低噪声条件

22

1

1112

v n n i ni A E I Z E >>?反馈电路的低噪声条件

串联负反馈,反馈合成电阻应远小于E n /I n 。 并联负反馈,反馈合成电阻应远大于E n /I n 。

4.3.3 低噪声运算放大器的选用

由于集成电路制造技术的不断提高,低噪声、低温漂的运放也越来越多,因此,在低噪声前放的设计中,可直接选用性能优良的低噪声运算放大器,这可以省去许多的时间。

①利用低噪声运放的NF -R s 曲线选择运放。

对于低噪声运放,生产厂家一般会在其产品手册中提供一定测试条件下的NF -R s 曲线,如下便是两例。

OP-07的NF -R s 曲线LMC662的NF -R s 曲线

从NF -R s 曲线上可以清楚地看到,在所运用的频率范围下,源电阻R s 和NF 的关系,当源电阻为50K Ω,运用频率为1KHz 时,OP-07的NF 约为3dB ,而LMC662却为8dB ,故这两者比较应选用OP07。

19

2

222)

(s n n

ns ni R I E E E ++=∴

对O

P

07来说对LMC662:

92

215

32

()4(2210)(0.11310

5010)

ni s E KTR f ??=Δ+×+×××2

12216

2

16

)

10

65.5(10

84.410

0.8???×+×+×=伏伏2

16

10

84.21伏

?×=2

662

207

)

()

(LMC ni OP ni E E <故选用OP07

光电探测器前置放大电路设计概要

光电探测器前置放大电路设计概要 上海光学精密机械研究所李国扬 此处的光电探测器,指的是将光功率转化为电流的二极管结构光电转换器件。有人认为光电探测器的应用很简单,将光电二极管的输出电流用一个电阻进行取样,就得到了电压,该电压可经过AD转换电路进行数字化处理。一个简单的光电探测器应用电路如下图所示: 实际上,没有如上图一样简单。 首先,上图中的光电探测器会产生一个暗电流,这个暗电流有可能会大到可以和信号电流比拟;其次,取样电阻会产生热噪声,而电阻值越大,噪声也越大。并且,10mV 的信号电压未必足够大。而在光电流大小一定的情况下要提高信号电压,就需要增大取样电阻,取样电阻变大,又会增大噪声,这是一对矛盾。 进一步分析,光电探测器的PN结有一个结电容,这个结电容和取样电阻形成一个RC充电回路,RC值的大小决定了光电探测器的响应速度。对于一个给定探测器,C 值是随着VCC电压值变化而变化的。电容值随VCC变化典型曲线如下图。当VCC值不稳时(如用噪声大的开关电源给探测器做偏压),就会使结电容不稳,结电容的大小会影响响应度;这样,VCC的噪声会通过改变结电容的大小而转化成信号的噪声。确定了探测器种类和VCC后,C值就固定了,此时,减小R值可以减小响应时间,增大响应带宽;但是,减小R值又会减小响应幅度。这又是一对矛盾。 对于探测微弱信号而言,需要一个比较大的取样电阻,而取样电阻如果很大,对于

后级电路来说,相当于一个大的输出阻抗,这对后级电路的处理带来了困难。如下图所示意,如果后级电路的输入电阻为1M欧,那么信号电压只有一半被后级放大器提取,所以,要求后级电路有很大的输入阻抗,才能尽可能多的提取信号能量。 到了这里,您可能会说,是否可以选择一种光电探测器,使它能够对光信号更为敏感,也就是说,单位光功率可以得到更大一些的光电流,这样就减轻了电路的压力。是的,有响应更大的器件。但是,增大光电响应度,在半导体工艺上需要增大光敏面积,而增大光敏面积的一个伴生效应是增大结电容。前面提到,增大结电容的坏处是降低响应速度。 一个典型的光电探测器结构图如下所示: 可以看到,一个光电探测器由一个光生电流源和一个电容构成。由PN结理论,增大加在光电探测器上的反偏电压,会拉长耗尽区,拉长耗尽区的结果是使结电容变小。从而得知,结电容是反偏电压的单调递减函数。

(完整版)基本放大电路计算题,考点汇总

第6章-基本放大电路-填空题: 1.射极输出器的主要特点是电压放大倍数小于而接近于1,输入电阻高、输出电阻低。 2.三极管的偏置情况为发射结正向偏置,集电结正向偏置时,三极管处于饱和状态。 3.射极输出器可以用作多级放大器的输入级,是因为射极输出器的。(输入电阻高)4.射极输出器可以用作多级放大器的输出级,是因为射极输出器的。(输出电阻低)5.常用的静态工作点稳定的电路为分压式偏置放大电路。 6.为使电压放大电路中的三极管能正常工作,必须选择合适的。(静态工作点) 7.三极管放大电路静态分析就是要计算静态工作点,即计算、、三个值。(I B、I C、U CE)8.共集放大电路(射极输出器)的极是输入、输出回路公共端。(集电极) 9.共集放大电路(射极输出器)是因为信号从极输出而得名。(发射极) 10.射极输出器又称为电压跟随器,是因为其电压放大倍数。(电压放大倍数接近于1)11.画放大电路的直流通路时,电路中的电容应。(断开) 12.画放大电路的交流通路时,电路中的电容应。(短路) 13.若静态工作点选得过高,容易产生失真。(饱和) 14.若静态工作点选得过低,容易产生失真。(截止) 15.放大电路有交流信号时的状态称为。(动态) 16.当时,放大电路的工作状态称为静态。(输入信号为零) 17.当时,放大电路的工作状态称为动态。(输入信号不为零) 18.放大电路的静态分析方法有、。(估算法、图解法) 19.放大电路的动态分析方法有微变等效电路法、图解法。 20.放大电路输出信号的能量来自。(直流电源) 二、计算题: 1、共射放大电路中,U CC=12V,三极管的电流放大系数β=40,r be=1KΩ,R B=300KΩ,R C=4KΩ,R L=4K Ω。求(1)接入负载电阻R L前、后的电压放大倍数;(2)输入电阻r i输出电阻r o 解:(1)接入负载电阻R L前: A u= -βR C/r be= -40×4/1= -160 接入负载电阻R L后: A u= -β(R C// R L) /r be= -40×(4//4)/1= -80 (2)输入电阻r i= r be=1KΩ 输出电阻r o = R C=4KΩ 2、在共发射极基本交流放大电路中,已知U CC = 12V,R C = 4 kΩ,R L = 4 kΩ,R B = 300 kΩ,r be=1K Ω,β=37.5 试求: (1)放大电路的静态值 (2)试求电压放大倍数A u。

四象限光电探测器电路的设计方案

四象限光电探测器的电路设计方案 一、原理 四象限光电探测器实际由四个光电探测器构成,每个探测器一个象限,目标光信号经光学系统后在四象限光电探测器上成像,如图1。一般将四象限光电探测器置于光学系统焦平面上或稍离开焦平面。当目标成像不在光轴上时,四个象限上探测器输出的光电信号幅度不相同,比较四个光电信号的幅度大小就可以知道目标成像在哪个象限上(也就知道了目标的方位),若在四象限光电探测器前面加上光学调制盘,则还可以求出像点偏离四象限光电探测器中心的距离或θ角来。 图1 目标在四象限光电探测器上成像 图2方位探测器原理框图。 信号通过放大和调理后由由A/D转换器(本系统中采用ADS7864)采样转换成数字量送入单片机,由单片机处理后得到目标的方位,并根据实际系统的需要输出方位控制指令。 二、电路设计 根据实际系统的需要,A/D转换器用ADS7864,单片机用最常见的89C51。 这里对ADS7864作一介绍。ADS7864是TI公司生产的12bit高性能模数转换器,片上带2.5V 基准电压源,可用作ADS7864的参考电压。每片ADS7864实际由2个转换速率为500ksps

的ADC构成,每个ADC有3个模拟输入通道,每个通道都有采样保持器,2个ADC组成3对模拟输入端,可同时对其中的1~3对输入信号同时采样保持,然后逐个转换。由于6个通道可以同时采样,很适合用来转换四象限光电探测器的4路光电信号,剩下2个通道作系统扩展用。 *下面主要介绍电路中的信号采样转换和处理部分。 ADS7864前端调理电路 模数转换器的前端调理电路缩放和平移要采样的信号,通过调理后的信号适合A/D转换器的模拟输入要求。图3是ADS7864一个输入通道的前端调理电路, 图3 ADS7864前端调理电路 ADS7864模拟输入通道的+IN和-IN的最大电压输入范围为-0.3V~+5.3V(ADS7864 +5V供电)。图3的电路中使用了2个运放,A1用作跟随器,用来缓冲ADS7864输出的2.5V基准电压源;A2和四个电阻构成了信号调理网络,适当配置R1~R4电阻可以实现对输入信号Vi的缩放和平移以适合ADS7864模拟通道的输入要求。+IN端的输入电压表示如下:

放大电路计算题3-2

放大电路计算题练习题3 一、计算分析题(每题1分) U=0.7V,1.图示硅三极管放大电路中,V CC=30V,R C=10k?,R E=2.4 k?,R B=1M?,β=80, BEQ r,各电容对交流的容抗近似为零,试:(1)求静态工作点参数I BQ、I CQ、U CEQ。 =200 Ω ' bb (2)若输入幅度为0.1V的正弦波,求输出电压u o1、u o2的幅值,并指出u o1、u o2与u i的相位关系;(3)求输入电阻R i和输出电阻R o1、R o2。 图号3226 2.差分放大电路如图所示,已知V CC =V EE =10V,R C =7.5kΩ,R L =10kΩ,R1 =8.2kΩ,R2 =1.1kΩ,R3 =820Ω,三极管的β=100,r bb’=200Ω,U BEQ=0.7V,试求:(1)V1、V2管的静态工作点参数I CQ、U CQ;(2)差模电压放大倍数A ud=u od/(u i1- u i2)、差模输入电阻R id和输出电阻R o。 3.差分放大电路如图所示,已知V CC=V EE =6V,R C=3kΩ,I0= 2mA,三极管的β=50,r bb′=200Ω,U BEQ=0.7V,试求:(1)各管静态工作点(I BQ、I CQ、U CEQ);(2)差模电压放大倍数A ud=u od/u id、差模输入电阻R id和输出电阻R o。

4. 差分放大电路如图所示,已知三极管的β=80,r bb’=200Ω,U BEQ =0.7V ,试求:(1)V1、V2管的静态工作点参数I CQ 、U CQ ;(2)差模电压放大倍数A ud 、差模输入电阻R id 和输出电阻R o 。 5. 差分放大电路如图所示,已知三极管的β=80,r bb ′=200Ω,U BEQ =0.7V ,试:(1)求I CQ1、U CQ1和I CQ2、U CQ2 ;(2)画出该电路的差模交流通路;(3)求差模电压放大倍数A ud =u od /u id 、差模输入电阻R id 和输出电阻R o 。 6. 放大电路如下图所示,试: (1)画出电路的直流通路,分析两级电路之间静态工作点是否相互影响。 (2)分析各级电路的组态和级间电路的耦合方式。 (3)若R E 开路会对电路造成什么影响?若R 1短路呢?

光电探测器原理

光电探测器原理及应用 光电探测器种类繁多,原则上讲,只要受到光照后其物理性质发生变化的任何材料都可以用来制作光电探测器。现在广泛使用的光电探测器是利用光电效应工作的,是变光信号为电信号的元件。 光电效应分两类,内光电效应和外光电效应。他们的区别在于,内光电效应 的入射光子并不直接将光电子从光电材料内 部轰击出来,而只是将光电材料内部的光电 子从低能态激发到高能态。于是在低能态留 下一个空位——空穴,而高能态产生一个自 由移动的电子,如图二所示。 硅光电探测器是利用内光电效应的。 由入射光子所激发产生的电子空穴对,称为光生电子空穴对,光生电子空穴对虽然仍在材料内部,但它改变了半导体光电材料的导电性能,如果设法检测出这种性能的改变,就可以探测出光信号的变化。 无论外光电效应或是内光电效应,它们的产生并不取决于入射光强,而取决于入射光波的波长λ或频率ν,这是因为光子能量E只和ν有关: E=hν(1) 式中h为普朗克常数,要产生光电效应,每个光子的能量必须足够大,光波波长越短,频率越高,每个光子所具有的能量hν也就越大。光强只反映了光子数量的多少,并不反映每个光子的能量大小。 目前普遍使用的光电探测器有耗尽层光电二极管和雪崩光电二极管,是由半导体材料制作的。 半导体光电探测器是很好的固体元件,主要有光导型,热电型和P—N结型。但在许多应用中,特别是在近几年发展的光纤系统中,光导型探测器处理弱信号时噪声性能很差;热电型探测器不能获得很高的灵敏度。而硅光电探测器在从可见光到近红外光区能有效地满足上述条件,是该波长区理想的光接收器件。一、耗尽层光电二极管 在半导体中,电子并不处于单个的分裂 能级中,而是处于能带中,一个能带有许多

第5章运算放大电路答案

习题答案 5.1 在题图5.1所示的电路中,已知晶体管V 1、V 2的特性相同,V U on BE 7.0,20)(==β。求 1CQ I 、1CEQ U 、2CQ I 和2CEQ U 。 解:由图5.1可知: BQ CQ BQ )on (BE CC I I R R I U U 213 1 1+=--即 11CQ11.01.4 2.7k 20I -7V .0-V 10CQ CQ I I k +=Ω Ω ? 由上式可解得1CQ I mA 2≈ 2CQ I mA I CQ 21== 而 1CEQ U =0.98V 4.1V 0.2)(2-V 1031=?+=+-R )I I (U BQ CQ CC 2CEQ U =5V 2.5V 2-V 1042=?=-R I U CQ CC 5.2 电路如题图5.2所示,试求各支路电流值。设各晶体管701.U ,)on (BE =>>βV 。 U CC (10V) V 1 R 3 题图5.1

解:图5.2是具有基极补偿的多电流源电路。先求参考电流R I , ()815 17 0266..I R =+?---=(mA ) 则 8.15==R I I (mA ) 9.0105 3== R I I (mA ) 5.425 4==R I I (mA ) 5.3 差放电路如题图5.3所示。设各管特性一致,V U on BE 7.0)(=。试问当R 为何值时,可满足图中所要求的电流关系? 解: 53010 7 0643..I I C C =-==(mA ) 则 I 56V 题图 5.2 R U o 题图5.3

2702 1 476521.I I I I I I C C C C C C == ==== mA 即 2707 065.R .I C =-= (mA ) 所以 61927 07 06...R =-= (k Ω) 5.4 对称差动放大电路如题图5.1所示。已知晶体管1T 和2T 的50=β,并设 U BE (on )=0.7V,r bb ’=0,r ce =。 (1)求V 1和V 2的静态集电极电流I CQ 、U CQ 和晶体管的输入电阻r b’e 。 (2)求双端输出时的差模电压增益A ud ,差模输入电阻R id 和差模输出电阻R od 。 (3)若R L 接V 2集电极的一端改接地时,求差模电压增益A ud (单),共模电压增益A uc 和共模抑制比K CMR ,任一输入端输入的共模输入电阻R ic ,任一输出端呈现的共模输出电阻R oc 。 (4) 确定电路最大输入共模电压围。 解:(1)因为电路对称,所以 mA ...R R .U I I I B E EE EE Q C Q C 52050 21527 062270221=+?-=+?-== = + V 1 V 2 + U CC u i1 u i2R C 5.1k ΩR L U o 5.1kΩ R C 5.1k Ω R E 5.1k Ω -6V R B 2k Ω 题图5.1 R B 2k Ω + - R L /2 + 2U od /2 + U id /2 R C R B V 1 (b) + U ic R C R B V 1 (c) 2R EE + U

四象限探测器在太阳能电池板自动追踪系统中的 应用

四象限探测器在太阳能电池板自动跟踪系统中的应用 摘要:采用四象限探测器作为前端探测单元,介绍了利用光电技术、电子技术、自动控制技术以及精密的步进系统实现了太阳能板自动跟踪瞄准系统中的四象限探测器的应用设计。 Abstract:Adapt the four quadrant detector as the front detector .Introduced the steeping system based on optoelectronic technology, electronic technology, automatic control technology .Realized the designation of the automatic tracking system of solar panels.

目录 第一章应用背景 (3) 第二章名词解释 (3) 2.1 四象限探测器 (3) 2.2 步进电机 (5) 第三章系统的工作原理 (5) 3.1 系统工作过程 (5) 3.2 传感器工作原理 (6) 3.3 探测器放大器基本原理图 (8) 第四章系统的电路设计 (9) 第五章系统控制程序设计 (10) 第六章问题和缺陷 (11) 第七章结束语 (12)

一、四象限探测器在太阳能电池板自动跟踪系统中的应用背景: 太阳能热发电和太阳能光伏发电是目前利用太阳能发电的两种主要形式。光热是通过聚光加热介质, 推动燃气轮机做功发电。而光伏发电则通过太阳光照射光电池板将光能直接转化为电能。由于太阳能辐射到地球表面的能量密度比较低, 无论是对于太阳能光伏发电还是太阳能热发电, 能否经济高效利用太阳能的关键在于太阳聚光和跟踪水平的优劣。实验证明在相同条件下, 极轴式太阳能自动跟踪发电的发电量要比固定发电(用太阳能电池板固定朝南安装的方式对太阳能进行采集)提高40% 左右。而采用聚光技术对太阳跟踪又提出了更高的要求.目前主要的跟踪方式是根据地球自转以及GPS进行粗调节,利用光电传感器设计的系统进行精确调节跟踪,本文主要讲述四象限探测器在太阳能电池板自动跟踪系统中的应用。 二、名词解释 2.1、四象限探测器:是把4个性能完全相同的光伏电池板, 按照直角坐标要求排列而成的光伏探测器件, 它们之间有个十字形沟道相隔,如图I所示,其实物图如图II所示。

晶体管放大电路分析及计算

晶体管放大电路分析及计算 一、共发射极放大电路 (一)电路的组成:电源VCC通过RB1、RB2、RC、RE使晶体三极管获得合适的偏置,为三极管的放大作用提供必要的条件,RB1、RB2称为基极偏置电阻,RE称为发射极电阻,RC称为集电极负载电阻,利用RC的降压作用,将三极管集电极电流的变化转换成集电极电压的变化,从而实现信号的电压放大。与RE并联的电容CE,称为发射极旁路电容,用以短路交流,使RE对放大电路的电压放大倍数不产生影响,故要求它对信号频率的容抗越小越好,因此,在低频放大电路中CE通常也采用电解电容器。 V cc(直流电源): 使发射结正偏,集电结反偏;向负载和各元件提供功率 C1、C2(耦合电容): 隔直流、通交流; R B1、R B2(基极偏置电阻):提供合适的基极电流 R C(集极负载电阻):将D IC? D UC,使电流放大? 电压放大 R E(发射极电阻):稳定静态工作点“Q ” C E(发射极旁路电容):短路交流,消除R E对电压放大倍数的影响 (二)直流分析:开放大电路中的所有电容,即得到直流通路,如下图所示,此电路又称为分压偏置式工作点稳定直电流通路。电路工作要求:I1 3(5~10)IBQ,UBQ3 (5 ~ 10)UBEQ 838电子 求静态工作点Q: 方法1.估算 工作点Q不稳定的主要原因:Vcc波动,三极管老化,温度变化稳定Q点的原理: 方法2.利用戴维宁定理求IBQ

(三)性能指标分析 将放大电路中的C1、C2、CE短路,电源Vcc短路,得到交流通路,然后将三极管用H参数小信号电路模型代入,便得到放大电路小信号电路模型如下图所示。 1.电压放大倍数 2.输入电阻计算

三极管放大电路设计,参数计算及静态工作点设置方法

三极管放大电路设计,参数计算及静态工作点设置方法 说一下掌握三极管放大电路计算的一些技巧 放大电路的核心元件是三极管,所以要对三极管要有一定的了解。用三极管构成的放大电路的种类较多,我们用常用的几种来解说一下(如图1)。图1是一共射的基本放大电路,一般我们对放大路要掌握些什么内容? (1)分析电路中各元件的作用; (2)解放大电路的放大原理; (3)能分析计算电路的静态工作点; (4)理解静态工作点的设置目的和方法。 以上四项中,最后一项较为重要。 图1中,C1,C2为耦合电容,耦合就是起信号的传递作用,电容器能将信号信号从前级耦合到后级,是因为电容两端的电压不能突变,在输入端输入交流信号后,因两端的电压不能突变因,输出端的电压会跟随输入端输入的交流信号一起变化,从而将信号从输入端耦合到输出端。但有一点要说明的是,电容两端的电压不能突变,但不是不能变。 R1、R2为三极管V1的直流偏置电阻,什么叫直流偏置?简单来说,做工要吃饭。要求三极管工作,必先要提供一定的工作条件,电子元件一定是要求有电能供应的了,否则就不叫电路了。 在电路的工作要求中,第一条件是要求要稳定,所以,电源一定要是直流电源,所以叫直流偏置。为什么是通过电阻来供电?电阻就象是供水系统中的水龙头,用调节电流大小的。所以,三极管的三种工作状态“:载止、饱和、放大”就由直流偏置决定,在图1中,也就是由R1、R2来决定了。首先,我们要知道如何判别三极管的三种工作状态,简单来说,判别工作于何种工作状态可以根据Uce的大小来判别,Uce接近于电源电压VCC,则三极管就工作于载止状态,载止状态就是说三极管基本上不工作,Ic电流较小(大约为零),所以R2由于没有电流流过,电压接近0V,所以Uce就接近于电源电压VCC。

四象限位置测量系统设计实验

光电系统设计报告 设计题目:四象限位置测量 系统设计实验 专业班级: 学生姓名: 学生学号: 指导教师: 设计时间: 2017/12/29

1、设计题方案论证; 实验采用激光器作为光源,四象限探测器作为光电探测接收器,根据电子和差式原理,实现可以直观、快速观测定位跟踪目标方位的光电定向装置,是目前应用最广泛的一种光电定向方式。 光发射电路主要由光源驱动器、光源(主要是半导体光源,包括LED、LD 等)、光功率自动控制电路(APC)等部分组成。用NE555组成的脉冲发生电路来驱动650nm的激光器。 四象限位置测量器是以光导模式工作的光伏探测器件。它利用集成电路光刻技术将一个探测器件光敏面窗口分割成4个面积相等、形状相同、位置对称的区域而形成,4个探测区域具有基本相同的性能参数。作为一种常用的位置敏感器件,当入射光点落在器件感光面的不同位置时,四象限探测器输出不同的电信号,通过对此电信号进行处理,可以确定入射光点在感光面上的位置。四象限光电探测器广泛应用于激光准直、测角、自动跟踪等精密光电检测系统中,通过对光斑中心位置的精确定位来检测位移或偏角的大小。 它利用半导体材料吸收光子能量引起的电子跃迁,将光信号转换为电信号。通常是利用集成光路光刻技术将完整的PN结光电二极管的光敏面分割成几个具有相同形状和面积、位置对称的区域,每个区域可以看作1个独立的光电探测器,其背面仍为一整片。理想情况下每个区域都具有完全相同的性能参量。 影响四象限光电检测系统工作精度的因素主要包括外围大气环境、目标光斑大小和光斑能量分布以及系统本身采用的算法、器件响应差异和噪声所带来的四象限不均匀性。

光电探测器前置放大电路设计与研究

收稿日期:2009-12-07 基金项目:光电系统信息控制技术国家级重点实验室基金(9140C150101090C1502)作者简介:胡涛(1979-),男,工程师,主要研究方向为模拟信号检测、数字信号处理. #电路与控制# 光电探测器前置放大电路设计与研究 胡 涛,司汉英 (光电系统信息控制技术国家级重点实验室,河北 三河 065201) 摘 要:光电探测器前置放大电路设计的好坏直接影响到整个系统的探测精度.介绍了光电探测器前置放大电路的设计与研究,主要阐述了光电转换电路、放大电路带宽、放大电路噪声、放大电路稳定性以及其他一些需要注意的问题,并设计了一种能够有效降低噪声和温飘,具有大的动态输入范围的放大电路. 关键词:光电探测器;前置放大;光电转换;带宽;噪声;稳定性 中图分类号:TN 215;TN 721 文献标识码:A 文章编号:1673-1255(2010)01-0052-04 Design and Research of Pre -amplifier Circuit from a Photoelectric Detector HU Tao,SI H an -ying (N ational L abor atory of Electro -Op tics Sy stem T echnology ,Sanhe 065201,China) Abstract:T he design of the pre -amplifier circuit of photoelectric detector systems can directly affect the de -tecting precision of the w hole systems.T he design of pre -am plifier circuit from a photoelectric detector was in -troduced.The photoelectric conversion circuit,amplifier circuit bandwidth,amplifier circuit noise,amplifier cir -cuit stabilization and other questions w ere mainly discussed,and an am plifier circuit capable of effectively decreas -ing the noise,the temperature drift and w ith a larg e dynamic range w as designed. Key words:photoelectric detector;pre -amplifier;electro -optic conversion;bandw idth;noise;stabilization 前置放大电路是把接收到的光信号转换成电信号,并对电信号进行放大,再与后面的信号处理系统对接.前置放大电路在整个光电探测系统中是非常重要的,它的性能好坏直接决定了整个系统的性能好坏.在前置放大电路中,光信号和电信号要受到很多噪声的干扰.由于接收的光信号和转换后的电信号通常都比较微弱,很容易淹没在各种噪声中,所以在设计前置放大电路时,要尽量减小噪声,提高系统的信噪比,但是提高信噪比将会使频率特性变差,所以在设计电路时,要二者兼顾考虑. 运算放大器(operational am plifier)是将模拟信号放大的器件,它的应用范围极广,包括DC 放大、音频放大、视频放大、有源滤波器、模拟运算、信号变换等[1],可以说它是整个电路设计的基础.在为光 电探测器设计前置放大器电路时,必须知道如何选 定适当的运算放大器技术规格,来满足探测系统的设计要求. 1 前置放大电路设计 1.1 光电转换电路 PIN 光电二极管的PN 结中间设置了一层掺杂浓度很低的本征半导体,形成P-I-N 结构,本征层的引入加大了耗尽层区的厚度,并形成强电场区.由于入射光子只能在本征层内被吸收,光生载流子在强电场作用下加速运动至N 层,因此载流子渡越时间非常短,同时,耗尽层的加宽使结电容明显减 第25卷第1期 2010年2月 光电技术应用 EL ECT RO-O PT IC T ECHNOL OGY APPL ICAT I ON Vol.25,No.1Februar y.2010

光电探测器列表

紫外探测器:碳化硅(SiC)材质,响应波段200-400nm。应用:火焰探 测和控制、紫外测量、控制杀菌灯光、医疗灯光的控制等。———————————————————————————————————————————— 可见光探测器:硅(Si)材质,响应波段200-1100nm。有室温、热电制 冷两种形式,可以带内置前放,有多种封装形式可选。主要用在测温、 激光测量、激光检测、光通信等领域。 ———————————————————————————————————————————— 红外探测器(1):锗(Ge)材质,响应波段0.8-1.8um,有室温、热电制 冷、液氮制冷三种形式,可以带内置前放,有多种封装形式可选。主要 应用在光学仪表、光纤测温、激光二极管、光学通信、温度传感器等 ———————————————————————————————————————————— 红外探测器(2):铟钾砷(InGaAs)材质,响应波段0.8-2.6um,波段内 可以进行优化。有室温、热电制冷、液氮制冷三种形式,可以带内置前 放,可以配光纤输出,多种封装形式可选。主要应用在光通信、测温、 气体分析、光谱分析、水分分析、激光检测、激光测量、红外制导等领 域。 ———————————————————————————————————————————— 红外探测器(3):砷化铟(InAs)材质,响应波段1-3.8um,有室温和热 电制冷两种,可以配内置前放,多种封装形式可选。主要用于激光测量、 光谱分析、红外检测、激光检测等领域。

红外探测器(4):锑化铟(InSb)材质,响应波段2-6um,液氮制冷, 可以带内置前放,多种封装形式可选。主要应用在光谱测量、气体分析、 激光检测、激光测量、红外制导等领域。———————————————————————————————————————————— 红外探测器(5):硫化铅(PbS)材质,响应波段为1-3.5um,有室温和 热电制冷两种,可以带内置前放,多种封装形式可选。主要应用在NDIR 光谱学、光学测温、光谱学、湿气分析,火焰探测、火星探测等。———————————————————————————————————————————— 红外探测器(6):硒化铅(PbSe)材质,响应波段为1-4.5um,有室温 和热电制冷两种,可以带内置前放,多种封装形式可选。主要应用在 NDIR光谱学、光学测温、光谱学、湿气分析,火焰探测、火星探测等。———————————————————————————————————————————— 红外探测器(7):碲镉汞(HgCdTe)材质探测器:响应波段2-26um, 可以对不同的波段进行优化,分为光伏型和光导型,探测率高,响应时 间快,有室温、热电制冷、液氮制冷三种形式可选。———————————————————————————————————————————— 雪崩光电探测器(APD):主要有硅、锗、铟钾砷三种材质,多种封 装形式可选。主要应用于光通信、遥感技术、功率测量、红外线测量、 温度测量、光通信、光谱仪,激光测距等领域。

基本放大电路计算 30

计算题(每小题10分) 1、(10分)共射放大电路中,U CC =12V ,三极管的电流放大系数β=40,r be =1K Ω,R B =300K Ω,R C =4K Ω,R L =4K Ω。求(1)接入负载电阻R L 前、后的电压放大倍数;(2)输入电阻r i 输出电阻r o 解:(1)接入负载电阻R L 前: A u = -βR C /r be = -40×4/1= -160 (3分) 接入负载电阻R L 后: A u = -β(R C // R L ) /r be = -40×(4//4)/1= -80 (3分) (2)输入电阻r i = r be =1K Ω (2分) 输出电阻r o = R C =4K Ω(2分) 2、(10分)在共发射极基本交流放大电路中,已知 U CC = 12V ,R C = 4 k Ω,R L = 4 k Ω,R B = 300 k Ω,β=37.5 试求: (1).放大电路的静态值(6分); (2)试求电压放大倍数 Au ,(4分)。 解:(1) (2分) (2分) (2分) (2) A 04.0A 1030012 3 B C C B m R U I =?=≈ m A 5.1m A 04.05.37B C =?=≈I I βV 6V )5.1412(C C CC CE =?-=-=I R U U Ω Ωk 867.0)mA (5.1) mV (26)15.37()(200be =++≈r Ωk 2//L C L =='R R R

(2分) (2分) 3、(10分 ).在图示电路中,已知晶体管的β=80,r b e =1k Ω,U i =20mV ;静态时 U B E Q =0.7V ,U C E Q =4V ,I B Q =20μA 。 求(1)电压放大倍数 (3分 ) (2)输入电阻 (2分 ) (3)输出电阻 (2分 ) (4)U S (3分 ) 解:(1)2001 5.280)//(-=?-=-=be L C u r R R A β& (3分 ) (2) Ω=≈=k 1//i be be B r r R R (2分 ) (3)Ω=≈k 5o C R R (2分 ) (4)mV R R R U U i S i i 60)12(1 20)(s =+?=+= (3分 ) 4.(10分)在图示电路中, 已知V C C =12V ,晶体管的β=100,' b R = 100k Ω。求 (1)当i U &=0V 时,测得U B E Q =0.7V ,若要基极电流I B Q =20μA , 则'b R 和R W 之和R b 等于多 5.86867 .025.37be L -=?-='-=r R A u β

四象限探测系统信号光斑的优化设计

四象限探测系统信号光斑的优化设计 徐代升 (湖南理工学院物理与电子信息系,湖南 岳阳 414006) 摘 要:分析了四象限探测系统角误差形成的原理。深入研究了探测器角误差形成原理与光斑位置、大小和探测器面积的关系,证明光斑半径r 小一些有利于提高误差信号x U 、y U 的测量精度,r 大一些则有利用扩展x U 、y U 的测量线性区。从与误差信号测量误差关联的原理误差及与信噪比SNR 有关系统误差出发,提出了光斑大小优化设计的问题,得出实际设计的光斑大小稍大于探测器有效半径的1/2有助于改善系统性能,并通过相关系统研制稳定性跟踪试验给予验证。 关键词:光电探测;四象限探测器;误差信号;光斑大小 中图分类号:TN929.1 文献标识码:A 文章编号:1672-5298(2007)01-0050-04 Optimal design for signal light spot of detecting systems with quadrant detectors XU Dai-sheng ( Dept. of Physics & Electronic Information, Hunan Institute of Science and Technology, Yueyang 414006, China ) Abstract : The relationship between angle errors outputting from a quadrant detector and its area and location, size of light spot was analyzed deeply, which shows that the shorter radius of light spot the better testing precision of angle errors, and the longer radius of light spot the bigger linearity span of angle errors. In terms of the testing error of angle error containing both principle error and systematic error related to SNR , the optimal designed size of light spot helps to improve the performance of detecting systems with quadrant detectors. Key words : optoelectronic detection ;quadrant detector ;error signal ;size of light spot 在空间卫星光通信ATP 技术[1]、现代原子力显微镜(AFMs )的悬臂(cantilever )位置探测[2]、激光准直对中[3]、激光自动跟踪[4][5]、激光制导[6]中广泛采用四象限探测器(QD )对目标的方位信息进行探测。光学跟踪中普遍采用三大位置传感器实现对目标的定位跟踪[7],它们是四象限探测器、横向效应光电探测器(Lateral Effect Detectors )和多元探测器如CCD 。和另外两类探测器相比,采用QD 的优点是高分辨率、刚性好、配套电子线路简单,缺点是它不能分辨是来自目标和背景的反射,而只能探测到探测器光敏面上光强分布的中心,当目标背景对比度不足够高时,这可能导致定位跟踪误差。为了提高探测系统目标方位信息的探测能力,本文依据四象限探测器误差信号的形成原理,深入研究了其与光斑位置、大小和探测器面积的关系,并从与误差信号测量误差关联的原理误差和考虑信噪比SNR 影响的系统误差出发,提出并分析了信号光斑大小优化设计的问题。 1 误差信号形成的基本原理 四象限探测器是把四个性能相同的探测器按照直角坐标的要求排列成四个象限做在同一芯片上,中间有十字形沟道隔开。四象限探测器给出位置误差信号的原理如图1所示。图中R 为四象限探的半径,r 为光斑的半径,x 为水平方向位移,y 为俯仰方向的位移,A 、B 、C 、D 代表QD 光敏面的四个部分(象限),四象限探测器的分界线与直角坐标轴重合。每个象限都 收稿日期:2006-09-30 作者简介:徐代升(1968- ),男,湖南常德人,工学博士,高级工程师。主要研究方向:激光及光电测量技术。 第20卷 第1期 湖南理工学院学报(自然科学版) Vol.20 No.12007年3月 Journal of Hunan Institute of Science and Technology (Natural Sciences) Mar.2007 D C B A Y X (x ,y ) 2r 2R

放大电路计算题

放大电路计算题 练习题3 一、计算分析题(每题1分) 1. 图示硅三极管放大电路中,V CC =30V ,R C =10k?,R E = 2.4 k?,R B =1M?,β=80, BEQ U =0.7V Ω=200'bb r ,各电容对交流的容抗近似为零,试:(1)求静态工作点参数I BQ ,, I CQ 、U CEQ 。(2)若输入幅度为0.1V 的正弦波,求输出电压u o1、u o2的幅值,并指出u o1、u o2与u i 的相位关系;(3)求输入电阻R i 和输出电阻R o1、R o2。 图号3226 解:(1) A k k V V R R U V I E B BE CC BQ μβ5.244.28110007.030)1(=Ω ?+Ω-=++-= mA A I I BQ CQ 96.15.2480=?==μβ V k k mA V R R I V U E C CQ CC CEQ 7.5)4.210(96.130)(=Ω+Ω?-=+-≈ (2) Ω≈?+Ω=++=k mA mV I U r r E T bb be 3.196.12681200) 1(Q 'β 当从u o1输出时,放大电路为共射组态,故输出电压u o1与输入电压u i 反相,且 1.44.2813.11080)1(11-=Ω ?+ΩΩ ?-=++-== k k k R r R u u A E be C i o u ββ V V A U U u im om 41.01.41.011=?=?= [][]Ω≈Ω?+ΩΩ=++=k k k M R r R R E be B i 6414.2813.1//1)1(//β Ω=≈k R R C o 101 当从u o2输出时,放大电路为共集组态,故输出电压u o2与输入电压u i 同相,且 99.04.2813.14.281)1()1(122≈Ω ?+ΩΩ ?=+++== k k k R r R u u A E be E o u ββ 或 12≈u A V V A U U u im om 099.099.01.022=?=?=

放大电路计算题

放大电路计算题 练习题 3 一、计算分析题(每题1分) 1. 图示硅三极管放大电路中,V CC =30V ,R C =10k ,R E = 2.4 k ,R B =1M ,β=80, BEQ U =0.7V Ω=200'bb r ,各电容对交流的容抗近似为零,试:(1)求静态工作点参数I BQ ,, I CQ 、U CEQ 。(2)若输入幅度为0.1V 的正弦波,求输出电压u o1、u o2的幅值,并指出u o1、u o2与u i 的相位关系; (3)求输入电阻R i 和输出电阻R o1、R o2。 解:(1) (2) Ω≈?+Ω=++=k mA mV I U r r E T bb be 3.196.12681200)1(Q 'β 当从u o1输出时,放大电路为共射组态,故输出电压u o1与输入电压u i 反相,且 当从u o2输出时,放大电路为共集组态,故输出电压u o2与输入电压u i 同相,且 99.04.2813.14.281)1()1(122≈Ω ?+ΩΩ?=+++==k k k R r R u u A E be E o u ββ 或 12≈u A 输入电阻不变,为164k 计算的最后结果数字:I CQ =1.96mA , I BQ =24.5A ,U CEQ =5.7V ; U om1= 0.41V ,U om2= 0.099V ,R i = 164k , R o1=10k , R o2=16 2. 差分放大电路如图所示,已知V CC = V EE =10V ,R C =7.5k Ω,R L =10k ,R 1 =8.2k ,R 2 =1.1k ,R 3 =820,三极管的β=100,r bb’=200Ω,U BEQ =0.7V ,试求:(1)V1、V2管的静态工作点参数I CQ 、 U CQ ;(2)差模电压放大倍数A ud =u od /(u i1- u i2)、差模输入电阻R id 和输出电阻R o 。 解:(1) mA mA I R R I REF C 34.11 .12.87.0108201100323≈+-?≈≈ I CQ1= I CQ2=0.67mA U CQ1= U CQ2=V CC -I CQ1R C = 4.98V (2) Ω≈Ω?+Ω=k r be 12.467 .026101200 R id =8.24 k Ω R o =15 k Ω 计算的最后结果数字: I CQ1= I CQ2=0.67mA , U CQ1= U CQ2=4.98V ; A ud = -72.8,R id =8.24k ,R o =15k 3. 差分放大电路如图所示,已知V CC =V EE =6V ,R C =3k Ω,I 0= 2mA ,三极管的β=50,r bb ′=200Ω, U BEQ =0.7V ,试求:(1)各管静态工作点(I BQ 、I CQ 、U CEQ );(2)差模电压放大倍数A ud =u od /u id 、 差模输入电阻R id 和输出电阻R o 。 解:(1) mA I I CQ CQ 1 21≈= A I I I CQ BQ BQ μβ201 21=≈= (2) Ω≈?++Ω=k mA mV r be 53.1126)051(200 计算的最后结果数字:I CQ 1= I CQ 2=1mA ,I BQ 1= I BQ 2=20μA , U CEQ1 = U CEQ2 =3.7V ; A ud = -49,R id =3.06k , R o =3k

相关文档
最新文档