随机事件与概率 考研试题

随机事件与概率  考研试题
随机事件与概率  考研试题

第一章 随机事件与概率

一、填空题

1.(1990年数学一)设随机事件A ,B 及其和事件A B 的概率分别是0.4,0.3和0.6若B 表示B 的对立事件,那么积事件AB 的概率P AB ()

=_________. 【解题分析】要求P AB ()时,一般应想到AB A B A AB =-=-,这是事件的差与事件的积之间常见的转化关系,AB A ?而,所以有, ()

()()P AB P A P AB =-,这时只需要求出

()P AB 即可.

解: ()()()()P A B P A P B P AB =+- ,

又 ()

()()P AB P AB P A +=,

所以 ()

()()0.60.30.3P AB P A B P B =-=-= .

本题用文氏图考虑求解思路更为直观,见图10-1. 图10-1 注:本题()0.4P A =是多余的.

2.(1991年数学四)设A ,B 为随机事件,()0.7,P A =()0.3P A B -=,则

()

P AB =________.

【解题分析】 要求()

P AB ,由于AB AB 与是对立事件,只要求出()P AB 即可.利用关系A B A AB -=-,()()()P A B P A P AB -=-,可得()P AB .

解:由题设()()()

0.7,0.3P A P A B P AB =-==, 利用公式 AB AB A +=,知

()()()0.70.30.4P AB P A P AB =-=-=,

故 ()

()110.40.6P AB P AB =-=-=.

本题也可利用图10-1考虑求解思路.

3.(2000年数学一)设两个相互独立的事件A 和B 都不发生的概率为1

9

,A 发生B 不发生的概率与B 发生A 不发生的概率相等,则()P A =________.

【解题分析】 根据题设可以推出()()P A P B =,再利用事件A 和B 的独立性即可得出答案.

解:由题设 ()

P AB =

1

9

()1 ()P AB ()P BA = ()2

注意到 A AB AB B BA BA =+=+,,

所以 ()()

()()()()

P A P AB P AB P B P BA P B A =+=+,, 由()2有 ()()()()P A P AB P B P BA -=-, 可见 ()()P A P B = ()3

又由概率的加法公式与事件A B ,的独立性,由()1及()3式,有

()()()

()()11P AB P A P B P A P B ==--????????()(

)21

19P A =-=, 于是()113P A -=±,当()113P A -=-时,得()2

3P A =,

当()113P A -=时,得()43P A =,事件的概率不可能>1,应舍去.所以, ()2

3

P A =.

本题也可利用图10-2考虑求解思路.可以看出()()P A P B =,再利用

()()()

()()11P AB P A P B P A P B ==--????????()()21

19

P A =-= 即可求解.

图10-2

4.(1993年数学四)设10件产品中有4件不合格品,从中任取两件,已知所取两件产品中有一件不合格品,则另一件也是不合格品的概率为_______.

【解题分析】本题是在抽取的两件产品中,已经知道有一件不合格品,要求另一件产品也是不合格品的概率.显然,这是一道求条件概率的题目,求条件概率一般有两种方法:公式法和缩减样本空间法.

解:方法1 以A 表示事件{从10件产品中任取两件,两件都是不合格品},以B 表示

事件{从10件产品中任取两件,至少有一件是不合格品},则所求的概率为()

P A B .

而 ()P A =2

4210C C =2

15,()P B =1—26210C C =23

显然A ?B ,故()()P AB P A ==

2

15

,由条件概率的计算公式知 ()P A B =()()P AB P B =2

1523

= 1

5.

方法2 缩减样本空间法.已知一件是不合格品,这时样本点总数可认为是

22112106464C C C C C -+或.两件都是不合格品包含的样本点数为24C ,则

()P A B =2

422

10661

305

C C C ==-. 5.(1988年数学一)若在区间(0,1)内任取两个数,则事件“两数之和小于6

5

”的概率为_______.

【解题分析】这是一个几何概型问题.可利用几何概率求解.

解:设x y ,表示在()01,中随机地取得的两个数,则()x y ,点的全体是如下图所示的正

方形 ,而事件“两数之和小于

65”发生的充要条件为6

5

x y +<,见图10-3.

图10-3

根据几何概率的定义,所求概率为

2

61417152525

P x y ?

???+<

=-?=?? ?????. 具有特性:1)试验的结果有无限且不可列个;

2)每个结果出现的可能性相同

,

的随机试验称为几何型随机试验,又称几何概型.可以利用几何度量(长度、面积、体积等)来计算事件发生的可能性.其样本空间可以用一个有界区域来描述,而事件A 可以用其中的一个部分区域来描述.事件A 发生的概率为

()()()

L A P A L =

Ω,其中()()L L A A ΩΩ与分别为与的几何度量.(留白)

二、选择题

1.(1987年数学三)设A B 、为两事件且()0P AB =,则( ).

A .A 与

B 互斥; B .AB 是不可能事件;

C .AB 未必是不可能事件;

D .()0P A =或P ()B =0.

解:这里考查的是概率为0的事件与不可能事件之间的关系.必须注意,不可能事件的概率为零,但事件为零的概率不一定是不可能事件.比如连续型随机变量取任何给定实数值的概率都等于0.所以()0P AB =,AB 未必是不可能事件.所以正确答案是C .

2.(1989年数学三、四)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为( ).

A .

“甲种产品滞销,乙种产品畅销”; B .“甲、乙两种产品均畅销”; C .

“甲种产品滞销”; D .“甲种产品滞销或乙种产品畅销”; 【解题分析】要想正确解答本题,只需把问题转化为事件,然后利用事件之间的关系求解即可.

解:设B =“甲种产品滞销”,C =“乙种产品畅销”,则由题设A BC =,于是对立事件A 为:A =BC =B C =“甲种产品滞销或乙种产品畅销”,所以正确答案是D .

3.(1991年数学三、四)设A B 和是任意两个概率不为零的不相容事件,则下列结论中肯定正确的是( ).

A .A 与

B 不相容; B .A 与B 相容;

C .()()()P AB P A P B =;

D .()()P A B P A -=.

【解题分析】这里考查的是互不相容事件与独立事件的关系,要正确理解二者之间的关系,利用它们的关系容易求解.

解:根据题设,A B 和是任意两个互不相容事件,所以AB =Φ,从而 ()0P AB =.利用公式AB AB A +=,知

()()

()()()P A B P AB P A P AB P A -==-=.

所以正确答案为D . 另外,由于()()00P A P B ≠≠,,C 项不可能成立.

互不相容事件,对立事件及独立事件的关系是考试的一个重点, 互不相容事件和对立事件表示的是事件的属性,它们之间的关系是:对立事件一定是互不相容事件,但互不相容事件不一定是对立事件;而独立事件表示的是事件之间的概率属性,应当注意它们之间在概念上的区别.

值得注意的是(A )、(B )两项,有人认为(A )与(B )是互逆的,总有一个是正

项不成立.这是由于事件选取的任意性而造成的.(留白)

4.(1998年数学四)设A B C ,,是三个相互独立的随机事件,且()01P C <<.则在下列给定的四对事件中不相互独立的是( ).

A .A

B +与

C ; B .AC 与C ; C .A B -与C ;

D .AB 与C .

解:由于A B C ,,是三个相互独立的随机事件,所以其中任意两个事件的和、积、差、逆与另一个事件或其对立事件也是相互独立的,根据这一性质(A )、(C )、(D )三项中的两事件是相互独立的,因而均为干扰项. 所以正确答案是B .

判断随机事件的独立性,一般有如下方法:(1)利用公式()()()P AB P A P B =,或

()()P A B P A =进行判断;(2)根据独立性的实际意义进行判断,即,所谓两个事件独立,

是指一个事件发生与否对另一个事件发生的概率没有影响.如甲乙两个车间加工同种零件,A 表示甲车间生产的零件, B 表示乙车间生产的零件,一般认为A 与B 独立.有时利用(2)更为方便.本题若用相互独立的定义来判断,则比较困难,而且容易出错.因此,深刻理解概念对解题会有很大帮助. (留白)

5.(2003年数学四)对于任意两个事件A B ,,有( ).

A .若A

B ≠Φ,则A B ,一定独立; B .若AB ≠Φ,则A B ,有可能独立;

C .若AB =Φ,则A B ,一定独立;

D .若AB =Φ,则A B ,一定不独立.

【解题分析】AB 是否为不可能事件,即考查事件A B ,是否为互不相容,它与事件的独立性没有必然的联系.所以正确答案是B .如甲、乙两人独立的打篮球投篮,A 表示甲投中,

B 表示乙投中,甲、乙两人可能同时投中,即A B ,同时发生;但A B ,相互独立.

6.(2003年数学三)将一枚硬币独立地掷两次,引进事件1A ={掷第一次出现正面},

2A ={掷第二次出现正面},3A ={正、反各出现一次},4A ={正面出现两次},则事件( ).

A .1A ,2A ,3A 相互独立,

B .2A ,3A ,4A 相互独立,

C .1A ,2A ,3A 两两独立,

D .2A ,3A ,4A 两两独立.

【解题分析】由于若三个事件相互独立,一定两两独立, 所以, A .成立, C 一定成立;

B 成立, D 一定成立, 因此,可以先排除A ,B .只需对

C ,

D 进行验证.

解: 因为()112P A =

,()()()234111

224

P A P A P A ===,,.

()()()()124121

4

P A A P A P A P A ===,

(){}131

4

P A A P ==第一次是正面,第二次是反面

=()()13P A P A ,

(){}2314

P A A P ==

第一次是反面,第二次是正面 =()()23P A P A .

所以,正确答案是C .

7.(2000年数学四)设A B C ,,两两独立,则A B C ,,相互独立的充分必要条件是( )

A .A 与BC 独立;

B .AB 与A

C 独立; C .AB 与AC 独立;

D .A B 与A C 独立.

【解题分析】三个事件两两独立和相互独立,考虑的是事件之间积的关系,因此可考虑对A ,C 直接验算.

解: 先证必要性,设A B C ,,为相互独立的事件,则有 ()()()()()()P ABC P A P B P C P A P BC ==, 故事件A 与事件BC 独立.

反之,设A B C ,,两两独立,若A 与BC 独立,则有

()()()P BC P B P C =,

()()()()()()P ABC P A P BC P A P B P C ==,

根据三事件A B C ,,相互独立的定义,知A B C ,,相互独立,从而正确答案是A .

8.(2001年数学四)对于任意两个事件A 和B ,与A B B = 不等价的是( )

A .A

B ?; B .B A ?;

C .AB =Φ;

D .AB =Φ.

【解题分析】本题主要考察事件的关系与运算. 可利用文氏图进行分析. 解:由于A A B A

B B ?=? 而,所以A B ,由图10-4明显可以看

出,()()()A B C 、、等价,因此,正确答案为D .

图10-4

三、计算题

1.(1996年数学三)考虑一元二次方程2

0x Bx C ++=,其中B C ,分别是将一枚色子(骰子)接连掷两次先后出现的点数.求该方程有实根的概率p 和有重根的概率q .

【解题分析】本题与二次方程联系起来,但实际上仍然是古典概率问题.先求出要使方程有实根时B C ,应满足的条件,然后考察它所包含的样本点个数,求解并不困难.

解: B C 、是均可取值1,2,3,4,5,6的随机变量,而且取任一值可能性均为

1

6

,当2

4B C ≥时,方程有实根;当2

4B C =时方程有重根.关键是找出满足2

4B C ≥和

24B C =的样本点数.一枚色子(骰子)掷两次,其样本点总数为6636?=.方程组有实根

的充分必要条件是2

4B C ≥或2

4

B

C ≤,易见

由此可见,使方程有实根的样本点个数为1246619++++=.因此 p =1936

, 方程有重根的充分必要条件是2

4B C =或2

4

B

C =,满足此条件的样本点共有2个,

因此q =

236=118

. 2.(1998年数学三)设有来自三个地区的各10名、15名和25名考生的报名表,其中女生的报名表分别为3份、7份和5份.随机地取一个地区的报名表,从中先后抽出两份. (1)求先抽到的一份是女生表的概率p ;

(2)已知后抽到的一份是男生表,求先抽到的一份是女生表的概率q .

【解题分析】要求先抽到的一份是女生表的概率p ,它与抽到的地区有关,可考虑用全概率公式,本题关键是定义事件以及求解这些事件的概率和条件概率.

解: 设{}i H i =报名表是第区考生的()123i =,

,, {}j A j =第次抽到的报名表是男生的表()12j =,

, 则P (1H )=P (2H )=P (3H )=

13,P (1A |1H )=7

10

, P (1A |2H )=815,P (1A |3H )=20

25

(1)()

1p P A ==

3

11

()(|)i i

i P H P A H =∑=13(310+715+525)=29

90. (2)由全概率公式得

217(|)10P A H =,228(|)15P A H =,2320

(|)25P A H =. 1217(|)30P A A H =,1228(|)30P A A H =,1235

(|)30

P A A H =.

2()P A =

3

21

()(|)i i

i P H P A H =∑=13(710+815+2025)=61

90. 12()P A A =

3

121

()(|)i i

i P H P A A H =∑=13(730+830+530)=2

9. 因此,q =12(|)P A A =122()()P A A P A =2

20

96161

90

=

.

2012北京邮电大学概率论与随机过程试题

北邮人: 一、填空题 1. 设事件,A B 满足()0.7,()0.3P A P AB ==, 则()P AB = 2. 袋中有10个球,其中1个红球,10个人不放回地依次抽取,每次抽取一个,问最后一个人取到红球的概率是 3. 设平面区域D 由1,0,x y y x ===围成,平面区域1D 由21,0,x y y x ===围成。现向D 内依次随机地投掷质点,问第3次投掷的质点首次落在1D 内的概率是 4. 设随机变量(1,2),(2,4)X N Y N 且相互独立,求23X Y +-的概率密度函数()f x = 5. 设平稳过程{(),0}X t t ≤≤+∞的功率谱密度为28()+14X S ωω= +,则其自相关函数为 6.设一灯管的使用寿命X 服从均值为1/λ的指数分布,现已知该灯管用了10小时还没有坏,该灯管恰好还能再用10小时的概率为 7.设电话总机在(0,]t 内接受到电话呼叫次数()N t 是强度(每分钟)为0λ>的泊松过程,(0)0N =, 则2分钟收到3次呼叫的概率 8.设随机过程(),0X t tY t =≥,其中Y 服从正态分布,即(1,4)Y N ,求103()E tX t dt ??= ??? ? 二、设二维随机变量(X,Y)具有概率密度 , 0(,)0, 其他 y e x y f x y -?<<=??

(1) 求边缘概率密度(),()X Y f x f y ,(2) 求条件概率密度|(|)Y X f y x , |(|)X Y f x y ,(3)求条件概率(1|1),{1}P Y X P X Y ≤≤+<. 三、在某交通路口设置了一个车辆计数器,记录南行北行的车辆总数。设X(t)和Y(t)分别表示在[0,t]内南行和北行的车辆数,它们是强度分别为1λ和2λ的possion 过程,且相互独立。如果在t(>0)时记录的车辆总 数为n ,求其中南行车辆有k(0

3.1随机事件的概率教案

3.1随机事件的概率教案 篇一:3.1.1随机事件的概率教案 3.1随机事件的概率(一) 教学目标 1.通过实例理解确定性现象与随机现象的含义和随机事件、必然事件、不可能事件的概念及其意义; 2.根据定义判断给定事件的类型,明确事件发生的条件是判断事件的类型的关键; 3.理解随机事件的频率定义及概率的统计定义,知道根据概率的统计定义计算概率的方法,理解频率和概率的区别和联系; 4.通过对概率的学习,使学生对对立统一的辨证规律有进一步的认识.教学重点 根据随机事件、必然事件、不可能事件的概念判断给定事件的类型,并能用概率来刻画实际生活中发生的随机现象,理解频率和概率的区别和联系. 教学难点 理解随机事件的频率定义及概率的统计定义及计算概率的方法,理解频率和概率的区别和联系. 教学过程 一、问题情景:

[设置情景]1名数学家=10个师 在第二次世界大战中,美国曾经宣布:一名优秀数学家的作用超过10个师的兵力。这句话有一个非同寻常的来历。 1943年以前,在大西洋上英美运输船队常常受到德国潜艇的袭击,当时,英美两国限于实力,无力增派更多的护航舰,一时间,德军的“潜艇战”搞得盟军焦头烂额。 为此,有位美国海军将领专门去请教了几位数学家,数学家们运用概率论分析后得出,舰队与敌潜艇相遇是一个随机事件,从数学角度来看这一问题,它具有一定的规律性。一定数量的船(为100艘)编队规模越小,编次就越多(为每次20艘,就要有5个编次),编次越多,与敌人相遇的概率就越大。 美国海军接受了数学家的建议,命令舰队在指定海域集合,再集体通过危险海域,然后各自驶向预定港口。结果奇迹出现了:盟军舰队遭袭被击沉的概率由原来的25%降为1%,大大减少了损失,保证了物资的及时供应。 在自然界和实际生活中,我们会遇到各种各样的现象。如果从结果能否预知的角度来看,可以分为两大类:一类现象的结果总是确定的,即在一定的条件下,它所出现的结果是可以预知的,这类现象称为确定性现象;另一类现象的结果是无法预知的,即在一定的条件下,出现那种结果是无法预先确定的,这类现象称为随机现象。 确定性现象,一般有着较明显得内在规律,因此比较容易掌握它。而随机现象,由于它具有不确定性,因此它成为人们研究的重点。随机

概率论与随机过程题集

第二章 概率论与随机过程 2 2-16 图P2-16中的电路输入为随机过程 X(t),且E[X(t)]=O, xx ()= (),即X(t)为白噪 过程。 (a )试求谱密度 yy ( f )。 2 (b )试求 yy ( )和 E[Y (t)]。 ----kW 1 R X(t) 图 P2-16 2 (b) E [y (t)]= yy (0) 解:由功率密度谱的定义知 C 二 Y(t) xx xx ( )e j2f d ()e j2f d 又系统函数 H(f)=^ X(f) 1 j2 fc 1 j 2 fc 1 __ j2 fc yy (f) xx (f)H(f)2 (2 fcR)2 yy () yy (f)e j2 df 2 1 R 2f^e j2f df 莎汀 2 ?- E [y (t)]= yy (0) 2Rc 2-20 一离散时间随机过程的自相关序列函数是 (k) (1/2)W ,试求其功率密度谱。 (f)= k (k)e j2 fk

2-24 系统的噪声等效带宽定义为 B eq 认 2 H(f) df 1/知 o XJ) ???命题得证。 2-23 试证明函数 在区间[ (f) 1 (2) k 2 I k l e 2 j fk / 1 2 j f 、 2 1e j2f 2 1 !e j2f 2 1e j2f 2 1 1 e j2 2 sin[2 W(t f k (t)= ]上为正交的,即 G e o 2 1 1 le j2f 2 即为所求。 2W )] k 2 W(t ) 2W ,k = o , 所以,抽样定理的重建公式可以看作带限信号 s(t)的级数展开式,其中权值为 s(t)的样值, 且{ f k (t )}是级数展开式中的正交函数集。 证明: 由题得 k sin[2 W(t -)] f k (t)f j (t)dt = ---------- 2 W(t —) 2W sin[2 W(t j )] 込dt 2 W(t j ) 1 cos[( j k) 2 cos[4 wt (k j) ] dt (2 wt k)(2 wt j)

人教初中数学九上 25.1 随机事件与概率教案

随机事件 教学时间课题随机事件课型新授课 教学目标知识 和 能力 通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根 据这些特点对有关事件作出准确判断。 过程 和 方法 历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学 概念。 情感 态度 价值观 体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。 教学重点随机事件的特点 教学难点对生活中的随机事件作出准确判断 教学准备教师多媒体课件学生“五个一” 课堂教学程序设计设计意图 一、创设情境,引入课题 1.问题情境 下列问题哪些是必然发生的?哪些是不可能发生的? (1)太阳从西边下山; (2)某人的体温是100℃; (3)a2+b2=-1(其中a,b都是实数); (4)水往低处流; (5)酸和碱反应生成盐和水; (6)三个人性别各不相同; (7)一元二次方程x2+2x+3=0无实数解。 2.引发思考 我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么? 二、引导两个活动,自主探索新知 活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题: (1)抽到的序号是0,可能吗?这是什么事件? (2)抽到的序号小于6,可能吗?这是什么事件?首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。 概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。

随机事件的概率知识点总结

随机事件的概率 一、事件 1.在条件S下,一定会发生的事件,叫做相对于条件S的必然事件. 2.在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件. 3.在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件. 二、概率和频率 1.用概率度量随机事件发生的可能性大小能为我们决策提供关键性依据. 2.在相同条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现 的次数n A为事件A出现的频数,称事件A出现的比例f n(A)=n A n 为事件A出现的频率. 3.对于给定的随机事件A,由于事件A发生的频率f n(A)随着试验次数的增加稳定于概率P(A),因此可以用频率f n(A)来估计概率P(A). 三、事件的关系与运算

四、概率的几个基本性质 1.概率的取值范围:0≤P(A)≤1. 2.必然事件的概率P(E)=1. 3.不可能事件的概率P(F)=0. 4.概率的加法公式: 如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B). 5.对立事件的概率: 若事件A与事件B互为对立事件,则A∪B为必然事件.P(A∪B)=1,P(A)=1-P(B). 1.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上.则下列结果正确的是( ) A.P(M)=1 3 P(N)= 1 2 B.P(M)=1 2 P(N)= 1 2 C.P(M)=1 3 P(N)= 3 4 D.P(M)=1 2 P(N)= 3 4 解析:选D 由条件知事件M包含:(正、反)、(反、正).事件N包含:(正、正)、(正、反)、(反、正). 故P(M)=1 2 ,P(N)= 3 4 . 2.(2012·)从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A.至少有一个红球与都是红球 B.至少有一个红球与都是白球 C.至少有一个红球与至少有一个白球 D.恰有一个红球与恰有二个红球 解析:选D A中的两个事件不互斥,B中两事件互斥且对立,C中的两个事件不互斥,D

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1. 写出下列随机试验的样本空间。 (1) 记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2) 同时掷三颗骰子,记录三颗骰子点数之和。 (3) 10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录 抽取的次数。 (4) 生产产品直到得到10件正品,记录生产产品的总件数。 (5) 一个小组有A ,B ,C ,D ,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选 举的结果。 (6) 甲乙二人下棋一局,观察棋赛的结果。 (7) 一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8) 对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次 品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9) 有A ,B ,C 三只盒子,a ,b ,c 三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察 装球的情况。 (10) 测量一汽车通过给定点的速度。 (11) 将一尺之棰折成三段,观察各段的长度。 2. 设A ,B ,C 为三事件,用A ,B ,C 的运算关系表示下列事件。 (1) A 发生,B 与C 不发生。 (2) A 与B 都发生,而C 不发生。 (3) A ,B ,C 都发生。 (4) A ,B ,C 中至少有一个发生。 (5) A ,B ,C 都不发生。 (6) A ,B ,C 中至多于一个发生。 (7) A ,B ,C 中至多于二个发生。 (8) A ,B ,C 中至少有二个发生。 3. 设{}10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,??????≤<=121x x A ,? ?????<≤=234 1x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,81)(=AC P ,求A , B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算)? (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少?

北师大版高中数学必修三第二课时随机事件的频率与概率教案(精品教学设计)

第二课时随机事件的频率与概率 一、教学目标:1.理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;2.掌握概率的统计定义及概率的性质. 二、教学重点:随机事件的概念及其概率.教学难点:随机事件的概念及其概率. 三、探究讨论法 四、教学过程 (一)、新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”; (3)“某电话机在1分钟内收到2次呼叫”;

(4)“没有水份,种子能发芽”; 分析结果:(略) 3.男女出生率 一般人或许认为:生男生女的可能性是相等的,因而推测出男婴和女婴的出生数的比因当是1:1,可事实并非如此.公元1814年,法国数学家拉普拉斯(Laplace 1794---1827)在他的新作《概率的哲学探讨》一书中,记载了一下有趣的统计.他根据伦敦,彼得堡,柏林和全法国的统计资料,得出了几乎完全一致的男婴和女婴出生数的比值是22:21,即在全体出生婴儿中,男婴占51.2%,女婴占48.8%.可奇怪的是,当他统计1745---1784整整四十年间巴黎男婴出生率时,却得到了另一个比是25:24,男婴占51.02%,与前者相差0.14%.对于这千分之一点四的微小差异!拉普拉斯对此感到困惑不解,他深信自然规律,他觉得这千分之一点四的后面,一定有深刻的因素.于是,他深入进行调查研究,终于发现:当时巴黎人”重男轻女”,又抛弃女婴的陋俗,以至于歪曲了出生率的真相,经过修正,巴黎的男女婴的出生比率依然是22:21. 4.π中数字出现的稳定性(法格逊猜想) 在π的数值式中,各个数码出现的概率应当均为1/10.随着计算机的发展,人们对π的前一百万位小数中各数码出现的频率进行了统计,得到的结果与法格逊猜想非常吻合.

随机事件及其概率教案(精)

<随机事件及其概率>教案 (一)教学目标: 1、知识目标: 使学生掌握必然事件,不可能事件,随机事件的概念及概率的统计定义,并了解实际生活中的随机现象,能用概率的知识初步解释这些现象 2、能力目标: 通过自主探究,动手实践的方法使学生理解相关概念,使学生学会主动探究问题,自主实践,分析问题,总结问题。 3、德育目标: 1.培养学生的辩证唯物主义观点. 2.增强学生的科学意识 (二)教学重点与难点: 重点:理解概率统计定义。 难点:认识频率与概率之间的联系与区别。 (三)教学过程: 一、引入新课: 试验1:扔钥匙,钥匙下落。 试验2:掷色子,数字几朝上。 讨论:下列事件能否发生? (1)“导体通电时,发热”---------------必然发生(2)“抛一石块,下 落”---------------必然发生 (3)“在常温下,铁熔化” -------------不可能发生 (4)“某人射击一次,中靶” -----可能发生也可能不发生(5)“掷一枚硬币,国徽朝上” -----可能发生也可能不发生(6)“在标准大气压下且温度低于0℃时,冰融化” ---不可能发生思考: 1、“结果”是否发生与“一定条件”有无直接关系? 2、按事件发生的结果,事件可以如何来分类? 二、新授: (一)随机事件: 定义1、在一定条件下必然要发生的事件叫必然事件。 定义2、在一定条件下不可能发生的事件叫不可能事件。 定义3、在一定条件下可能发生也可能不发生的事件叫随机事件。 例1、指出下列事件是必然事件,不可能事件,还是随机事件: (1)扬中明年1月1日刮西北风; x (2)当x是实数时,20 (3)手电筒的电池没电,灯泡发亮; (4)一个电影院某天的上座率超过50%。 (5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。讨论:各举一个你生活或学习中的必然事件、不可能事件、随机事件的例子 做一做:(投币实验)抛掷一枚硬币,观察它落地时哪一面朝上?(两人一组) 1.你的结果和其他同学一致吗?为什么会出现这样的情况? 2.重复试验10次并记录结果(正面朝上的次数)。(一人试验,一人记录)

概率论1.1概率论随机事件及其运算

《概率论》课后练习(一) 第一章§1-1随机事件与概率 班级 姓名 座号 成绩 一.填空题(每空1.6分,共计8分) 1.一份试卷上有6道题。某学生在解答时由于粗心随机地犯了4处不同的错误。现观察该学生做完试卷他答对的题数,则样本空间=Ω____________________。 2.十件产品中三件次品,每次从中取1件(不放回抽样)直到将三件次品都取出,记录抽取到的正品数;则样本空间=Ω_______________ 。 3. 一口袋中有许多红色、白色、蓝色的乒乓球,在其中任取出4 只,观察它们具有颜色的种数。则样本空间=Ω______________________。 4..设某人向靶子射击3次,用 i A 表示“第i 次射击击中靶子” )3,2,1(=i ,试用语言描述下列事件:(1)— ——321A A A (2) 21A A 二. 单项选择题(每小题2,共计8分) 1. 射击3次,事件i A 表示第i 次命中目标)3,2,1(=i ,则表示至少命中一次的是 ( ) )(A 321A A A )(B 321A A A -Ω )(D A A A A A A A A A 21321321 )(D 321A A A 2. 以A 表示事件“甲种产品畅销或乙种产品滞销”,则其对立事件A 表示( )。 )(A “甲种产品滞销,乙种产品畅销” )(B “甲、乙两种产品均畅销” )(C “甲种产品滞销” )(D “甲种产品滞销或乙种产品畅销” 3. 对于任意事件A 和B ,则与B B A =+不等价的是( )。 )(A B A ? )(B A B ? )(C φ=B A )(D φ=B A 4. 对于事件A ,C B ,,则下列等式不成立的是( )。 )(A B B A A -+=)( )(B ))(()(C A B A AB A ++=+ )(C 如果AB A =,则B A ? )(D )(C B A C B A +-=-- 三.下列说法是否正确?(必须说明理由 )(每小题2分,共计4分) (1)若Ω=+B A ,则B A ,互为对立事件。 (2) 若φ=ABC ,则C B A ,,两两互斥。

(完整版)北邮研究生概率论与随机过程2012-2013试题及答案

北京邮电大学2012——2013学年第1学期 《概率论与随机过程》期末考试试题答案 考试注意事项:学生必须将答题内容(包括填空题)做在试题答题纸上,做在试卷纸上一律无效。在答题纸上写上你的班号和选课单上的学号,班内序号! 一. 单项选择题和填空题:(每空3分,共30分) 1.设A 是定义在非空集合Ω上的集代数,则下面正确的是 .A (A )若A B ∈∈A,A ,则A B -∈A ; (B )若A A B ∈?A,,则B ∈A ; (C )若12n A n =∈?A,,,,则 1 n n A ∞=∈A ; (D )若12n A n =∈?A,,,,且123A A A ??? ,则 1 n n A ∞ =∈A . 2. 设(),ΩF 为一可测空间,P 为定义在其上的有限可加测度,则下面正确的是 .c (A )若A B ∈∈F,F ,则()()()P A B P A P B -=-; (B )若12n A n =∈?F,,,,,且123A A A ??? ,则1 li ( )()m n n n n P A A P ∞→∞ ==; (C )若A B C ∈∈∈F,F,F,,则()()()()P A B C P A P AB P A BC =++; (D )若12n A n =∈?F,,,,,且,i j A i j A =??=/,1 1 ( )()n n n n P P A A ∞ ∞===∑. 3.设f 为从概率空间(),P ΩF,到Borel 可测空间(),R B 上的实可测函数,表达式为100 0()k A k f kI ω==∑,其中1000 ,, i j n n i j A A A ==??=Ω/=,则fdP Ω=? ;

教案.1随机事件与概率(公开课)

第二十五章概率初步 25.1随机事件与概率 学习目标: 1.了解随机事件、必然事件、不可能事件的概念。 2.理解概率的概念和意义。 学习重点与难点:对概率定义的初步理解。 学习过程:自学指导1:看课本125页到127页问题3上面的内容。 自学检测(1): 1、在一定条件下,有些事件____________________, 这样的事件称为必然事件。 2、在一定条件下,有些事件____________________, 这样的事件称为不可能事件。___________和____________统称为确定事件。 3、在一定条件下,有些事件__________________________________的事件,称为随机事件。 4.必然事件发生的可能性是,不可能事件发生的可能性是________,随机事件发生的可能性. 学习过程:自学指导2:看课本127页到131页问题3上面的内容 自学检测(2): 1、对于一个随机事件A,我们把刻画其发生可能性大小的_________,称为随机事 件A发生的概率。 2、一般地,如果在一次试验中,有______种可能的结果,并且它们发生的可能 性都相等,事件A包含其中的种结果,那么事件A发生的概率 P(A)= 。 达标测试 1.(梅州)下列事件中,必然事件是() A.任意掷一枚均匀的硬币,正面朝上 B.黑暗中从一串不同的钥匙中随意摸出一把,用它打开了门 C.通常情况下,水往低处流 D.上学的路上一定能遇到同班同学 2.(台州市)下列事件是随机事件的是()

A .台州今年国庆节当天的最高气温是35℃ B .在一个装着白球和黑球的袋中摸球,摸出红球 C .抛掷一石头,石头终将落地 D .有一名运动员奔跑的速度是20米/秒 3.(甘肃省白银市)如图,小红和小丽在操场上做游戏,她们先在地上画出一个 圆圈,然后蒙上眼在一定距离外向圆圈内投小石子,则投一次就正好投到圆圈内是( ) A .必然事件(必然发生的事件) B .不可能事件(不可能发生的事件) C .确定事件(必然发生或不可能发生的事件) D .不确定事件(随机事件) 4.(湘潭) 将五张分别印有北京2008年奥运会吉祥物 “贝贝,晶晶,欢欢,迎 迎,妮妮”的卡片(卡片的形状、大小一样,质地相同)放入盒中,从中随机抽取一张卡片印有“妮妮”的概率为( ) A. 1 2 B. 13 C. 14 D. 15 5、(宜宾市)一个口袋中装有4个红球,3个绿球,2个黄球,每个球除颜色外其它都相同,搅均后随机地从中摸出一个球是绿球的概率是 ( ) A. 9 4 B. 92 C. 3 1 D. 3 2 6.(广东湛江市)从n 个苹果和3个雪梨中,任选1个,若选中苹果的概率是 12 ,则n 的值是( ) A . 6 B . 3 C . 2 D . 1 7.数学试卷的选择题都是四选一的单项选择题,小明对某道选择题完全不会做,只能靠猜测获得结果,则小明答对的概率是 8. ( 宁夏回族自治区)从-1,1,2三个数中任取一个,作为一次函数y=kx+3的

《概率论与随机过程》第1章习题

《概率论与随机过程》第一章习题 1.写出下列随机试验的样本空间。 (1)记录一个小班一次数学考试的平均分数(设以百分制记分)。 (2)同时掷三颗骰子,记录三颗骰子点数之和。 (3)10只产品中有3只是次品,每次从其中取一只(取出后不放回),直到将3只次品都取出,记录抽取的次数。 (4)生产产品直到得到10件正品,记录生产产品的总件数。 (5)一个小组有A,B,C,D,E5个人,要选正副小组长各一人(一个人不能兼二个职务),观察选举的结果。 (6)甲乙二人下棋一局,观察棋赛的结果。 (7)一口袋中有许多红色、白色、蓝色乒乓球,在其中任意取4只,观察它们具有哪几种颜色。 (8)对某工厂出厂的产品进行检查,合格的盖上“正品”,不合格的盖上“次品”,如连续查出二个次品就停止检查,或检查4个产品就停止检查,记录检查的结果。 (9)有A,B,C三只盒子,a,b,c三只球,将三只球装入三只盒子中,使每只盒子装一只球,观察装球的情况。 (10)测量一汽车通过给定点的速度。 (11)将一尺之棰折成三段,观察各段的长度。 2.设A,B,C为三事件,用A,B,C的运算关系表示下列事件。 (1)A发生,B与C不发生。 (2)A与B都发生,而C不发生。 (3)A,B,C都发生。 (4)A,B,C中至少有一个发生。 (5)A,B,C都不发生。 (6)A,B,C中至多于一个发生。 (7)A,B,C中至多于二个发生。 (8)A,B,C中至少有二个发生。

3. 设{ }10,2,1, =S ,{}4,3,2=A ,{}5,4,3=B ,{}7,6,5=C ,具体写出下列各等式 (1)B A 。 (2)B A ?。 (3)B A 。 (4) BC A 。 (5))(C B A ?。 4. 设{}20≤≤=x x S ,?????? ≤<=121x x A ,? ?????<≤=2341x x B ,具体写出下列各式。 (1)B A ?。 (2)B A ?。 (3)B A 。 (4) B A 。 5. 设A ,B ,C 是三事件,且41)()()(===C P B P A P ,0)()(==CB P AB P ,1)(=AC P ,求A ,B , C 至少有一个发生的概率。 6. 在1500个产品中有400个次品,1100个正品,任意取200个。 (1) 求恰有90个次品的概率。 (2) 至少有2个次品的概率。 7.(1)在房间里有500个人,问至少有一个人的生日是10月1日的概率是多少(设一年以365天计算) (2)在房间里有4个人,问至少有二个人的生日在同一个月的概率是多少 8. 一盒子中有4只次品晶体管,6只正品晶体管,随机地抽取一只测试,直到4只次品管子都找到为止。求 第4只次品管子在下列情况发现的概率。 (1) 在第5次测试发现。 (2) 在第10次测试发现。 9. 甲、乙位于二个城市,考察这二个城市六月份下雨的情况。以A ,B 分别表示甲,乙二城市出现雨天这一 事件。根据以往的气象记录已知4.0)()(==B P A P ,28.0)(=AB P ,求)/(B A P ,)/(A B P 及)(B A P ?。 10. 已知在10只晶体管中有2只次品,在其中取二次,每次随机地取一只,作不放回抽样,求下列事件的概 率。 (1) 二只都是正品。 (2) 二只都是次品。 (3) 一只是正品,一只是次品。 (4) 第二次取出的是次品。 11. 某人忘记了电话号码的最后一个数字,因而随意地拨号,求他拨号不超过三次而接通所需的电话的概率

随机事件的频率与概率

随机事件的频率与概率 1.随机事件的频率 随机事件的频数与频率:在相同的条件下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例n n A f A n )(为事件A 出现的频率. 2.随机事件的概率 一般来说,随机事件A 在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A 发生的频率会逐渐稳定在区间[0,1]中的某个常数上,这个常数可以用来度量事件A 发生的可能性的大小,称为事件A 的概率,记作P(A). 3.频率与概率的区别和联系 (1) 频率本身是随机的,在试验前不能确定.做同样次数的重复试验得到事件的频率会不同. (2) 概率是一个确定的数,与每次试验无关.是用来度量事件发生可能性大小的量. (3) 频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率. 例1.某射击运动员在同一条件下进行练习,结果如下表所示: (1)计算表中击中10环的各个频率; (2)这名运动员射击一次,击中10环的概率是多少? 分析:(1)分清m ,n 的值,用公式n m 计算; (2)观察各频率是否与某一常数接近,且在它附近摆动. 解:(1)

(2)从上表可以看出,这名运动员击中10环的频率在0.9附近波动,且射击次数越多,频率越接近0.9,故可以估计,这名运动员射击一次,击中10环的概率约为0.9. 点评:在相同条件下,随着试验次数的增加,随机事件发生的频率会在某个常数附近摆动并趋于稳定,我们就可以用这个常数来刻画该随机事件发生的可能性的大小,而将频率作为其近似值.从中要进一步体会频率与概率的定义及它们的区别与联系.如果随机事件A 在n 次试验中发生了m 次,当试验的次数n 很大时,我们可以将事件A 发生的频率 n m 作为事件A 发生的概率的近似值,即P(A)≈n m . 例2.为了估计水库中的鱼的尾数,可以使用以下方法: 先从水库中捕出一定数量的鱼,例如2000尾,给每尾鱼作上记号,不影响其存活,然后放回水库.经过适当的时间,让其和水库中其余的鱼充分混合,再从水库中捕出一定数量的鱼,例如500尾,查看其中有记号的鱼,设有40尾,试根据上述数据,估计水库内鱼的尾数. 分析:用样本估计总体. 解:设水库中鱼的尾数为n,n 是未知的,现在要估计n 的值,将n 的估计值 记作n ?. 假定每尾鱼被捕的可能性是相等的,从库中任捕一尾鱼,设事件A 为“带有记号的鱼”,易知P(A)=n 2000. 第二次从水库中捕出500尾鱼,其中带有记号的鱼有40尾,即事件A 发生的频数n A =40,由概率的统计定义知50040)(≈ A P . 所以500 402000≈n .

高中数学随机事件的频率与概率

《随机事件的频率与概率》教案 一、[教学目标] 1、知识与技能:理解随机事件在大量重复试验的情况下,它的发生呈现的规律性;掌握概率的统计定义及概率的性质。 2、过程与方法目标:通过创设问题情境,引发学生思考、探究,在这个过程中体会学习条件概率的必要性,探寻解决问题的方法,培养学生分析问题、解决问题的能力。 3、情感态度价值观:在问题的解决过程中,学会探究、学会学习;体会数学的应用价值,发展学生学数学用数学的意识。 二、[教学重点] 随机事件的概念及其概率. 三、[教学难点] 随机事件的概念及其概率. 四、[教学方法] 探究讨论法。 五、[教学过程] (一)新课引入 1.观察下列日常生活中的事件发生与否,各有什么特点?(1)金属丝通电时,发热;(2)抛一块石头,下落;(3)在常温下,焊锡熔化;(4)在标准大气压下且温度低于00C时,冰融化;(5)掷一枚硬币,出现正面;(6)某人射击一次,中靶. 分析结果: (1)(2)是必然要发生的,(3)(4)不可能发生,(5)(6)可能发生也可能不发生 2.(1)“如果a>b,那么a-b>0”; (2)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(3)“某电话机在1分钟内收到2次呼叫”; (4)“没有水份,种子能发芽”;

分析结果:(略) (二)探究新课 1.事件的定义: 随机事件:在一定条件下可能发生也可能不发生的事件; 必然事件:在一定条件下必然发生的事件; 不可能事件:在一定条件下不可能发生的事件. 说明:三种事件都是在“一定条件下”发生的,当条件改变时,事件的性质也可以发生变化. 2.随机事件的概率: (1)实验:随机事件在一次试验中是否发生是不确定,但在大量重复的试验情况下,它的发生呈现出一定的规律性. 实验一:抛掷硬币试验结果表: m n) 抛掷次数(n)正面朝上次数(m)频率(/ 2048 1061 0.5181 4040 2048 0.5069 12000 6019 0.5016 24000 12012 0.5005 30000 14984 0.4996 72088 36124 0.5011 当抛掷次数很多时,出现正面的频率值是稳定的,接近于常数0.5,并在它附近摆动. 实验二:某批乒乓球产品质量检查结果表: 抽取球数n50 100 200 500 1000 2000 优等品数m45 92 194 470 954 1902 m n0.9 0.92 0.97 0.94 0.954 0.951 频率/ 当抽查的球数很多时,抽到优等品的频率接近于常数0.95,并在它附近摆动

随机事件的概率教案(绝对经典)

§12.1 随机事件的概率 会这样考 1.考查随机事件的概率,以选择或填空题形式出现;2.考查互斥事件、对立事件的概率;3.和统计知识相结合,考查概率与统计的综合应用. 1.随机事件和确定事件 (1)在条件S 下,一定会发生的事件,叫作相对于条件S 的必然事件. (2)在条件S 下,一定不会发生的事件,叫作相对于条件S 的不可能事件. (3)必然事件与不可能事件统称为确定事件. (4)在条件S 下可能发生也可能不发生的事件,叫作相对于条件S 的随机事件. (5)确定事件和随机事件统称为事件,一般用大写字母A ,B ,C …表示. 2.频率与概率 (1)在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数,称事件A 出现的比例f n (A )=n A n 为事件A 出现的频率. (2)对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率,简称为A 的概率. 3. 4.概率的几个基本性质 (1)概率的取值范围:0≤P (A )≤1. (2)必然事件的概率P (E )=1. (3)不可能事件的概率P (F )=0. (4)互斥事件概率的加法公式 ①如果事件A 与事件B 互斥,则P (A +B )=P (A )+P (B ).

②若事件B 与事件A 互为对立事件,则P (A )=1-P (B ). ③事件A 的对立事件一般记为A , 则P (A )=1-P (A ) [难点正本 疑点清源] 1.频率和概率 (1)频率与概率有本质的区别,不可混为一谈.频率随着试验次数的改变而变化,概率却是一个常数,它是频率的科学抽象.当试验次数越来越多时,频率向概率靠近,只要次 数足够多,所得频率就可以近似地当作随机事件的概率. (2)概率从数量上反映了一个事件发生的可能性的大小;概率的定义实际上也是求一个事件的概率的基本方法. 2.互斥事件与对立事件 互斥事件与对立事件都是两个事件的关系,互斥事件是不可能同时发生的两个事件,而对立事件除要求这两个事件不同时发生外,还要求二者之一必须有一个发生,因此,对立事件是互斥事件的特殊情况,而互斥事件未必是对立事件,即“互斥”是“对立”的必要但不充分条件,而“对立”则是“互斥”的充分但不必要条件. 1.给出下列三个命题,其中正确命题有________个. ①有一大批产品,已知次品率为10%,从中任取100件,必有10件是次品;②做7次抛硬币的试验, 结果3次出现正面,因此正面出现的概率是3 7 ;③随机事件发生的频率就是这个随机事件发生的概率. 答案 0解析 ①错,不一定是10件次品;②错,3 7 是频率而非概率;③错,频率不等于概率,这是两 个不同的概念. 2.在n 次重复进行的试验中,事件A 发生的频率为m n ,当n 很大时,P (A )与m n 的关系是( ) A .P (A )≈m n B .P (A )m n D .P (A )=m n 答案 A 解析 在n 次重复进行的试验中,试验次数很大时,频率可近似当作随机事件的概率. 3.从装有5个红球和3个白球的口袋内任取3个球,那么互斥而不对立的事件是( ) A .至少有一个红球与都是红球 B .至少有一个红球与都是白球 C .至少有一个红球与至少有一个白球 D .恰有一个红球与恰有两个红球 答案 D 4.某射手的一次射击中,射中10环、9环、8环的概率分别为0.2、0.3、0.1,则此射手在一次射击中不超过8环的概率为________. 答案 0.5. 题型一 事件的关系及运算 例1 判断下列给出的每对事件,是互斥事件还是对立事件,并说明理由.从40张扑克牌(红桃、黑桃、 方块、梅花点数从1~10各10张)中,任取一张. (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”. 解 (1)是互斥事件,不是对立事件. (2)既是互斥事件,又是对立事件.

05-06概率论与随机过程试题(A卷)

05-06概率论与随机过程试题(A ) 一、选择题 1.设0

2. 设随机变量X 的密度函数为, 0 1, ()0, .ax x f x <

相关文档
最新文档