ITC等温量热滴定数据疑难解答

等温滴定量热法

等温滴定量热法(ITC)的简易操作流程: ①样品的准备,包括滴定物与被滴定物(如DNA滴定蛋白质)。 a.实验前的蛋白质样品需用缓冲溶液透析(注意透析袋的正确使 用),透析时间一般为24小时,buffer体积为1L,且中途注意更换buffer,其目的是为了减少由于溶液组成不同而产生的滴 定误差; b.样品的浓度要求,一般要求的浓度为微摩尔级,且滴定物(DNA) 的浓度是被滴定物(蛋白质)的十倍左右为宜,且实验前需要再 次确认所配样品的浓度是否符合要求; c.在进行滴定实验前,用于空白对照的缓冲液,蛋白样品以及 DNA均需抽真空除气泡(15Mins左右为宜)。 ②仪器的清洗。 a.在进行真空除气泡前,除气泡用容器均需用超纯水清洗三次左 右,且清洗完毕后擦干内壁,防止由于残留缓冲液的稀释而导致样品浓度的改变; b.样品池(sample cell)的清洗,用超纯水清洗15次左右(每次2ml 左右),清洗完毕后,一定要将残留的超纯水吸干净; c.注射器(syringe)的清洗,用超纯水清洗3次以上(专用注射器清 洗,此时无需点击open,close和purge选项),清洗完毕后将注射器的头部擦干,之后清洗装DNA的小试管,步骤同注射器的 清洗。 ③设置空白对照试验(DNA滴定缓冲液),将缓冲液置于小试管中(为 了防止空气的进入,一般添加样品的量大于其实际所需的量),打开控制界面,点击open之后,用手动注射器缓慢拉动活塞,此时注射器管中的液面上升,然后点击close, 注射器会自动将小试管中的缓冲液吸入注射器中,当缓冲液完全吸入注射器之后点击pump键,除去气泡;在清洗样品池的同时就设置所需的实验温度(套管温度,一般较反应温度稍低),并输入样品的实际浓度以及实验数据文件名和储存路径等一系列参数(如注射时间,注射次数,注射间隔时间)。

电位法测定氯和碘

实验5 电位滴定法测定氯、碘离子浓度及AgI和AgCl的K sp 一、实验目的 1.掌握电位滴定法测量离子浓度的一般原理; 2.学会用电位滴定法测定难溶盐的溶度积常数。 二、方法原理 当银丝电极插入含有Ag+的溶液时,其电极反应的能斯特响应可表示为: 如果与一参比电极组成电池可表示为: 进一步简化为: 式中包括和r(Ag+)常数项。银电极不仅可指示溶液中Ag+的浓度变化,而且也能指示与Ag+反应的阴离子的浓度变化。例如,卤素离子。 本实验利用卤素阴离子(I-、Cl-)与银离子生成沉淀的溶度积K sp非常小,在化学计量点附近发生电位突跃,从而通过测量电池电动势的变化来确定滴定终点。在终点时: 其中X-为Cl-、I-,代入终点时的滴定电池方程: 用该式即可计算出被滴定物质难溶盐的K sp。而式中K′和S值可利用第二终点之后过量的[Ag+]与E(电池)关系作图求得,由直线的截距确定K′,斜率确定S。 通常的电位滴定使用甘汞或AgCl/Ag参比电极,由于它们的盐桥中含有氯离子会渗漏于溶液中,不适合在这个实验中使用,故可选用甘汞双液接硝酸盐盐桥,或硫酸亚汞电极。 三、仪器设备与试剂材料 1.pH/mV计,电磁搅拌器。 2.银电极,双液接饱和甘汞电极。

3.硝酸银标准溶液,0.100mol?L-1:溶解8.5g AgNO3于500mL去离子水中,将溶液转入棕色试剂瓶中置暗处保存。准确称取1.461g基准NaCl,置于小烧杯中,用去离子水溶解后转入250mL容量瓶中,加水稀释至刻度,摇匀。准确移取25.00mL NaCl标准溶液于锥形瓶中,加25mL水,加1mL15% K2CrO4,在不断摇动下,用AgNO3溶液滴定至呈现砖红色即为终点。根据NaCl标准溶液浓度和滴定中所消耗的AgNO3体积(mL),计算AgNO3的浓度。 4.Ba(NO3)2(固体)。 5.硝酸,6mol?L-1。 6.试样溶液(其中含Cl-和I-分别都为0.05mol?L-1左右)。 四、实验步骤 1.按图示安装仪器。 电位滴定装置 1-银电极;2-双盐桥饱和甘汞电极;3-滴定管;4-滴定池(100mL烧杯);5-搅拌子;6-磁力搅拌器。 2.用移液管取20.00mL的Cl-、I-混合试样溶液于100mL烧杯中,再加约30mL水,加几滴6mol?L-1硝酸和约0.5g Ba(NO3)2固体。将此烧杯放在磁力搅拌器上,放入搅拌磁子,然后将清洗后的银电极和参比电极插入溶液。滴定管应装在烧杯上方适当位置,便于滴定操作。 3.开动搅拌器,溶液应稳定而缓慢地转动。开始每次加入滴定剂1.0mL,待电位稳定后,读取其值和相应滴定剂体积记录在表格里。随着电位差的增大,减少每次加入滴定剂的量。当电位差值变化迅速,即接近滴定终点时,每次加入0.1mL滴定剂。第一终点过后,电位读数变化变缓,就增大每次加入滴定剂量,接近第二终点时,按前述操作进行。 4.重复测定两次。每次的电极、烧杯及搅拌磁子都要清洗干净。

等温滴定量热法应用

Example 2:Isothermal Titration Calorimetry for AIDS Drug Development 艾滋病药物的等温滴定量热法 人们付出了大量努力,试图利用药物帮助艾滋病受害者减少艾滋病流行所造成病毒感染。热力学通过热力学解释实验热-滴定数据为此作出了贡献。如图2-1所示,在艾滋病毒感染人体细胞后,产生一系列艾滋病毒的复制步骤。受感染的细胞表达蛋白和蛋白酶;蛋白酶的作用在于蛋白酶切割聚蛋白,裂解的蛋白重新组装得到一个新的艾滋病病毒。 图2-1 HIV蛋白酶在病毒复制过程中合成新的病毒 为了防止形成新的病毒,可通过引入药物使使HIV蛋白酶失活。这种药物叫做蛋白酶抑制剂,可阻止多聚蛋白的分裂,如图2 – 2所示。 图2-2通过一直HIV蛋白酶从而组织新病毒的生成 蛋白酶和抑制剂的关系可以用传统的锁钥机制描述,如图2 – 3所示。抑制剂必须有正确的形状才能进入艾滋病毒蛋白酶的活性位点,其中,抑制剂是“钥匙”,必须保证适合蛋白酶这把“锁”。

然而,因为突变,艾滋病毒蛋白酶的活性位点可以以不同的形式存在,如图2 - 3所示;原株的活性位(锁)用“十”字表示,突变株活性位点(锁)用六边形表示。我们需要寻找一种同时适合这两种形状的“锁”的药物(钥匙),不仅可以和原株蛋白酶的活性位点结合也与突变株蛋白酶的活性位点结合。热力学可以帮助识别最佳候选药物。 图2-3传统“锁-匙”机制 图2-4列出两种候选药物1和2。药物2比1具有更好的适应性,同药物1相比的,它具有不对称的功能;甲苯基团的称性比叔丁基弱。此外,药物2更灵活,因为它有两个可旋转的键,而药物1只有一个。不对称和灵活性为药物提供了额外的构象,可以适应一个艾滋病毒突变位点。 图2-4两种候选药物1和2 为定量衡量药物的效果,Ohtaka和Freire利用等温滴定量热(ITC)的热力学分析数据得到所需结果。 用A表示艾滋病毒蛋白酶,B表示抑制剂(药品)。我们定义一个解离常数Kd和它的倒数,缔合常数Ka,下标d表示分离,a表示缔合。 其中,[]代表在水溶液中物质的浓度。对于好的药物,我们希望Kd很小或者Ka很大。在A + B ----AB的反应中,A(蛋白酶)和B(抑制剂)的结合由标准焓和标准熵决定。上o标表示标准状态。

DO测定(碘量法)

碘量法测定溶解氧 碘量法(国标GB/T 7489-87)测定水中溶解氧(DO) 一、原理 水样中加入硫酸锰和碱性碘化钾,水中溶解氧将低价锰氧化成高价锰,生成四价锰的氢氧化物棕色沉淀。加酸后,氢氧化物沉淀溶解,并与碘离子反应而释放出游离碘。以淀粉为指示剂,用硫代硫酸钠标准溶液滴定释放出的碘,据滴定溶液消耗量计算溶解氧含量。 二、实验用品 1、仪器:溶解氧瓶(250ml)、锥形瓶(250ml)、碱式滴定管(25ml)、移液管(50ml)、吸耳球、1000ml容量瓶、100ml容量瓶、棕色容量瓶、电子天平 2、药品:硫酸锰、碘化钾、氢氧化钠、浓硫酸、淀粉、重铬酸钾、硫代硫酸钠 三、试剂的配置 1、硫酸锰溶液:称取48g分析纯硫酸锰(MnSO 4?H 2 O)溶于蒸馏水,过滤后 用水稀释至100mL于透明玻璃瓶中保存。此溶液加至酸化过的碘化钾溶液中,遇淀粉不得产生蓝色。 2、碱性碘化钾溶液:称取50g分析纯氢氧化钠溶解于30—40mL蒸馏水中;另称取15g碘化钾溶于20mL蒸馏水中;待氢氧化钠溶液冷却后,将上述两溶液合并,混匀,加蒸馏水稀释至100mL。如有沉淀(如氢氧化钠溶液表面吸收二氧化碳生成碳酸钠),则放置过夜后,倾出上层清液,贮于棕色瓶中,用橡皮塞塞紧,避光保存。此溶液酸化后,遇淀粉应不呈蓝色。 3、1+5硫酸溶液。 4、1%(m/V)淀粉溶液:称取1g可溶性淀粉,用少量水调成糊状,再用刚煮沸的水稀释至100mL。现用现配,或者冷却后加入0.1g水杨酸或0.4g氯化锌防腐。 5、0.0250mol/L(1/6K 2Cr 2 O 7 )重铬酸钾标准溶液:称取于105—110℃烘干 2h,并冷却的分析纯重铬酸钾1.2258g,溶于水,移入1000mL容量瓶中,用水稀释至标线,摇匀。 6、硫代硫酸钠标准溶液:称取6.2g分析纯硫代硫酸钠(Na 2S 2 O 3 ?5H 2 O)溶于

碘量法

碘量法 碘量法是氧化还原滴定法中,应用比较广泛的一种方法。这是因为电对I2-I-的标准电位既不高,也不低,碘可做为氧化剂而被中强的还原剂(如Sn2+,H2S)等所还原;碘离子也可做为还原剂而被中强的或强的氧化剂(如H2SO4,IO3-,Cr2O72-,MnO4-等)所氧化。 方法概要 1. 原理:碘量法是利用的I2氧化性和 I-的还原性为基础的一种氧化还原方法. 基本半反应:I2 + 2e = 2 I- I2 的 S 小:20 ℃为 1.33′10-3mol/L 而I2 (水合) + I-=I3- (配位离子) K = 710 过量I-存在时半反应 滴定方式 (1)直接滴定法——碘滴定法 I2 是较弱的氧化剂,凡是E0’( E0 ) < 的物质都可用标准溶液直接滴定: S2-、S2O32-、SO32-、As2O3、Vc等 滴定条件:弱酸(HAc ,pH =5 )弱碱(Na2CO3,pH =8)性溶液中进行。 若强酸中: 4I- + O2(空气中) + 4H+= 2I2 + H2O 若强碱中: 3I2 + 6OH-=IO3-+ 5I- + 3H2O (2)间接碘量法——滴定碘法 I-是中等强度的还原剂。主要用来测定: E0’( E0 ) <的氧化态物质:CrO42-、Cr2O72-、H2O2、 KMnO4、IO3-、Cu2+、NO3-、NO2- 例:Cr2O72- + 6I- +14H+ +6e = 2Cr3+ +3I2 +7H2O I2 + 2 S2O32-= 2 I- + S4O62- 在一定条件下,用I-还原氧化性物质,然后用 Na2S2O3标准溶液滴定析出的碘。 (此法也可用来测定还原性物质和能与 CrO42- 定量生成沉淀的离子)间接碘量法的反应条件和滴定条件: ①酸度的影响—— I2 与Na2S2O3应在中性、弱酸性溶液中进行反应。 若在碱性溶液中:S2O32-+ 4I2 + 10 OH-= 2SO42-+ 8I- + 5H2O 3I2 + 6OH-=IO3-+ 5I- + 3H2O

葡萄糖含量测定——碘量法

实验十三 葡萄糖含量的测定——碘量法 一、实验目的 1、 学会间接碘量法测定葡萄糖含量的方法原理,进一步掌握返滴定法技能。 2、 进一步熟悉酸滴定管的操作,掌握有色溶液滴定时体积的正确读法。 二、实验原理 I 2与NaOH 作用可生成次碘酸钠(NaIO),次碘酸钠可将葡萄糖(C 6H 12O 6)分子中的醛基定量地氧化为羧基。未与葡萄糖作用的次碘酸钠在碱性溶液中歧化生成NaI 和NaIO 3,当酸化时NaIO 3又恢复成I 2析出,用Na 2S 2O 3标准溶液滴定析出的I 2,从而可计算出葡萄糖的含量。涉及到的反应如下: 1、I 2与NaOH 作用: I 2+2NaOH=NaIO+NaI+H 2O 2、C 6H 12O 6和NaIO 定量作用: C 6H 12O 6+ NaIO=C 6H 12O 7+NaI 3、总反应式: I 2+C 6H 12O 6+2NaOH=C 6H 12O 7+2NaI+H 2O 4、C 6H 12O 6作用完后,过量的NaIO 发生歧化反应: 3NaIO=NaIO 3+2NaI 5、在酸性条件下NaIO 3和NaI 作用: NaIO 3+5NaI+6HCl=3I 2+6NaCl+3H 2O 6、析出过量的碘用Na 2S 2O 3标准溶液滴定: I 2+2Na 2S 2O 3=Na 2S 4O 6+2NaI 实验还涉及到Na 2S 2O 3和 I 2溶液的标定 1、Na 2S 2O 3的标定 Cr 2O 72-+6I -+14H +=2Cr 3++3I 2+7H 2O I 2+2S 2O 32-=S 4O 62-+2I - Cr 2O 72-~3I 2~6S 2O 32- 32232272232200.256)(6O S Na O S Na O Cr K O S Na V c V cV c ??=?= 2、碘的标定 I 2+2S 2O 32-=S 4O 62-+2I - V V c 322322O S Na O S Na c 2/1= 3、葡萄糖注射液中葡萄糖的含量 计算式:%100506126?=L g O H C W 标示量葡萄糖含量 三、实验仪器及材料 1、 仪器 称量瓶、电子台秤、分析天平、容量瓶(250ml )、移液管(25ml )、量筒(10ml )、锥形瓶(25ml ,3个)、酸式滴定管(50ml )、烧杯(50ml )、玻璃棒、碘量瓶 2、 药品 K 2Cr 2O 7(S )、盐酸(6mol/L )、KI 溶液(100g/L)、淀粉(5g/L)、Na 2S 2O 3溶液(0.1mol/L )、I 2溶液(0.05mol/L )、NaOH 溶液(1mol/L )、葡萄糖注射液(5%) 四、 实验步骤 1、 0.1mol/L Na 2S 2O 3标准溶液的标定 ()()()()())(100000.25100021101612632232222-??????????-?L g O H C M O S Na v O S Na c I v I c 葡萄糖含量=

水中臭氧浓度的测定—碘量法

水中臭氧浓度的测定—碘量法 一、测定原理 碘量法是最常用的臭氧测定方法,其原理为强氧化剂臭氧与碘化钾水溶液反应生成游离碘,臭氧还原为氧气,游离碘显色,利用硫代硫酸钠标准溶液滴定,游离碘变为碘化钠,反应终点为溶液完全褪色。反应式如下: O3 + 2KI + H2O O2 + I2 (有色)+ 2KOH I2 + 2Na2S2O32NaI(无色)+ Na2S4O6 O3与Na2S2O3的比例关系:1mol O3:2mol Na2S2O3, 二、试剂 1. 20%KI溶液:溶解20g碘化钾(分析纯)于约80ml煮沸后冷却的蒸馏水中, 然后定容至100ml,用棕色瓶保存于冰箱中,至少储存一天后 再用; 2.(1+5)硫酸溶液:量取浓硫酸100ml,边加边搅匀倒入盛有500ml蒸馏水的 烧杯中; 3.0.01mo1/L Na2S2O3标液:称取0.248g硫代硫酸钠(Na2S2O3.5H2O;分析纯) 用新煮沸冷却的蒸馏水溶解后定溶于100 ml的容 量瓶中; 4. 1%淀粉指示液:称取1g可溶性淀粉,用冷水调成悬浮浆,然后加入约80ml 煮沸水中,边加边搅拌,煮沸几分钟后,待冷却后定容到 100ml容量瓶中,放置沉淀过夜,取上清液使用。 三、仪器 碘量瓶(或具塞三角瓶)、量筒、滴定管、容量瓶、铁架台 四、测定步骤 1.加20%碘化钾溶液20 ml于500 ml碘量瓶(或具塞三角瓶)中; 2.吸取200ml待测样本加于装有20%碘化钾溶液的500 ml碘量瓶中,加 (1+5)硫酸溶液5 ml,瓶口加塞。混匀后避光静置5分钟; 3.用0.01 mol/L硫代硫酸钠标准溶液滴定至溶液呈淡黄色时,加1%淀粉指 示剂几滴(约1ml),继续滴定至蓝色恰好消失为止,记录消耗的硫代硫 酸钠标准溶液的体积。

等温滴定量热法的实验操作

Video Article Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity Michael R. Duff,1, Jordan Grubbs1, Elizabeth E. Howell1 1Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee Correspondence to: Elizabeth E. Howell at lzh@https://www.360docs.net/doc/116510015.html, URL: https://www.360docs.net/doc/116510015.html,/video/2796 DOI: doi:10.3791/2796 Keywords: Molecular Biology, Issue 55, Isothermal titration calorimetry, thermodynamics, binding affinity, enthalpy, entropy, free energy Date Published: 9/7/2011 Citation: Duff,, M.R., Grubbs, J., Howell, E.E. Isothermal Titration Calorimetry for Measuring Macromolecule-Ligand Affinity. J. Vis. Exp. (55), e2796, doi:10.3791/2796 (2011). Abstract Isothermal titration calorimetry (ITC) is a useful tool for understanding the complete thermodynamic picture of a binding reaction. In biological sciences, macromolecular interactions are essential in understanding the machinery of the cell. Experimental conditions, such as buffer and temperature, can be tailored to the particular binding system being studied. However, careful planning is needed since certain ligand and macromolecule concentration ranges are necessary to obtain useful data. Concentrations of the macromolecule and ligand need to be accurately determined for reliable results. Care also needs to be taken when preparing the samples as impurities can significantly affect the experiment. When ITC experiments, along with controls, are performed properly, useful binding information, such as the stoichiometry, affinity and enthalpy, are obtained. By running additional experiments under different buffer or temperature conditions, more detailed information can be obtained about the system. A protocol for the basic setup of an ITC experiment is given. Video Link The video component of this article can be found at https://www.360docs.net/doc/116510015.html,/video/2796/ Protocol Isothermal titration calorimetry (ITC) is a well established technique that can determine all the thermodynamic parameters (affinity, enthalpy and stoichiometry) of a binding interaction in one experiment.1 ITC works by titrating one reactant into a second reactant under isothermal conditions. The signal measured is the heat released or absorbed upon interaction (binding) of the two reactants. A series of injections are performed and the heat signal will approach zero as the limiting reactant becomes saturated. Fitting of the isotherm gives the thermodynamic parameters. Several reviews are available that describe the instrumentation as well as the math of data collection and analysis. 2,3 While other calorimeters are available (most notably the ITC200 with small volumes), here we describe a general protocol for the VP-ITC manufactured by MicroCal (now part of GE Healthcare). 1. Preparing Samples 1.In order to prepare the macromolecule and ligand in buffer, some potential issues need to be addressed. Accurate fits require proper concentrations of the macromolecule, the species that typically goes in the sample cell of the ITC, and ligand, the species in the injection syringe. Because some proteins aggregate at the high concentrations needed for the species in the injection syringe, most often the protein is loaded into the sample cell. The optimal macromolecule concentration is determined from "c", the product of the predicted affinity of the system, which can be estimated using orthogonal methods prior to using ITC, and the total macromolecule concentration, where c = K a*[M]. Optimal values of c range from 10-1000, 1 though it is possible to get accurate data for weak-binding systems under specific experimental conditions with c-values below the lower limit.4 Thus, the macromolecule concentration must be determined with this range of c values in mind (i.e., for a K a of 106 M-1, macromolecule concentrations of 10 to 1000 μM should be used). Prior knowledge of the binding affinity of the system can help minimize the protein used for ITC through better design of the ITC experiment. The concentration of the ligand should be large enough (7-25 fold more concentrated than the K d for the weakest ligand binding site) so that saturation occurs within the first third to half of the titration. Accurate fitting of the data also requires saturation of the signal. For systems with higher binding affinity, a lower ligand concentration should be used to avoid saturation too early in the titration, which will give inaccurate fits. Once the heat of dilution control (i.e. titration of ligand into buffer) has been subtracted from the titration, the enthalpy at saturation should approach zero. 2.Because small molecule impurities can give rise to artifactual signals in the ITC measurements, it is best, if possible, that the macromolecule and ligand be exhaustively dialyzed against buffer. Alternatively, column chromatography, desalting spin columns, or buffer exchange centrifugal filters (for example, Centricons) can be used to change the buffer of the macromolecule. If the ligand is a small molecule, it can be prepared using the dialysis buffer after the macromolecule has been dialyzed or by dialyzing against dialysis membranes with cutoffs suitable for small molecules (i.e. 100-500 Da for a Spectra/Por Float-A-Lyzer). Differences in the buffer composition between the ligand and macromolecule solutions can lead to signal artifacts from the heat of the dilution of impurities in the samples. After preparation, check to make sure the pH of the buffer, macromolecule and ligand match (± 0.05 pH units) as artifacts in the enthalpy can arise due to buffer protonation effects.5 Make sure to prepare enough of each species. For triplicate experiments and a dilution control, the amount of material needed will depend upon the ITC used. But, for most ITC instruments that have approximate 2 ml volume sample cells, at least 6-7 ml of

碘量法

水中臭氧浓度的测定—碘量法 一、测定原理碘量法是最常用的臭氧测定方法,其原理为强氧化剂臭氧与碘化钾水溶液反应生成游离碘,臭氧还原为氧气,游离碘显色,利用硫代硫酸钠标准溶液滴定,游离碘变为碘化钠,反应终点为溶液完全褪色。 反应式如下: O3 + 2KI + H2O O2 + I2 (有色)+ 2KOH I2 + 2Na2S2O3 2NaI(无色)+ Na2S4O6 O3与Na2S2O3的比例关系:1mol O3:2mol Na2S2O3, 二、试剂 1. 20%KI溶液:溶解20g碘化钾(分析纯)于约80ml煮沸后冷却的蒸馏水中,然后定容至100ml,用棕色瓶保存于冰箱中,至少储存一天后再用; 2.(1+5)硫酸溶液:量取浓硫酸100ml,边加边搅匀倒入盛有500ml蒸馏水的烧杯中;3.0.01mo1/L Na2S2O3标液:称取0.248g硫代硫酸钠(Na2S2O 3.5H2O;分析纯) 用新煮沸冷却的蒸馏水溶解后定溶于100 ml的容量瓶中; 4. 1%淀粉指示液:称取1g可溶性淀粉,用冷水调成悬浮浆,然后加入约80ml 煮沸水中,边加边搅拌,煮沸几分钟后,待冷却后定容到100ml容量瓶中,放置沉淀过夜,取上清液使用。 三.仪器碘量瓶(或具塞三角瓶)、量筒、滴定管、容量瓶、铁架台 四、测定步骤 1. 加20%碘化钾溶液20 ml于500 ml碘量瓶(或具塞三角瓶)中; 2. 吸取200ml待测样本加于装有20%碘化钾溶液的500 ml碘量瓶中,加(1+5)硫酸溶液5 ml,瓶口加塞。混匀后避光静置5分钟; 3. 用0.01 mol/L硫代硫酸钠标准溶液滴定至溶液呈淡黄色时,加1%淀粉指示剂几滴(约1ml),继续滴定至蓝色恰好消失为止,记录消耗的硫代硫酸钠标准溶液的体积。 五、数据计算则臭氧浓度的计算是为: C(O3)(mg/L)=ANa×B×C(O3) 臭氧浓度,mg/L; ANa—硫代硫酸钠标液用量,ml; B—硫代硫酸钠标液浓度,mol/L; V0—臭氧化气体取样体积,ml。 六、注意事项 1. 配置溶液时用煮沸后冷却的蒸馏水一方面是为了灭菌(嗜硫菌),另一方面是为了去除溶液中的O2、CO2,避免副反应发生。 2. 准确测定时需对硫代硫酸钠标液进行标定。 3. 淀粉指示液应在接近终点时加入,避免碘与淀粉指示剂络合太深,导致终点颜色变化时Na2S2O3滴定液加入的量偏高。 4. 滴定到终点后有回蓝现象,是因为发生4I-+4H++O2=2I2+2H2O,所以终点的判断应为褪色后30秒不变蓝即可读取Na2S2O3滴定液消耗的体积。

结构化学实验-itc等温量热滴定

一、实验目的: 1.了解MicroCal iTC200等温滴定量热仪在测量蛋白质相互作用中的应用 2.了解仪器基本工作原理,学习蛋白质相互作用的测定步骤和仪器操作 3.简要分析实验结果。 二、实验原理: 在研究两种或两种以上的蛋白质的功能时,相关蛋白质之间常常存在相互作用(常常是氢键或范德华力),如果两蛋白可以彼此结合,则结合的过程中会放出一定的热量。所以,通过测定蛋白质相互作用时放出热量的大小,可以得到蛋白相互作用时的结合常数KD、化学计量比N和焓变ΔH,从而由热力学公式ΔG = RT lnKD和ΔG = ΔH -TΔS可以进一步得到反应的自由能变化。

在恒温下,注射器中的“配体”溶液滴定到包含“高分子”溶液的池中。当配体注射到池中,两种物质相互作用,释放或吸收的热量与结合量成正比。当池中的高分子被配体饱和时,热量信号减弱,直到只观察到稀释的背景热量。 MicroCal iTC200等温滴定量热仪可以用来定量测定生物分子间的相互作用,例如蛋白质-蛋白质相互作用(包括抗原-抗体相互作用和分子伴侣-底物相互作用);蛋白质折叠/去折叠;蛋白质-小分子相互作用以及酶-抑制剂相互作用;酶促反应动力学;药物-DNA/RNA相互作用;RNA折叠;蛋白质-核酸相互作用;核酸-小分子相互作用;核酸-核酸相互作用;生物分子-细胞相互作用等。从而获得亲和力以及相关热力学数据。 通过滴定操作和热量的测量,量热仪可以给出热量-摩尔比曲线: 图像中曲线的突跃中点对应的化学计量比就是两种蛋白质相互作用的化学计量数N,突跃中点处曲线的斜率就是两种蛋白相互作用的结合常数KD。 决定曲线形状的主要参数是C值: C = 滴定池中的蛋白浓度/ K D = [M]t/ KD × N

淀粉指示剂在碘量法中指示滴定终点的原理

1、淀粉指示剂在直接碘法和碘量法中指示滴定终点的原理 前面那个是滴下去,滴定终点后,溶液变蓝色、后面那个是本来蓝色,终点时,I2被反应完,淀粉的蓝色效应消失。 碘量法是利用I2的氧化性和I -的还原性测定物质含量的氧化还原滴定法,所用指示剂为淀粉指示剂。该法又分为两种:一种叫直接碘量法,也称为碘滴定法,终点颜色由无色变为蓝色;另一种叫间接碘量法也称为硫代硫酸钠滴定,终点颜色由蓝色变为无色 变蓝后震摇不会再变为无色,用回滴液一至两滴滴入,溶液变为无色,是为终点。 2、为什么直接碘量法滴定时要先加淀粉指示剂,而间接碘量法要在滴定接近终点时再加入淀粉指示剂? 间接碘量法在接近终点时加入指示剂使少量未反应碘和淀粉结合显色有利于终点的观察和滴定精度的提高。 3、用碘量法滴定硫代硫酸钠时,淀粉指示剂为何在接近终点时加入? 过早加入有何影响? 淀粉溶液作为指示剂与其他大部分指示剂不同,它不能过早加入试样中,这与淀粉特殊的结构以及淀粉变色反应的机理有关系。 可溶性淀粉呈螺旋状结构,可以弱键结合游离碘,开始出现变色反应,随结合量的增加,颜色由红紫色变为蓝色,这就是淀粉遇碘变色的机理。 间接碘量法在接近终点时加入淀粉指示剂使少量未反应碘和淀粉结合显色有利于终点的观察和滴定精度的提高。提前加淀粉指示剂的话,部分碘已经提前参与反应,淀粉变色将会提前,影响到滴定终点颜色的变化,对滴定终点的判断会产生误差。 4、在用间接碘量法时,为什么在加入碘化钾后,再用硫代硫酸钠标液滴定,会是消耗了0毫升的标液啊? 消耗0毫升标液??我实在不愿相信这是真的。首先, 请加入淀粉指示剂;其次,请确认滴加了过量的碘化钾;最后,用硫代硫酸钠标液滴定至蓝色消失,读取消耗的标液体积即可。 5、碘量法滴定:用硫代硫酸钠滴定时加淀粉指示剂多少毫升? 如果是用1%的淀粉溶液只用1mL就可以了!如果是其他浓度,也基本在这个量上,因为它做指示剂,用量不用太多的!

碘量法

碘量法 碘量法是以碘分子作为氧化剂或以碘离子作为还原剂进行测定的分析方法。 碘电对的电极电位0.545伏,碘分子为较弱的氧化剂,与较强的还原剂作用,碘离子为中等强度的还原剂,与许多氧化剂作用。 由于固体碘分子在水中的溶解度很小(20度,1.3310-3摩尔每升),且碘分子易挥发,常把碘分子溶于过量过量KI溶液中,以I3-形式存在,既减少I2的挥发性,也增加I2的溶解度,KI过量4%时,I2的挥发忽略。 1.方法特点及误差来源 (1)应用广,既可测氧化剂又可测还原剂; (2)副反应少; (3)淀粉指示剂灵敏度高; 碘法的误差来源,一是碘分子易挥发;一是在酸性溶液中碘离子容易被空气中的氧气氧化,为了减少碘分子的挥发和碘离子与空气的接触,滴定最好在碘量瓶中进行,不要剧烈摇荡。 2.标准溶液的配制和标定 (1)市售碘不纯,用升华法可得到纯碘分子,用它可直接配成标准溶液,但由于碘分子的挥发性及对分析天平的腐蚀性,一般将市售配制成近似浓度,再标定。 方法:将一定量碘分子与KI一起置于研钵中,加少量水研磨,使碘分子全部溶解,再用水稀释至一定体积,放入棕色瓶保存,避免碘液与橡皮等有机物(易与有机物作用)接触,否则浓度会改变。(2)硫代硫酸钠的配制和标定 硫代硫酸钠带5个结晶水易风化,并含少量S、Na2CO3、Na2SO4、Na2SO3、NaCI等杂质,间接配制,配制好的硫代硫酸钠也不稳定,因为: 酸分解:水中溶有CO2成弱酸性,而硫代硫酸钠在酸性溶液中会缓慢分解。 微生物作用:水中微生物会消耗硫代硫酸钠中的S。 空气氧化作用: 问题:配制硫代硫酸钠,对水的要求? 使用新煮沸并冷却了的蒸馏水,煮沸的目的是除去水中溶解的CO2、O2,并杀死细菌,同时加入少量碳酸钠使溶液呈弱酸性,以抑制细菌生长,配好的溶液置于棕色瓶中以防光照分解,一段时间后应重新标定,如发现有浑浊(S沉淀),应重配或过滤再标定。 标定硫代硫酸钠可用重铬酸钾、碘酸钾等基准物质,常用重铬酸钾,价廉易纯制。准确称取一定量重铬酸钾与过量KI在酸性溶液中反应。 3.碘量法滴定方式及应用 (1)直接碘法(碘滴定法) 用碘标液直接滴定还原性物质 在污染源分析中:直接碘法用于测定废水、废气、烟气中SO2、SO32-污染物,如将SO2通入酸性溶液中,用I2标液滴定。 药物分析:直接碘法可测维生素C含量。 (2)间接碘法(滴定碘法) 利用碘离子的还原性测定氧化性物质的方法。先使氧化性物质与过量KI反应定量析出碘分子,然后用硫代硫酸钠滴定I2,求得待测组分含量。 防I2挥发和空气中O2氧化I-:温度不宜过高,室温,滴定反应在碘量瓶中进行,避免阳光照射,因为在酸性溶液中光会加速空气中O2对I-氧化,快滴慢摇,减少I-与空气接触。 **淀粉溶液;称取1g可溶性淀粉,用冷水调成悬浮浆,然后加入约80mL煮沸水中,边加边搅拌,稀释到100mL;煮沸几分钟后放置沉淀过夜,取上清液使用,如需较长时间保存可加入1.25g 水杨酸或0.4g氯化锌。

五步碘量法测定二氧化氯原理及步骤

五步碘量法原理及步骤 1.反应原理 该法是利用I—还原各种氯化物的程度随pH值的不同而变化,用硫代硫酸钠标准 溶液滴定游离I 2,以区分出ClO 2 、ClO 2 —、Cl 2 、ClO 3 —,反应条件及反应式如下[3]: pH≤7时,Cl 2+2I—=I 2 +2Cl—① pH=7时,2ClO 2+2I—=I 2 +2ClO 2 —② pH≤2时,2ClO 2+10I—+8H+=5I 2 +2Cl—+4H 2 O ③ pH≤2时,ClO 2—+4I—+4H+=2I 2 +Cl—+2H 2 O ④ pH≤0.1时,ClO 3—+6I—+6H+=3I 2 +Cl—+3H 2 O ⑤ ClO 2还原成Cl—需要转移五个电子,这一过程分两步完成。第一步ClO 2 转移1个 电子,生成ClO 2 —,如果反应条件控制在pH=7,则反应到此停止,如②所示。它 相当于1/5的ClO 2 被还原。如果将pH调至2,则反应继续进行,转移另外4个 电子,将ClO 2 —完全还原成Cl—,如④所示。 2.试剂和仪器 2.1 20%碘化钾溶液:称取50g碘化钾溶于450ml蒸馏水中,储于棕色瓶中,避光保存于冰箱中,若溶液变黄需重新配制。 2.2 0.5%淀粉溶液:称取可溶性淀粉0.5g于小烧杯中,加少许蒸馏水成糊状,加入到100ml正在沸腾的蒸馏水中,煮沸几分钟,取下放冷。两周后重配。 2.3 浓盐酸 2.4 1+1盐酸 2.5 饱和磷酸氢二钠溶液

2.6 pH=7磷酸盐缓冲溶液:称取25.4g无水磷酸二氢钾和86.0g十二水磷酸氢二钠,溶于800ml蒸馏水中,用水稀释到1000ml。 2.6 10%溴化钾溶液:称取10g溴化钾于90ml蒸馏水中,储于棕色瓶中,每周重配一次。 2.7 0.01mol/L硫代硫酸钠标准滴定溶液:用水稀释0.1mol/L硫代硫酸钠标准滴定溶液。 2.8 纯氮气钢瓶 3.采样 3.1 应用清洁干燥的棕色广口瓶采集样品。采样时,将发生器采样口的管子直接插到瓶底,打开采样口阀门,直至样品溶液溢出达采样瓶体积的一倍时,关闭阀门,立即盖上瓶盖。 3.2 样品避光保存,2小时内使用,如超过2小时,应重新取样。 3.3 移取分析试样时,应将移液管插入样品瓶的底部取样,取样操作宜在通风橱内进行。 4.测定步骤: 4.1 在500ml碘量瓶中加100ml蒸馏水,加入10ml二氧化氯溶液,将溶液的pH 值调节至7(采用加入很少量的饱和氢氧化钠溶液和浓盐酸的方法调节反应液的pH值),再加入5ml磷酸盐缓冲溶液和5ml碘化钾溶液混匀。用0.01mol/L硫代硫酸钠标准液滴定至淡黄色时,加入1ml的淀粉溶液,继续滴定至蓝色刚好消失为止,记录读数为V1。 4.2 在上述滴定出A值的溶液中再加入1+1盐酸1ml,这时溶液的pH值应为2,于暗处放置5min后,用0.01mol/L硫代硫酸钠标准液滴定至蓝色消失,记录读数为V2。

实验三碘量法测定维生素C含量(精)

实验三碘量法测定维生素 C 含量 一.实验目的 1. 学习滴定分析法的基本原理 2. 学习对蔬菜和食品中 Vc 含量进行测定的方法 二.实验原理 1. “滴定” (titration是将已知准确浓度的溶液——标准溶液通过滴定管滴加到待测溶液中的过程。待“滴定”进行到化学反应按计量关系完全作用为止,然后根据所用标准溶液的浓度和体积计算出待测物质含量的分析方法称为滴定分析法。 2. 先使用铜盐与过量的 KI 进行反应生成 CuI2 3.CuI2 不稳定随即分解为 Cu2I2 和游离的碘 4. 生成的碘和维生素 C 反应 , 直到溶液里的 VC 被碘全部氧化为止。 剩余的微量碘与淀粉指示剂生成蓝色。 三.实验试剂 (1 0.01 mol/L 硫酸铜(CuSO4 5H2O (2 30% KI 溶液; (3 1%可溶性淀粉指示剂(m/V (4偏磷酸 -醋酸溶液 四.实验操作步骤 1. 称取 40g 菜花(可分 2-3次研磨 ,加少量石英砂及少量偏磷酸 -醋酸研成匀浆,加偏磷酸 -醋酸定容到 100ml ,颠倒混匀(两个组

做一份 ; 2. 倒入 4个 10ml 离心管中,两两配平后, 8000rpm 离心 5min (每组两个离心管 ; 3. 将上清倒入干净的三角瓶中,待用(此为样品液 ; 4. 吸取 5ml 偏磷酸 -醋酸 , 加 10mL30%KI溶液。再加 10滴淀粉指示剂溶液。随即用标准硫酸铜溶液 (0.01mol/L进行滴定, 边滴定边振摇,直至显示出蓝色(或红棕色 ,且稳定 3sec 不退,记录滴定量 V0(此为空白对照,注意:会很快变色,要逐滴加入 ; 5. 精确吸取 5mL 样品溶液于 100mL 三角瓶中,加 10mL30%KI溶液。再加 10滴淀粉指示剂溶液。随即用标准硫酸铜溶液 (0.01mol/L进行滴定。边滴定边振摇, 直至显示出蓝色 (或红棕色 , 且稳定 3sec 不退,记录滴定量 V1(此为样品值。 6 .计算: L-抗坏血酸含量 (mg/每份 =V ×c V:(V1-V0标准硫酸铜毫升数 c :0.88, 即 1ml0.01mol/l标准硫酸铜溶液相当于 0.88mg 抗坏血酸。五.实验结果 计算 L-抗坏血酸含量 =(mg/100g 实验数据:空白试验消耗的标准硫酸铜 V0=0.1ml 样品溶液消耗的标准硫酸铜 V1=1.2ml L-抗坏血酸含量 =(V1-V0 *C*20*100/40 =(1.2-0.1ml*0.88mg/ml*20*100/40 =48.4(mg/100mg 六.结果讨论

相关文档
最新文档