丙烯腈废水处理技术的研究进展..

丙烯腈废水处理技术的研究进展..
丙烯腈废水处理技术的研究进展..

丙烯腈废水处理技术的研究进展

摘要:介绍了丙烯腈废水的来源及其危害,并叙述了目前国内外丙烯腈废水处理技术的研究进展。通过对比各种处理技术的优缺点,从废水资源化的角度,对丙烯腈废水的处理方法提出了一些建议和展望。认为可将物理法、化学法、生物法3 类方法相结合,优缺点互补,组成物化法、生化法或物化生联用法。

关键词:丙烯腈废水;处理技术;资源化

近年来,随着工业技术的发展,各类工业废水的大量排放导致环境污染严重,其中含氰废水是一种毒性较大的工业废水,主要来自电镀、煤气、焦化、冶金、金属加工、化纤、塑料、农药等部门。由工业污染源进入环境的氰化物属剧毒类物质,包括以氢氰酸、氰化钠为代表的无机氰化物和以丙烯腈、丁二腈为代表的有机氰化物(或称腈化物)。

其中,丙烯腈是3 大合成材料(纤维、橡胶和塑料)的重要化工原料,在有机合成工业和人民经济生活中用途广泛。全世界丙烯腈的生产主要集中在美国、西欧和日本等国家和地区,到2011 年底,全球丙烯腈总生产能力约为6.4 Mt/a,其中一半不到的产能出自美国[1-2]。丙烯腈生产过程中排出的废水含有剧毒物质丙烯腈、乙腈、氢氰酸、聚合物、硫铵等,对环境危害极大[3]。同时,丙烯腈属于我国确定的58 种优先控制和美国EPA 规定的114 种优先控制的有毒化学品之一,因此大力研发丙烯腈废水的处理技术意义重大。

本文叙述了目前国内外丙烯腈废水的处理技术,及其存在的优缺点,并且从废水资源化的角度提出了对未来丙烯腈废水处理技术的一些建议和展望。

1·丙烯腈合成工艺

丙烯腈合成工艺主要有环氧乙烷法、乙炔法、丙烯氨氧化法和丙烷氨氧化法[4]。其中环氧乙烷法是先由环氧乙烷和氢氰酸反应制得氰乙醇,再在碳酸镁的催化作用下脱水制得丙烯腈,此法生产的丙烯腈纯度相对较高,但其原料昂贵,且氢氰酸的毒性较大,现已被淘汰。乙炔法是将乙炔和氢氰酸在氯化亚铜和氯化铵的催化作用下直接合成丙烯腈,工艺较为简单,其缺点是副产物种类较多,并且不易分离,也已经被淘汰。目前国内外采用的丙烯腈合成工艺主要包括流化床丙烯氨氧化法和丙烷氨氧化法[5]。其合成工艺流程主要可分为5 个部分,合成、分离、后处理、乙腈和硫氨。

有研究发现,甘油在WO3/TiO2的催化下脱水生成丙烯醛,然后以Sb-(Fe,V)-O 为催化剂进行氨氧化,同样可以得到丙烯腈,但是这项技术在生产规模的商业化中还不够成熟,还没有正式投入应用[6]。

1.1 丙烯氨氧化法

此法又称为Sohio 法,是以丙烯、氨气和空气中的氧为原料,在温度为440 ℃、压力为63.74 kPa 的条件下,丙烯、氨、空气以1.0:1.15:10.5 的摩尔比,从底部进入流化床反应器。反应式为:CH2=CHCH3+NH3+3/2O2→CH2=CHCN+H2O。

主要反应副产物为氢氰酸、乙腈、丙烯醛、CO2和CO。反应气体冷却后,经过洗涤、吸收、精馏后可以得到高纯度产品。

此法是目前国内外主要的生产方法,其优点是原料易得、工艺过程简单、产品成本低等,但是随着石油的开采和储存量不断减少,国际原油价格不断上涨,导致合成丙烯腈的原料之一的丙烯成本逐渐升高[7]。

1.2 丙烷氨氧化法

丙烷氨氧化法可以分为直接氨氧化法(1 步法)和丙烷脱氢后再丙烯氨氧化法(2 步法)。其中直接法反应式为:

CH3CH2CH3+NH3+2O2→CH2=CHCN+4H2O。

此法需要选择合适的催化剂,FeSbO4对于丙烷氨氧化法合成丙烯腈具有良好的活性和选择性[8]。旭化成公司和BP 已经完成中试,所研制出的氨氧化催化剂活性组分为V-Sb-W 复合催化剂,质量分数50%的SiO2-Al2O3载体,反应温度为500 ℃、压力为103 kPa,原料丙烷、氨、氧、氮、水的摩尔比为1:2:2:7:3[9]。其他催化剂还有MoVNbTeO、VSb5Ox/Al2O3和Sn/V/ Sb[10-13]。

此法与丙烯氨氧化法比较,很好地解决了丙烯原料吃紧的问题,具有成本低的优点,具有很大的应用前景。

2·丙烯腈废水的来源

以丙烯腈为主要污染物的废水一般来自于丙烯腈的生产废水、腈纶的生产废水、以及丙烯腈- 丁二烯- 苯乙烯(ABS)塑料的生产废水。

2.1 丙烯腈生产

在丙烯氨氧化法生产丙烯腈的过程中产生的废水主要是来自2 段急冷塔和脱氰组分塔的废水。在一段急冷塔中,用水将反应气中的聚合物和催化剂粉尘洗去,经催化剂沉降后,产生高含氰废水,该废水中主要含有丙烯腈、乙腈、氢氰酸等有毒污染物。反应气随后进入二段急冷塔,氨气被稀硫酸吸收形成硫酸铵,成为主要污染物,二段急冷塔的污染物浓度相对较低,但成分相当[14]。

2.2 腈纶生产

丙烯腈作为一种重要的化工原料,用于二步湿法纺丝工艺生产腈纶时所产生的废水含有较多的污染物,如丙烯腈、乙腈、丁二腈、丙烯醛、丙酮氰醇、丙烯酸甲酯、丙烯酰胺、二甲基甲酰胺、氰化物和硫氰酸钠等。腈纶废水污染物组成复杂,水质不稳定,可生化性较差,且水中含有毒有害物质,多数污染物为已知的致癌物,且排量较大[15-17]。腈纶的生产废水属于难降解的工业废水之一,治理难度较大[18]。

2.3 ABS 塑料生产

丙烯腈是合成ABS 塑料的原料之一,ABS 塑料的制造废水具有成分复杂、有毒有害、耐火等性质,在这类废水中已发现了37 种化合物,主要以单核芳烃、丙烯腈二聚体和丙烯腈衍生物的形式存在[19-22]。目前主要采用活性污泥法来处理ABS 树脂厂排出的混合废水,现有的处理工艺存在水力停留时间长,流程长,抗冲击负荷能力差且易受有毒污染物抑制的缺点。

3·丙烯腈废水处理方法

丙烯腈废水的处理方法主要有精馏法、焚烧法、Fenton 氧化法、湿式催化氧化法、超临界水氧化法、生物法、辐射法以及膜法等。

3.1 精馏法

此法又称分馏法,是利用分馏柱来分离沸点相近的组分,然后精制纯化的方法[23]。一般情况下,物质的沸点随相对分子质量的增大、双键数目的增多而升高。

闫光绪等利用精馏法对丙烯腈装置一段急冷水进行处理,此废水中主要含有乙腈、丙烯腈及大量重组分,各个物质的沸点分别为:乙腈81.6 ℃、丙烯腈77.3 ℃、水100 ℃、重组分则高于120 ℃。组分在蒸馏釜内加热并且控制温度,从分馏塔顶部的不同部位可以得到不同沸点的组分,从而达到分离的目的[24]。

王毅等对抚顺石化公司腈纶化工厂丙烯腈装置中产生的一段急冷废液进行处理,经过分馏实验后对出水水质进行分析,馏出水的COD 去除率达到了95.2%,可见分馏法去除COD 效果很好,而氰化物去除率可达92%[25]。

利用精馏法处理丙烯腈一段急冷水,经过分离、回收、综合利用等步骤,符合环保要求的原则,而且设备投资少、能耗低。经过处理后的废水可生化性得到了很大的改善,缺点是对氰化物的去除不够彻底,需要添加后续的处理装置。

3.2 焚烧法

焚烧法是将燃料油与高含量废水分别喷入炉膛内进行焚烧,使废

水中的有毒有害物质氧化分解为CO2、H2O、N2等进入空气中[26]。此法是处理高含量有机腈废水最简单的方法。

乔桂芝等设计了新型L 形废液、废气焚烧炉,一方面保证了高温分解含氰有机物,同时也大大降低了过量的NOx造成的二次污染,所有排放的气体都能达到国家标准,其中排放的氮氧化物的质量浓度小于500 mg/m3 (标准状态下)。期间可以生产36t/h、4.0 MPa 的蒸汽,从而有效地节约了能源,同时还设置了 1 台锅炉给水预热器,使得给水预热温度高于炉管外壁烟气的露点温度,从根本上解决了炉管露点的腐蚀问题,使整个炉子运行起来平稳可靠[27]。但是此法存在2 个重要的缺陷,首先是能耗问题,焚烧过程需要消耗大量的辅助燃料油,而这些燃料油都是从化石能源中提炼出来的,这对有限的化石能源是极大的浪费;同时还存在二次污染问题,废水中含有大量的氮元素,焚烧后会产生大量的氮氧化物,是造成温室效应、光化学烟雾以及酸雨的主要成分。因此,从可持续发展方面考虑,此法并不理想。

3.3 Fenton 氧化法

Fenton 氧化法是以Fe2+ 为催化剂,利用H2O2进行化学氧化的废水处理方法。此法可有效地处理含硝基苯、ABS 等有机物的废水,还能用于废水的脱色、除恶臭。

李锋等在实验室条件下采用Fenton 试剂对丙烯腈废水进行预处理[28]。结果发现,当丙烯腈初始质量浓度为300 mg/L 时,分别投加质量浓度为400 mg/L的Fe2+ 和400 mg/L 的H2O2,可

使丙烯腈的降解率达到80%以上。此外,分别加大Fe2+、H2O2投加量可提高丙烯腈的降解率,但过高可导致降解率下降。因此,对于高含量丙烯腈废水,Fenton 试剂作为前期预处理是一种有效的方法。

Chu Yan-yang 等通过3 种方法,Fenton 氧化法(FO)、电-Fenton 氧化法(EFO)和铁促双电极氧化法(EOIP)来处理丙烯腈废水[29]。结果表明,FO 法的最佳COD 去除率为60%左右,EFO 法则高出5%~10%,而EOIP 法的COD 去除率高达85%。当H2O2的质量浓度为2 500 mg/L 时,FO 法和EFO 法对色度的去除率为90%左右,而EOIP 法可达到95%。由此可见,在相同含量的H2O2下,3 种方法的氧化能力由小到大的顺序为FO<EFO<EOIP。Zhang Jie 等对上海金山石化的丙烯腈生产废水用Fenton 氧化法处理,原水中的COD 为3 590 mg/L,BOD5为710 mg/L,TOC 和丙烯腈的质量浓度分别为 2 040、2.8 mg/L[30]。实验结果表明,在pH=3 时,COD 和TOC 得到最大的去除率,H2O2的最佳用量为5.54 g/L,Fe2+、H2O2优化质量比为0.1,同时原水的B/ C 从0.18 增加到0.61,从不可生化转为可生化。因此,利用Fenton 氧化法不仅可以去除丙烯腈废水中的有机化合物,还能提高原水的可生化性,为后续的生化处理提供了良好的条件。

Fenton 法具有设备投资省的优点,但同时也存在2 个缺点:一是有机物不能完全矿化,初始物质中的一部分转化为某些中间产物,

这些中间产物有些能与Fe3+ 形成络合物,有些能与·OH 的生成路线发生竞争,并可能对环境的危害更大;二是双氧水的利用率不高。

3.4 湿式催化氧化法

湿式催化氧化法(CWAO 法)是在200~325℃的高温下,以及15 MPa 的压力下,将有机废水中的N 元素转化为NH4+,将C 元素转化为CO2,然而NH4+对环境是有害的,需要加入特定的催化剂Mn/Ce 的复合氧化物,将NH4+ 进一步转化为N2,同时此种催化剂也能使原有机废水中的N 元素直接转化成分子的形式[31]。此法可将有机物转化成低毒甚至是无毒的H2O、N2、O2等物质,在高有机物含量废水处理中非常有效,具有很高的实用价值[32]。丙烯腈废水在高温高压下,在保持液相状态时通入空气,同时在催化剂的作用下,对其进行彻底的氧化分解,使之转化为无毒无害物质,从而使废水得到深度净化。

芮玉兰等通过实验寻找丙烯腈废水湿式催化氧化的最佳反应条件[33]。结果表明,使用n(Mn)/n(Ce)为3:2 和n(Co)/n(Bi)为1:5 的催化剂,反应温度190 ℃、氧气分压1.5 MPa、反应时间90 min、催化剂负载量5 g/L,丙烯腈废水的COD 去除率均可达到90%以上。工业废水处理中湿式氧化的温度一般为180 ~315 ℃、压力为2~15 MPa,反应时间为15~120min,COD 去除率可达75%~90%[34]。

湿式氧化的主要缺点之一是无法实现有机物的完全矿化,因为一些相对分子质量较低含氧化合物(如乙酸、丙酸、甲醇、乙醇和乙醛

等)对于进一步氧化成CO2具有抵抗性[35]。同时,对于设备材质的要求较高,投资也较大,反应温度高、压力大,还会产生有机酸,因此必须对反应装置进行防腐处理。

然而催化剂的使用可以提高废水处理的速度,降低反应的温度和压力,提高氧化分解的能力,从而可以防止设备腐蚀和降低成本,而且反应产物多为CO2、H2O 等,有效地降低了二次污染的可能性[36]。

对于新型反应器的研制,尤其是流态化反应器在含氰废水湿式催化氧化中应用的优势有待于发挥。目前CWAO 工艺发展历史还较短,依然存在着有待探索和完善的地方,尽管经营成本高,但是催化湿式氧化法是最有前途的废水处理方法[37]。

3.5 超临界水氧化法

超临界水氧化(SCWO)法是指有机废物和空气、氧气等氧化剂在超临界水中进行氧化反应而将有机废物去除。由于SCWO 法是在高温高压下的均相反应,反应速率很快(可小于1 min),处理彻底,有机物中的C、H、O 最终转化成CO2和H2O,而N、S、P 则相应地转化为N2、SO42-、PO43-,不会形成二次污染。有机物在超临界水中氧化,除发生氧化反应外,还伴随有机物的水解、热解等反应[38-39]。

蔡毅等在研究中发现,丙烯腈废水中COD 的去除率在温度上升到600℃时可达99.96%。当反应时间≤90 s 时,随着反应时间的延长,COD 的去除率不断增大;而反应时间大于90 s 时,COD 去

除率增加幅度不明显。随着压力的增加,出水COD 的去除率不断升高,但影响没有时间和温度显著。同时,在控制COD 去除率为99.96%的情况下,按催化剂与废水的体积分数为1%投加催化剂,反应温度可由600℃降至550 ℃[40]。

刘皓在实验室条件下,利用此法对丙烯腈废水进行处理和研究发现,增加停留时间、升高反应温度(723.15~823.15 K)均可提高丙烯腈的转化率。而压力(23~32 MPa)对反应的影响不够显著。在氧气过量较小的情况下,反应的转化率与氧气的过量率成正比,当氧气过量较多的时候(超过500%),丙烯腈转化率随着氧气过量率的增加变化不大。同时,金属离子催化剂中Ag+ 的催化作用最好[41]。

Yang Guo 等利用超临界水来气化分解丙烯腈,在碳酸钠的催化作用下,丙烯腈分解产生的气体产物主要是CO2、CH4和H2,而大部分的CO 通过碳酸钠催化水煤气变换反应转化为CO2,只有在温度超过490 ℃以上,碳酸钠质量分数为0.1%时,才会有少量的N2产生[42]。

Young Ho Shin 等在实验室条件下,将温度控制在299~552℃、压力25 MPa,丙烯腈废水初始TOC的浓度为0.27~2.10 mol/L、停留时间从3~30 s,以质量分数30%的双氧水作为氧化剂。随着反应温度和停留时间的增加,TOC 的转化率也增加,但是当O2、TOC 化学计量比超过1:1 以后,TOC 的转化率几乎不受多余氧的影响[43]。此外,他还利用超临界水氧化法来处理丙烯腈

生产废水和铜镀废水的混合废水,温度控制在400~600℃、压力25MPa 停留时间2 s,在反应器入口的初始TOC 浓度和O2浓度分别为0.49mol/L 和0.74 mol/L[44]。结果表明,在450℃时,铜镀废水能加速TOC 的转化率,从17.6%提高到67.3%;在600 ℃时,混合废水中99.8%的铜以固体铜和氧化铜的形式得到回收,由此可知,利用超临界水氧化丙烯腈生产废水和铜镀废水具有良好的协同效应。

采用超临界水氧化法对含丙烯腈的废水进行处理,可在几分钟内将有机物几乎全部氧化分解,最终生成无害的CO2、H2O、N2等产物,而S、P 则生成无机盐等沉淀物,反应不会降低水质,对环境不会产生二次污染,因而对于无机盐含量较低的有机废水的处理,此法可以直接安全地应用在工业用水当中。但是该工艺对设备要求相当高,抗腐蚀,抗压能力都要求很高。

3.6 生物法

生物脱氮法是利用微生物去除废水中氮污染物的生物转化法,它是一种消除氮污染较为有效和彻底的方法[45-46]。废水中的含氮化合物通过硝化、反硝化作用转化为N2从水中逸出返回大气。赵文辉等利用生物脱氮反应中氨化、硝化和反硝化的原理和特点,对大庆石化分公司炼油厂污水进行处理,采用了缺氧- 好氧生物膜法脱氮工艺进行改造,改造后氨氮合格率在95%以上,效果显著。该工艺将废水中的含氮化合物(丙烯腈、乙腈、氰氢酸、丙酮氰醇等)分别经过氨化、硝化和反硝化作用,最后转化为氮气,释放到大气中,从而使

出水氨氮含量小于来水中的氨氮含量[47]。

丙烯腈对厌氧菌有较强的毒性,很难采用厌氧法进行处理。循环式活性污泥法(CAST 法)是一种新型的污水生物处理工艺,它是在序批式活性污泥法(SBR)工艺的基础上,增加了选择器和污泥回流设施,并对时序做了一些调整,从而大大提高了SBR工艺的可靠性及效率。

孙剑辉等采用CAST 工艺对丙烯腈废水进行处理,经1 h 进水、1 h 厌氧、4 h 曝气、1 h 沉淀后,丙烯腈的质量浓度由71 mg/L 降至4.4 mg/L,去除率为93.8%;COD 由最初的546 mg/L 降至49 mg /L,去除率可达91%,处理效果相当明显[48]。该工艺具有流程简单、操作简便、有机物去除率高、尤其是耐冲击负荷能力较强等优点,适用于有毒废水的处理。

3.7 辐射法

此法是利用60Co 所产生的高能量、强穿透性的γ 射线,来消毒灭菌、改变物质性状等。在放射线的照射下,水分子会产生一系列具有很强活性的辐解产物,如OH-、H+ 和H2O2等。这些产物再进一步与废水中的有机物发生反应,使其分解或改性。该法可明显消除城市污水中的TOC、BOD、COD,并能灭活污水中的病原体。

孙宏图等利用60Co 作为γ 射线源,对高含量的丙烯腈废水进行辐射分解[49]。结果表明,当辐射剂量为15 kGy 时,丙烯腈的去除率随初始含量的增大而增大;初始质量浓度为4g/L 的丙烯腈溶液,随着辐射剂量的增大,其去除率先增加后减小,10 kGy 时的去

除效果最佳,可达90%以上,并且在中性条件下的去除效果相对较好。

李坤豪等采用60Co-γ 辐射联合O3处理丙烯腈废水,对CN- 和有机物的去除呈现协同效应[50]。实验结果表明,当采用单一的辐射处理丙烯腈废水,辐射剂量为25 kGy 时,CN- 的去除率仅为60.9%,COD去除率为78.2%;而采用γ 辐射协同O3处理丙烯腈废水,当辐射剂量为5 kGy 时,CN- 去除率可达83.3%,COD 去除率为70%。由此说明60Co-γ 辐射联合臭氧协同处理丙烯腈废水可以减少所需辐射剂量,但臭氧的加入也容易造成二次污染。

Gitte Van Baelen 等采用微波辅助技术对腈的水解做了研究,基于甲苯/ 浓KOH 溶液的两相体系,通过控制温度分别为100 ℃和150 ℃,以及是否加入相转移催化剂,可以控制腈的水解产物为酰胺或者羧酸[51]。

辐射技术相应的报道还很少,还处于实验室研究阶段。就目前的研究结果来看,用辐射法来处理丙烯腈废水,COD 和CN- 的去除效果相当明显,但是不够彻底,需要进一步地优化实验条件,寻找最佳辐射剂量,引入有效的氧化剂或催化剂。

3.8 膜法

膜法是近年来兴起的一种膜分离技术,具有能耗低、占地面积小、操作简便、不改变被处理物质的形态、无二次污染以及可回收有用物质等优点,受到了国内外研究者的广泛重视。

刘海洋等采用疏水性聚丙烯中空纤维膜,考察了膜吸收法对丙烯

腈废水中氰化物和氨氮的去除效果及其影响因素[52]。结果表明,在酸性条件下膜吸收法对氰化物的去除效果较好,适当地提高废水流速可以有效地加快去除氰化物的速率,但对去除率影响不大,适当地增大NaOH 吸收液的含量(质量分数5%~10%)和膜接触面积也可提高对氰化物的去除效果。膜吸收法对丙烯腈废水中氨氮的去除率可以高达93.3%。此外,若先去除氰化物再去除氨氮,对氰化物的去除率却低于70%;反之,对氰化物的去除率可以高达85.5%。

李薇等对高含量丙烯腈废水采用絮凝- 纳滤进行处理,其中絮凝过程可除去废水中约20%的COD,而纳滤可除去约70%的COD,经过二次纳滤,废水出水色度、浊度都能达到出水指标。此外,采用32mL/L 聚合氯化铝+40 mL/L 的质量分数0.1%的聚丙烯酰胺复合絮凝剂絮凝处理高含量丙烯腈废水,絮凝效果最好。采用截留相对分子质量150~300 的G1 纳滤膜对丙烯腈废水进行二次纳滤,温度升高对一次纳滤出水量无明显影响,而对于二次纳滤可以增大其出水流量[53]。

Jinling Wu 等利用气体膜对丙烯腈废水进行处理,先用质量分数10%的盐酸对原水进行酸化,然后通入膜接触器,另外通入质量分数10%的氢氧化钠溶液,2 者由聚丙烯微孔膜分隔开,由于膜本身的疏水性,因而水溶液不会将其弄湿,原水和吸收溶液能分别在膜的2 边流动,HCN 在废水和膜孔的内表面中蒸发,通过微孔进入到氢氧化钠的吸收溶液中,并在吸收溶液和膜孔的内表面立即与氢氧化钠反应,最后挥发性的HCN 以NaCN 的形式被回收。实验操作的

优化条件为将原废水pH 酸化到5.0,废水流速为0.14 m/s,温度为40 ℃。由膜污染引起的传输系数的降低导致了转化率的降低,引起膜污染的主要污垢为胶体有机物和无机盐,碱化可以有效地减缓膜污染和提高HCN 去除率[54]。Binbing Han 等做了类似的实验与研究,同样得到了很好的处理效果[55]。

Tinggang Li 等采用曝气生物膜反应器来处理乙腈废水,此反应器采用疏水中空纤维膜无泡曝气扩散器以及生物膜生长的载体。实验结果表明,随着微生物的逐渐适应,使得膜的乙腈表面负荷率上升到了11.29 g/(m2·d),废水中TOC 和TN 的去除率分别达到了98.6%和83.3%,处理效果相当明显[56]。因此,采用曝气生物膜反应器来处理有机腈废水具有很大的潜力。

利用膜法来处理含腈(氰)废水具有能耗低、操作简单等优点,处理结果类似于精馏法,可将污染物回收利用,所以符合废水资源化的要求。主要缺点在于随着反应的进行,膜污染越来越严重,导致对污染物的去除能力大幅度下降,所以应当采取有效的措施来解决膜污染问题。

4·结语与展望

目前我国对丙烯腈废水处理的基础研究较少,导致基础实验数据缺乏,从而造成处理工艺设计盲目性较大,实际建成的设备不能充分利用而造成经济和资源的浪费。同时,处理效果的不佳也反过来制约了丙烯腈生产工业的发展缓慢,进一步阻碍了丙烯腈下游产业的发展。

通过对丙烯腈生产工艺及其方法的分析,从根本上了解丙烯腈废水中主要物质成分的性质,及其对环境和人类的污染与危害。针对主要污染物采取物理的、化学的和生物的方法对其进行处理,通过对目前国内外处理丙烯腈废水的技术方法进行研究和对比,发现其工业化程度普遍不高,大部分工厂都采用焚烧法来处理,虽然此法对废水的处理简单彻底,但存在高能耗、浪费资源、二次污染等缺点。其他处理方法很多都处于实验研究阶段,没有真正投入到实际运用中去。

在上述的处理方法中,物理法相对简单,但是成本较高,精馏法对废水中氰化物的去除不够彻底;膜法处理废水随着时间的推移膜污染会越来越严重;化学法相对多样化,Fenton 氧化法无法将有机物充分矿化,有可能造成更大的污染,并且双氧水的利用率不高;超临界水氧化法对设备要求苛刻;相比之下,湿式催化氧化法具有很大的应用前景,应加大力度对其进行研究和改进。生物法普遍具有的缺点是抗冲击能力差,但是对于低含量的含腈废水处理效果较为理想。因此,可以将这3 类方法相结合,优缺点互补,组成物化法、生化法或物化生联用法,从废水资源化角度出发,继续坚持可持续发展战略,将是未来丙烯腈废水处理的趋势。

5000吨丙烯腈设计说明书详解

化工设计说明书 5000t/a丙烯腈合成工段的课程设计 5000 T/A ACRYLONITRILE SYNTHESIS SECTION OF THE COURSE DESIDN 学院(部):化学工程学院 专业班级:化工13-3 学生姓名:王庆松 指导教师:丰芸 2016 年 5 月16 日

5000t/a丙烯腈合成工段的课程设计 摘要 丙烯在引发剂(过氧甲酰)作用下可聚合成一线型高分子化合物―聚丙烯腈。聚丙烯制成的腈纶质地柔软,类似羊毛俗称人造羊毛,它强度高,比重轻、保温性好、耐日光、耐酸和耐大多数溶剂。丙烯腈与丁二烯共聚生产的丁腈橡胶具有良好的耐油、耐寒、耐溶剂等性能是现代工业最重要的橡胶、应用广泛。 关键词:丙烯腈,强度,广泛,重要

目录 5000t/a丙烯腈合成工段的课程设计 (1) 摘要 (2) 1.绪论 (5) 1.1 引言 (5) 1.2设计任务 (5) 1.3丙烯腈的物理性质 (6) 1.4丙烯腈的化学性质 (6) 1.5丙烯腈的制取方法 (6) 1.6丙烯腈的发展简史及展望 (7) 1.7市场分析 (7) 2.物料衡算与热量衡算 (8) 2.1发生的主反应和副反应 (8) 2.2生产工艺流程 (8) 2.3物料衡算 (9) 3.丙烯腈合成工段生产工艺流程图和物料流程图 (12) 4.主要设备的工艺计算 (13) 4.1 浓相段直径计算 (13) 4.2 浓相段高度 (13) 4.3 扩大段直径 (14) 4.4 扩大段高度 (14) 4.5 浓相段冷却装置的换热面积 (14) 4.6 稀相段冷却装置的换热面积 (14) 5.设计结果汇总 (16) 5.1 工艺设备一览表 (16) 5.2 原料消耗综合表 (21) 5.3 能量消耗综合表 (21) 5.4 排出物综合表 (23)

含镉废水处理方案

含镉废水处理方案 含镉废水是危害最严重的重金属废水之一。金属镉虽无病理学意义,但镉的化合物则毒性很大。含镉废水有剧毒,镉易在生物体内聚集,如未经处理直接排放,易引起人畜的慢性中毒,给环境带来很大危害。鱼在含镉浓度为0.01-0.02毫克/升的水中生活就会中中毒,0.2-1.1毫克/升浓度时,就会死亡。镉的毒性能严重抑制微生物的生长,浓度0.1-1.0毫克/升时,微生物死亡率可达50%左右。灌溉水中含镉,不仅污染土壤,且种植的稻米中镉含量大于4ppm时,米不成熟。蚕吃了含镉的桑树叶后,不仅不吐丝,还大量死亡。人体的镉中毒,主要是通过消化道与呼吸道引起的,内服硫酸镉30毫克/升可以致死。长期接触低浓度镉化合物,将引起贫血、肺气肿、神经痛、胃痛、骨质疏松症等等急病。含镉废水处理最常用的方法为中和沉淀法,Cd2+在碱性状态下水解生成Cd(OH)2沉淀,并且含镉废水中往往含有CN-、NH3等其它离子,CN-、NH3与镉离子络合将影响Cd2+的水解沉淀,故废水的处理首先必须去除CN-和NH3。由于氰化物是剧毒物质,因此,处理后指标必须绝对达标。原水的氰化物浓度随时在变化,故采用两池间歇处理,加氯量随浓度变化而变化,处理后水质测定达标后才能进行下一步处理。 成都某(集团)有限责任公司,生产过程中产生电镀废水,废水污染物主要为Zn2+、Cu2+、、Cd2+、、CN-,该废水经现有设施处理后,Cd2+含量未能达到国家排放标准。 成都某(集团)有限责任公司含镉废水与其它电镀废水分开单独处理,含镉废水水质指标详见表0-1。 表0-1含镉电镀废水水质水量表 表中数据参照同类废水水质数据,车间两个月排放一次槽液约50kg。 1.含镉废水处理工艺流程选择 目前,实用的含镉废水处理方法包括氢氧化物或硫化物沉淀法、吸附法、离子交换法。氧化还原法、铁氧体法、膜分离法等。因为中和沉淀法操作简单、工艺成熟、投资省、中和剂来源广,所以最常用的方法为中和沉淀法。在含镉废水中一般含有络合剂(如氰化物),镉离子难于沉淀,如果废水中存在相当量的络合剂,则必须预处理以破坏这些络合剂,所以电镀废液及漂洗水中镉的有效沉淀程度取决于络合剂的预处理情况。 1.1废水处理工艺流程详见图1-1

丙烯腈废水处理技术的研究进展..

丙烯腈废水处理技术的研究进展 摘要:介绍了丙烯腈废水的来源及其危害,并叙述了目前国内外丙烯腈废水处理技术的研究进展。通过对比各种处理技术的优缺点,从废水资源化的角度,对丙烯腈废水的处理方法提出了一些建议和展望。认为可将物理法、化学法、生物法3 类方法相结合,优缺点互补,组成物化法、生化法或物化生联用法。 关键词:丙烯腈废水;处理技术;资源化 近年来,随着工业技术的发展,各类工业废水的大量排放导致环境污染严重,其中含氰废水是一种毒性较大的工业废水,主要来自电镀、煤气、焦化、冶金、金属加工、化纤、塑料、农药等部门。由工业污染源进入环境的氰化物属剧毒类物质,包括以氢氰酸、氰化钠为代表的无机氰化物和以丙烯腈、丁二腈为代表的有机氰化物(或称腈化物)。 其中,丙烯腈是3 大合成材料(纤维、橡胶和塑料)的重要化工原料,在有机合成工业和人民经济生活中用途广泛。全世界丙烯腈的生产主要集中在美国、西欧和日本等国家和地区,到2011 年底,全球丙烯腈总生产能力约为6.4 Mt/a,其中一半不到的产能出自美国[1-2]。丙烯腈生产过程中排出的废水含有剧毒物质丙烯腈、乙腈、氢氰酸、聚合物、硫铵等,对环境危害极大[3]。同时,丙烯腈属于我国确定的58 种优先控制和美国EPA 规定的114 种优先控制的有毒化学品之一,因此大力研发丙烯腈废水的处理技术意义重大。

本文叙述了目前国内外丙烯腈废水的处理技术,及其存在的优缺点,并且从废水资源化的角度提出了对未来丙烯腈废水处理技术的一些建议和展望。 1·丙烯腈合成工艺 丙烯腈合成工艺主要有环氧乙烷法、乙炔法、丙烯氨氧化法和丙烷氨氧化法[4]。其中环氧乙烷法是先由环氧乙烷和氢氰酸反应制得氰乙醇,再在碳酸镁的催化作用下脱水制得丙烯腈,此法生产的丙烯腈纯度相对较高,但其原料昂贵,且氢氰酸的毒性较大,现已被淘汰。乙炔法是将乙炔和氢氰酸在氯化亚铜和氯化铵的催化作用下直接合成丙烯腈,工艺较为简单,其缺点是副产物种类较多,并且不易分离,也已经被淘汰。目前国内外采用的丙烯腈合成工艺主要包括流化床丙烯氨氧化法和丙烷氨氧化法[5]。其合成工艺流程主要可分为5 个部分,合成、分离、后处理、乙腈和硫氨。 有研究发现,甘油在WO3/TiO2的催化下脱水生成丙烯醛,然后以Sb-(Fe,V)-O 为催化剂进行氨氧化,同样可以得到丙烯腈,但是这项技术在生产规模的商业化中还不够成熟,还没有正式投入应用[6]。 1.1 丙烯氨氧化法 此法又称为Sohio 法,是以丙烯、氨气和空气中的氧为原料,在温度为440 ℃、压力为63.74 kPa 的条件下,丙烯、氨、空气以1.0:1.15:10.5 的摩尔比,从底部进入流化床反应器。反应式为:CH2=CHCH3+NH3+3/2O2→CH2=CHCN+H2O。

砷的处理方法

废水中的三价砷可以用沉淀法进行回收,如硫酸厂中的废水,可用硫化钠在20~40℃下进行处理,所得的硫化砷用硫酸铜在70℃进行处理,冷却后进行分离,分出硫化铜后,再与硫酸铜溶液反应,并在>70℃通入空气或氧,使砷成为五价,再分出硫化铜,溶液通入二氧化硫或硫酸厂的尾气,使五价砷还原成三价砷,并结晶,过滤干燥,即可回收三氧化二砷[1]。 在从蒽醌磺酸制备氨基蒽醌过程中,以前曾用过Na2HAsO4作为催化剂,其废水可以先在90℃加入过氧化氢,再通过一个阳离子交换树脂处理,出水中形成的H3AsO4可以用20%的NR3(R=C8~16的烷基)在二甲苯中的溶液进行萃取,约有95%以上的砷被回收,其纯度可达97~98%,可以回用于氨基蒽酯的生产。而出水中砷的最终浓度可降至~L[2]。 沉淀及混凝沉降法 砷的主要处理方法有硫化物沉淀法, 或与多价重金属如三价铁等络合并与金属氢氧化物进行共沉定。第二种方法是水处理技术中常采用的传统混凝沉降法。此外也可采用活性炭和矾土吸附或离子交换。 铁盐法 铁盐法是处理含砷废水主要方法,由于砷(V)酸铁的溶解度极小,所以除直接用铁盐处理[3][4][5][6][7][8][9][10]外,也可在处理含砷废水时,先进行氧化处理,使废水中的三价砷先氧化成五价砷,使沉淀或混凝沉降法的效果更好。由于空气对三价砷的氧化速度很慢,所以常用氧化剂进行氧化,常用的氧化剂有氯,臭氧,过氧化氢,漂白粉,次氯酸钠[11][12][13]或高锰酸钾,也可以在亚硫酸钠存在下进行光催化氧化[14][15]。如在活性炭存在下也可以进行空气催化氧化,再与镁,铁,钙或锰等盐作用,脱砷能力可以提高10~30倍[16]。结合铁盐处理,出水中的砷含量可以降至~L[17]。铁盐法可以用在饮用水的净化中去[18]。 废水中的砷可以用石灰乳、铁盐沉淀、中和,再用PTFE膜过滤,废水中的

铜冶炼含砷污水处理

铜冶炼含砷污水处理 国内铜冶炼企业在90年代得到了快速发展,冶炼能力的上升加大了对原料铜精砂的需求。为了生产需要,一些企业降低了对原料的质量要求,特别是原料中砷的含量。国家有关质量标准规定原料中As<0.3%,但国内有些矿山生产的铜精砂中As含量较高,个别原料中As>1%。产生的后果是给企业的环境治理带来难度,使某些企业的大气排放和污水排放超标。本文主要讨论的是水环境的影响。对铜冶炼企业含砷工业污水的形成以及如何处理达标排放,并确保不造成二次污染,从本人的设计经验及生产实践中,阐述一些认识及看法。 1 含砷工业污水的组成 1.1 污酸 铜精砂中砷一般以铜的硫化物形态存在,主要是以砷黝铜矿(3Cu2S.As2S3)和硫砷铜矿(Cu3AsS4)存在。含砷矿物在采选过程中基本不溶于水而赋存在铜精砂中。在熔炼过程中,铜精砂中的砷由于高温绝大部分进入冶炼烟气中,并以As2O3的形态存在。而冶炼烟气通过净化、干吸、转化的工艺流程制成硫酸。制酸工艺采用一转一吸时,烟气中As2O3绝大部分进入制酸尾气中,经尾气处理系统进行处理和回收,使尾气达标排放。但现有尾气处理工艺存在着处理费用高,且尾气排放难以达标的问题,所以冶炼烟气制酸企业大都通过技术改造尽可能采用两转两吸制酸工艺,使制酸尾气能够达标排放。而烟气中的As2O3及其它杂质则进入定期抽出的污酸中,再对污酸进行处理,回收其有用金属。分析一些企业的排出污酸中含砷量一般均达3~10g/L,特殊情况高达20g/L,并含其它有害杂质。如贵冶和金隆铜业公司的污酸成分,见表1。 表1 污酸成分及杂质含量 g/L 成分H2SO4As F Cu Fe Bi Cd 贵冶529.9 5.281 1.181 1.3480.5450.4100.149 金隆1340.0 1.4 5.9000.10013.100 1.2 污水 冶炼企业的工业污水主要来源于电收尘冲洗、硫酸车间地面冲洗水和其它工况点被污染的生产水。水量大,成分复杂,含有As、Cu、Pb、Zn、Cd等有害金属离子,需进行深度处理后才能达标排放。有代表性的厂区工业污水成分见表2。 2 含砷污水的处理 2.1 高砷污酸的处理 2.1.1 处理原理 化工企业在硫酸生产中排出污酸一般采用石灰乳多段中和即可达到予期效果,而铜冶炼企业硫酸生产中的污酸由于高砷杂质的存在,必须采用硫化法除砷及铜离子后,再进行中和法处理,才能使工业污水达标排放。目前国内厂家污酸处理主要采用硫化→中和→氧化工艺或中和→硫化→氧化工艺。经生产实践验证,取得了满意的效果。如金隆铜业公司采用的污酸处理工艺见图1

实验室含镉废液的处理

实验室含镉废液的处理

摘要 镉是一种毒性很大的重金属,其化合物也大都属毒性物质,因此被认为是一种危险的环境污染物。实验室含镉废液的处理问题刻不容缓。现在主要有有化学法、物理化学法和生物法 3 大类,我们主要讨论化学方法中的用氢氧化物沉淀法去除实验室中含镉废液的方法。Cd2+在碱性状态下水解生成难溶、稳定的 Cd(OH) 2沉淀。反应随着碱度升高向右移从而利于Cd(OH) 2 的沉淀,但随着碱度 增加易生成HCdO2- 离子,导致水溶液中总镉升高,故PH应准确控制在11—12,才能使镉离子完全沉淀。 关键词:镉废水处理碱法

1、引言 镉是一种毒性很大的重金属,其化合物也大都属毒性物质,因此被认为是一种危险的环境污染物。极微量的镉就可对人体造成伤害,它通过食物链富集,具有稳定、积累和不易消除的特点,可对人体产生慢性中毒,主要积累在肝、肾、胰腺、甲状腺和骨骼之中, 使肾脏等器官发生病变,并引起神经痛和内分泌失调等病症,甚至使人疼痛而死。1993 年世界肿瘤研究机构(IARC)将镉定义为人类第IA 致癌物。近年来研究证明,无论是从毒性还是蓄积作用来看,镉都将是继汞、铅之后污染人类环境、威胁人类健康的第三个金属元素。镉在电镀、汽车及航空、颜料、油漆、印刷等行业都有广泛的应用,工厂排出的含镉废水是水体镉污染的主要污染源。比如电镀工业、军工生产排放的废水(含镉量约0.065mg/L)和硫酸矿石制取硫酸、磷矿石制取磷肥等工艺排除的废水(含镉量高达0.089 mg/L)等对水体污染尤为严重。震惊世界的日本“痛痛病”就是水田污染的典型事例,因镉污染而致,被称为“全球十大环境污染事件”,表现为全身疼痛、骨脆易折而引起身长缩短骨骼变形,最后发生肌萎缩及其他并发症,甚至死亡。 2、目的 镉对人体的危害已经引起了世界各国的重视,各国均制定了相应的国家标准。我国规定工业废水中镉的最高排放浓度为0.1mg·L-1,所以含镉废水在排放之前必须进行处理,以达到排放的要求,避免污染中毒事件的发生。在我国,也发生过严重的镉污染事件,因此,含镉废水的有效处理刻不容缓,研究、开发高效经济的含镉废水的处理技术,具有重大的社会、经济和环境意义。 3、实验原理 迄今为止,含镉废水的处理方法较多,根据镉离子的含量及镉存在形态的不同,所采用的处理方法也有所不同。目前常用的方法有化学法、物理化学法和生物法3 大类。此次我们主要讨论化学方法中的用氢氧化物沉淀法去除实验室中含镉废液的方法。 Cd2+在碱性状态下水解生成难溶、稳定的Cd(OH)2沉淀。 镉离子在碱性状态下发生水解的反应式如下:

丙烯氨氧化法生产丙烯腈

编号:No.27课题:丙烯氨氧化法生产丙烯腈 授课内容: ●丙烯氨氧化法生产丙烯腈反应原理 ●丙烯氨氧化法生产丙烯腈工艺流程 知识目标: ●了解丙烯腈的主要用途 ●了解碳3烃类的主要来源及用途 ●掌握丙烯氨氧化法生产丙烯腈反应原理  ●掌握丙烯氨氧化法生产丙烯腈工艺流程  能力目标: ●分析丙烯腈水混合物分离模式 ●分析和判断主副反应程度对反应产物分布的影响 思考与练习: ●丙烯氨氧化法生产丙烯腈反应催化剂组成和特点 ●影响丙烯氨氧化法生产丙烯腈反应过程的主要因素 ●丙烯氨氧化法生产丙烯腈工艺流程的构成 授课班级: 授课时间:年月日

第七章 丙烯系产品的生产  丙烯的主要来源有两个,一是由炼油厂裂化装置的炼厂气回收;二是在石油烃裂解制乙烯时联产所得。丙烯大部分一直来自炼油厂,近年来,由于裂解装置建设较快,丙烯产量相应提高较快。和世界市场一样,近年来我国丙烯的发展速度也逐渐超过了乙烯。2000年,我国乙烯需求量478.89万吨,而丙烯的需求量却达到498.85万吨,首次超过乙烯,之后丙烯的需求量一种保持在乙烯之上。  与乙烯相似,由于丙烯分子中含有双键和α-活泼氢,所以具有很高的化学反应活性。 在工业生产中,利用丙烯的加成反应、氧化反应,羧基化、烷基化及其聚合反应等,可得一系列有价值的衍生物,其主要产品及用途见图7—1。  由图可看出,丙烯是重要的有机化工原料,用于生产聚丙烯、异丙苯、羰基醇、丙烯腈、环氧丙烷、丙烯酸、异丙醇等。聚丙烯是我国丙烯最大的消费衍生物。2003年,我国聚丙烯的产量为445.5万吨,消耗丙烯约444.0万吨,约占全国丙烯总消费量的72.1%,;2004年我国聚丙烯产量为474.9万吨,消耗丙烯约480.0万吨,比2003年增长约8.1%;丙烯腈是我国丙烯的第二大衍生物,2003年,我国丙烯腈的产量约为56.0万吨,消费丙烯约62.7万吨,约占全国丙烯总消费量的10.2%;2004年产量约为58.0万吨,消费丙烯约为65.0 万吨,比2003年增长约3.7%;环氧丙烷是我国丙烯的第三大消费衍生物,2003年,全国环氧丙烷的产量约为39.8万吨,消耗丙烯约35.8万吨,约占全国丙烯总消费量的5.8%;2004年产量约为42.0万吨,消耗丙烯约37.8万吨,比2003年增长约13.1%;丁醇和辛醇也是丙烯的主要衍生物之一,2003年我国丁辛醇的产量合计约为45.35万吨,共消耗丙烯约40.7万吨,约占全国丙烯总消费量的6.6%;2004年产量合计为44.91万吨,共消耗丙烯约40.3万吨,比2003年减少约1.0%;2003年用于生产其它化工产品如苯酚、丙酮和丙烯酸等方面的丙烯消费量约为10.9万吨,约占全国丙烯总消费量的1.8%;2004年消费量约为11.5万吨。

7万吨年丙烯腈精制工段工艺设计—脱氢氰酸塔工艺设计及分析开题报告

安徽建筑大学 材料与化学工程学院 毕业论文开题报告 题目:________________________ 专业:________________________ 姓名:________________________ 学号:________________________ 指导教师:________________________ 20年月 毕业设计开题报告 一、课题的目的与意义 1、目的 (1)通过对丙烯腈工艺流程的设计和优化,了解丙烯腈的特性、国内外生产概况、生产工艺流程及其研究进展以及生产过程中的安全问题和废水处理问题。 (2)对生产工艺流程进行优化,以期实现高产率、低能耗的目的。 (3)对生产工艺流程的优化,可以排除生产过程中的安全隐患,使生产更加安全,降低对环境的污染。 2、研究意义

丙烯腈是重要的化工产品,为了从特定的原料得到所需的 产品,根据既定的工艺路线和工艺条件,采用相关的单元过程 及单元操作,设计出优化的工艺流程,并根据工艺条件选择合 适的设备,设计合理的工厂布局,以满足生产的要求,同时这 些设计又要符合有关非工艺类和工程经济的要求,做到技术上 可行、符合安全条例、经济上合理。通过年产(),确定最优 方案,以达到使其工艺产率增加,能耗降低,降低环境污染的 目的。 二、研究现状和前景展望 1、研究现状 (1)催化剂的研制 目前主要通过丙烯氨氧化制备丙烯腈,采用促进作用的的 F e-B i-M o-O或者促进作用的F e-S b-O。近年来,锡/锑/氧 催化系统在烯丙基氧化和氨氧化中作为催化剂进行了广泛研究。 然而,近年来,一些公司开始着手研究丙烷氨氧化法制备 丙烯腈。其中一个直接氨氧化烷烃的催化剂系统是锑/钒/氧。 目前最有潜力的系统为M o-V-N b-T e-氧化物催化系统, 具有62%的丙烯腈产率。 (2)工艺过程的改进 近年来,随着各国对环保和可持续发展理念的不断提高, 丙烯腈生产技术的改进主要集中在节能降耗、环保等方面,焦 点是中和塔污水的处理,主要的技术进展如下:省去氢氰酸精 制塔,由脱氰塔顶直接分离出高纯度氢氰酸,提高脱氰塔的效率;萃取塔侧线出料,由萃取塔下部侧线抽出乙腈,将抽出液 送到乙腈回收塔,增大乙腈浓度,减少蒸汽消耗;增设废热锅炉 回收热量;利用萃取塔或乙腈解析塔塔釜排除的循环水热量; 降低反应器出口的氨含量,避免较难处理的硫铵废水问题;中 和塔硫酸循环使用,节约资源,且丙烯腈回收率较高,物耗低 缺点是投资大;未反应氨回收再循环使用工艺,未反应氨、磷 酸铵回收循环使用,资源利用率高;中和塔改造提高丙烯腈回

含镉废水的处理方法

含镉废水的处理方法 近几年来我国重金属污染严重,尤其镉污染事件频繁发生,广西龙江镉污染事件,广东镉大米事件等严重危害人们的身体健康.镉(Cd)污染的主要来源是矿山、冶炼、电镀、油漆等企业大量排放的重金属废水[1].国家《污水排入城镇下水道水质标准》中规定:水中Cd 的最高允许排放浓度为0.1 mg ·L-1,但含Cd废水在处理前Cd的浓度都远高于国家标准.研究者一直寻求经济且有效的Cd去除方法,含Cd废水处理的常见方法主要有沉淀法、离子树脂交换法、电解法、活性炭吸附法及反渗透法等[2,3,4],这些方法虽对Cd有一定的去除效果,但均存在处理成本高、二次污染及处理效果不好等缺点.生物法处理含重金属废水是目前研究的重点和热点[5, 6],其中硫酸盐还原菌(SRB)是研究和应用处理重金属的主要微生物之一. SRB[7,8,9]通常指的是能通过异化作用进行硫酸盐(SO2-4)还原的一类细菌.SRB能够 把水中的SO2-4还原成负二价硫离子(S2-),S2-与重金属离子反应,产生溶解度非常低的金属硫化物,从而将其去除.国内外对利用SRB处理重金属早有报道[10,11,12,13,14].Jong 等[15]在上流厌氧填充床反应器中研究了SRB混合菌种对废水中重金属的去除,试验中Cu、Zn、 Ni的去除率为97%,As和Fe的去除率分别为77.5%和82%.马晓航等[16]利用SRB处理含Zn2+废水,结果表明进水COD和锌分别为320 mg ·L-1与100 mg ·L-1时,有机物和Zn2+的去除率分别达到73.8%和99.63%.现有利用SRB去除废水中重金属的研究均有一定的处理效果,但均存在反应器组成复杂、处理时间长等缺点.本研究对SRB进行了包埋固定化[17, 18],采用生物滤池的形式对含Cd废水进行处理,将硫酸盐还原、硫化物形成沉淀及沉淀过滤等过程在同一个反应器中发生,从而对处理流程进行了简化,以期为硫酸盐还原生物滤池处理含Cd废水的应用提供理论及技术支持. 1 材料与方法 1.1 试验装置及流程 本试验采用下向流厌氧生物滤池对含Cd2+废水进行去除.试验装置由3部分组成:原水配水部分、厌氧生物滤池、反冲洗部分,整个试验流程如图1所示. ①原水水箱; ②进水泵; ③流量计; ④阀门; ⑤硫酸盐还原生物滤池; ⑥取样口; ⑦ 反冲洗水泵; ⑧反冲洗水箱 图1 试验装置示意 原水配水部分由1个水箱组成,在水箱内人工配制含镉废水.

丙烯腈生产过程中的主要危险及有害因素分析(最新版)

( 安全论文 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 丙烯腈生产过程中的主要危险及有害因素分析(最新版) Safety is inseparable from production and efficiency. Only when safety is good can we ensure better production. Pay attention to safety at all times.

丙烯腈生产过程中的主要危险及有害因素 分析(最新版) 【摘要】丙烯腈的生产过程中具有较大的火灾爆炸危险性,并且毒物危害严重,因而,采取有效的安 全措施是正常生产的保障。 【关键词】丙烯腈;氢氰酸;火灾爆炸;中毒 1前言 丙烯腈是生产腈纶的原料,近几年来销售形势良好。丙烯腈的生产采用丙烯、氨、空气(氧)化法,生产工序主要由氧化、回收和精制组成。生产过程中存在火灾爆炸、电气危害、毒物危害、噪声危害等危险和有害因素,其中,以主反应器的火灾爆炸危险性和氢氰酸的毒物危害性尤为严重。因此,采取有效的安全技术措施和个体防护措施,使危险源和危害源得到较好的控制,降低火灾爆炸危

险性和毒物危害性,使反应器的火灾爆炸危险性和氢氰酸的毒物危害性达到“允许的限度”。是实现安全生产,经济运行,预防事故,保障劳动者安全与健康的保证。 2工艺流程 (1)反应 丙烯与氨按一定比例混合送入氧化反应器,由分布器均匀分散到催化剂床层中。空气按一定比例从反应器底部进入,经分布板向上流动,与丙烯、氨混合并使催化剂床层流化。丙烯、氨,空气在440℃~450℃和催化剂作用下生成丙烯腈。同时生成氰化氢、乙腈、一氧化碳、二氧化碳、丙烯醛、丙烯酸及水等。主反应方程式为:C3H6+NH3+3/202-~C3H3N+3H20+Heat 反应生成热由高压冷却水管产生高压蒸汽移出。反应生成气体进入急冷塔。· (2)急冷 急冷塔分两段,反应气体进入急冷塔下段,在下段循环废水经一层喷咀喷淋将反应气体骤冷。骤冷后通过升气管上升至急冷塔上

某半导体芯片生产项目含砷废水处理方案

某半导体芯片生产项目含砷废水处理方案浅析 摘要:随着半导体行业的高速发展,半导体芯片生产将产生大量的含砷废水。同时,日趋严格的废 水排放标准对含砷废水处理提出了更高的要求。本文针对半导体集成电路芯片生产产生的含砷废水,结合 工程实际情况,分析了袋滤-氢氧化钙-氯化铁混凝沉淀的处理方法,并采用膜分离技术及离子交换技术对 废水进行深度处理,取得了良好的除砷效果,将出水总砷稳定地控制在0.1mg/L以下,达到污染排放标准, 降低了对环境的影响。 关键词:半导体;砷化镓;含砷废水;共沉淀;超滤;离子交换 随着信息技术和通讯产业的高速发展,化合物半导体材料在微电子和光电子领域发挥越来越重要的作用。在半导体材料发展过程中,半导体材料主要经历了以硅(Si)、锗(Ge)为代表的第一代元素半导体,以砷化镓(GaAs)、磷化铟(InP)为 代表的第二代化合物半导体,以及以氮化镓(GaN)、碳化硅(SiC)为代表的第三代宽禁带半导体材料三大阶段[1]。作为第二代半导体材料,砷化镓是除硅之外研究最深入、应用最广泛的半导体材料。相对于硅,砷化镓具有较大的禁带宽度,更高的电子迁移率和饱和迁移速率[2],其不仅可直接研制光电子器件,以砷化镓为衬底制备的集成电路芯片是实现高速率光线通信及高频移动通信必不可少的关 键部件[3],在光电子、微电子及移动通信中应用愈加广泛。近年来,砷化镓半导体材料市场需求迅速增长。我国的砷化镓产业也在不断发展,近几年成立了多家砷化镓芯片生产企业。 基于自身材料和生产工艺,在砷化镓芯片的生产过程中排放的废气和废水中均含有砷化合物,其含砷废水的处理也成为砷化镓生产项目亟待解决的问题之一。砷及其化合物对人体及其他生物体均有广泛的毒害作用,已被国际防癌研究机构和美国疾病控制中心确定为第一类致癌物[4]。由于砷的高毒性和致癌性,在 GB8978-1996《污水综合排放标准》[5]中总砷被列于第一类污染物,最高允许排放浓度为0.5mg/L。而一些经济较为发达的城市和地区针对废水中总砷制定了更为严格的地方标准。DB31/374-2006《上海市地方标准——半导体行业污染物排放标准》[6]中,砷化镓工艺的总砷最高允许排放浓度为0.3mg/L。DB11/307-2013《北京市地方标准——水污染物综合排放标准》[7]中,排入公共污水处理系统的砷排放限值为0.1 mg/L,均高于国家标准。半导体行业排放监管的日趋严格,对含砷废水的处理工艺也提出了更高的要求。本文以某半导体芯片生产项目为例,浅析其含砷废水综合处理方案,以期为含砷废水处理达标排放提供思路。 1 含砷废水来源 半导体集成电路芯片制造是采用半导体平面工艺在衬底上形成电路并具备 电学功能的生产过程,其生产工艺十分复杂,包括外延片清洗、光刻、湿法蚀刻、

丙烯腈生产技术进展

2007年第26卷第10期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·1369· 化工进展 丙烯腈生产技术进展 吴粮华 (中国石化上海石油化工研究院,上海 201208) 摘要:重点论述了丙烯腈催化剂、流化床反应器及丙烯腈生产中环保节能降耗等生产技术的进展,并展望了丙烯腈生产技术的发展。 关键词:丙烯腈;氨氧化;催化剂;生产技术 中图分类号:TQ 226 文献标识码:A 文章编号:1000–6613(2007)10–1369–05 Advances in the Production Technology of Acrylonitrile WU Lianghua (Shanghai Research Institute of Petrochemical Technology,SINOPEC,Shanghai 201208,China) Abstract:Acrylonitrile is a kind of important chemical raw material. In this paper,technical development of acrylonitrile were elaborated in details. And the main directions of acrylonitrile catalysts and processes. Keywords:acrylonitrile;ammoxidation;catalyst;production technology 丙烯腈是一种重要的化工原料,主要用来合成聚丙烯腈纤维、ABS/SAN树脂、己二腈、丙烯酰胺、碳纤维等。丙烯腈于1893年由法国化学家首次制得,但直到20世纪40年代丙烯腈才开始工业化生产。1960年,INEOS/BP(Sohio)成功地开创了由丙烯、氨和空气在多相催化下于流化床反应器中直接氨氧化制造丙烯腈的新工艺[1],带动了α-烯烃选择性氧化及相关学科的全面发展。从丙烯、异丁烯等为原料,选择性氧化反应制备丙烯醛(酸)、丙烯腈、甲基丙烯醛(酸)、甲基丙烯腈等都已得到广泛工业化。目前用于此类反应的工业化催化剂都是多组份复合金属氧化物体系,主要的活性组分是钼铋盐等[2]。由于新工艺具有过程简单、操作方便、原料易得、成本低等优点,Sohio工艺自开发成功后迅速在世界范围内推广,而同一时期,英国的Distillers公司、法国的Ugine公司、意大利的Montedision公司和SNAM公司及奥地利的O.S.W 公司虽然也分别开发出了自己的丙烯氨氧化催化剂和工艺,但由于技术和经济上无法和Sohio工艺竞争,因此这些工艺已完全淡出市场。目前全世界丙烯腈的生产几乎都采用Sohio的丙烯氨氧化工艺。该工艺经40多年的发展,工艺技术已非常成熟。该工艺自问世以来,工艺上没有重大的改进,主要以研究新型催化剂为主及新型流化床反应器的开发,同时开展以节能降耗、环保等为目标的工艺技术改造,以提高装置效率。进入到90年代后,丙烷氨氧化制丙烯腈成为研究的热点。 1催化剂的研究开发 催化剂始终是丙烯腈生产的核心。各主要的丙烯腈技术开发商都着重于高性能催化剂的开发,目前居于世界先进水平的催化剂有美国INEOS/BP公司C-49MC、旭化成工业公司的S-催化剂、Solutia 公司的MAC-3及上海石油化工研究院(SRIPT)的MB-98、SAC-2000等。INEOS/BP是这一领域最重要的公司之一,其开发的催化剂从最初的磷钼酸铋催化剂,丙烯腈收率60%左右,到70年代的C-41催化剂,收率提高到了70%,之后又相继推出了C-49和C-49mc催化剂,将丙烯腈的收率进一步提高至79%~80%。根据市场需求,INEOS/BP也在收稿日期 2007–07–02;修改稿日期2007–08–02。 作者简介吴粮华(1960—),男,高级工程师,主要从事丙烯腈工业催化剂及丙烯腈成套工艺技术的研究开发。电话 021–68468623;E–mail wulh@https://www.360docs.net/doc/1210452617.html,。

含镉废水处理

含镉废水处理 含镉废水处理 含镉废水是危害最严重的重金属废水之一。金属镉虽无病理学意义,但镉的化合物则毒性很大。含镉废水有剧毒,镉易在生物体内聚集,如未经处理直接排放,易引起人畜的慢性中毒,给环境带来很大危害。鱼在含镉浓度为 0.01-0.02毫克/升的水中生活就会中中毒,0.2-1.1毫克/升浓度时,就会死亡。镉的毒性能严重抑制微生物的生长,浓度0.1-1.0毫克/升时,微生物死亡率可达50%左右。灌溉水中含镉,不仅污染土壤,且种植的稻米中镉含量大于4ppm时,米不成熟。蚕吃了含镉的桑树叶后,不仅不吐丝,还大量死亡。人体的镉中毒,主要是通过消化道与呼吸道引起的,内服硫酸镉30毫克/升可以致死。长期接触低浓度镉化合物,将引起贫血、肺气肿、神经痛、胃痛、骨质疏松症等等急病。含镉废水处理最常用的方法为中和沉淀法,Cd 2+ 在碱性状态下水解生成Cd2 沉淀,并且含镉废水中往往含有CN - 、NH 3 等其它离子,CN - 、NH 3 与镉离子络合将影响Cd 2+ 的水解沉淀,故废水的处理首先必须去除CN - 和NH 3 。由于氰化物是剧毒物质,因此,处理后指标必须绝对达标。原水的氰化物浓度随时在变化,故采用两池间歇处理,加氯量随浓度变化而变化,处理后水质测定达标后才能进行下一步处理。成都某(集团)有限责任公司,生产过程中产生电镀废水,废水污染物主要为 Zn 2+ 、Cu 2+、Cd 2+、CN - ,该废水经现有设施处理后,Cd 2+ 含量未能达到国家排放标准。成都某(集团)有限责任公司含镉废水与其它电镀废水分开单独处理,含镉废水水质指标详见表 0-1。表 0-1 含镉电镀废水水质水量表表中数据参照同类废水水质数据,车间两个月排放一次槽液约 50kg。 1.含镉废水处理工艺流程选择

含砷废水处理研究进展

含砷废水处理研究进展 各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢 摘要:含砷废水的传统处理方法,如物理法和化学法的不足之处在于费用高,二次污染大,工程化程度小。微生物法在含砷废水处理方面的研究取得了显著进展,研究成果已投入工程应用。本文认为活性污泥法对含砷废水的处理有着广阔的应用前景。 随着冶金和化工等行业发展以及贫矿的开发,砷伴随主要元素被开发出来,进入废水中的砷数量相当大[1]。据1995年中国环境状况公报报道,95年砷排放量达到1084吨,比94年增长%,1996年中国环境状况公报报道,96年砷排放量达到1132吨,比95年增长%。含砷废水有酸性和碱性,当中一般也含有其它重金属离子。砷与铅等共同作用会使废水的毒性更大,国内外都曾发现废水中

砷的中毒事件[2]。 含砷废水中砷的存在形态受pH的影响很大,在中性条件下,可溶砷的数量达到最大,随着pH的升高或降低其溶解的数量都将降低。pH为时,溶液中砷主要以无机砷的形态存在,当pH为时,有机砷为其主要存在形态[3]。但由于含砷废水的来源并不单一,其成分也是复杂多变的。 含砷废水的处理在六十年代就已得到世人的关注。如能回收利用则不仅可解决了砷对环境的污染问题,而且经济效益显著,节约资源。目前,比较系统的处理方法有化学沉淀法、物理法以及新兴的、最具发展前途的微生物法。 本文通过对含砷废水的传统处理方法如物化法和化学法进行系统论述,找出其存在的问题,详细考察微生物法处理含砷废水的研究进展,旨在为进一步发展活性污泥法处理含砷废水的处理技术提供重要的参考依据。 1化学法处理含砷废水处理含砷废

水,目前国内外主要有中和沉淀法、絮凝沉淀法、铁氧体法、硫化物沉淀法等,适用于高浓度含砷废水,生成的污泥易造成二次污染。在化学法方面的研究已经比较成熟,很多人曾在这方面做了深入的研究。 中和沉淀法作为工程上应用较广的一种方法,很多人在这方面作了深入的研究,机理主要是往废水中添加碱(一般是氢氧化钙)提高其pH,这时可生成亚砷酸钙、砷酸钙和氟化钙沉淀。这种方法能除去大部分砷和氟,且方法简单,但泥渣沉淀缓慢,难以将废水净化到符合排放标准[4]。 絮凝共沉淀法,这是目前处理含砷废水用得最多的方法。它是借助加入(或废水中原有)Fe3+、Fe2+、Al3+和Mg2+等离子,并用碱(一般是氢氧化钙)调到适当pH,使其形成氢氧化物胶体吸附并与废水中的砷反应,生成难溶盐沉淀而将其除去。其具体方法有,石灰-铝盐法、石灰-高铁法、石灰-亚铁法等[4]。

丙烯腈生产现状及前景分析

丙烯腈生产现状及前景分析 摘要:丙烯腈是一种重要的有机化工原料,主要应用于合成树脂、合成纤维及合成橡胶的 生产。目前,国内十多家丙烯腈生产商基本采用丙烯氨氧化法来生产丙烯腈。近年,国内丙烯腈的产能和产量稳步增加。丙烯腈以其在ABS 合成树脂方面等的应用及我国未来一段时间ABS 的迅猛需求将有较好的市场前景。 关键词:三大合成材料原料 丙烯氨氧化法 产能 产量 ABS 前言:丙烯腈是丙烯的第二大下游产品。丙烯是源自石油、煤、天然气的重要基础有机化 工原料,全球丙烯的产能已超1亿吨/年,其中约60%用于生产聚丙烯,其余部分用于生产丙烯腈、环氧丙烷、丙烯酸、异丙苯/苯酚/丙酮、羰基合成醇等基本有机原料。而我国2012年的丙烯产能1800万吨/年,产量1500万吨,其中约75%用于生产聚丙烯,基于丙烯原料的有机化工产业明显低于全球平均水平。随着我国今后几年中丙烯产能的快速增长,加快除聚丙烯以外的丙烯化工的综合发展已成为我国烯烃化工可持续发展的一项重要课题。而丙烯腈是丙烯的第二大下游产品。认清丙烯腈的生产现状及发展前景对于开发丙烯下游产品具有重要的意义。 1.丙烯腈的介绍及应用 丙烯腈是丙烯的第二大下游产品。虽然世界各国消费构成不同,但是从总体上来说,世界上大约有61 %的丙烯腈用于生产腈纶纤维,年需求量以2 %~3 %的速率增长;ABS 是丙烯腈的第二大用户,因该产品具有高强度、耐热、耐光和耐溶剂性能好等特点,今后10 年其需求量将以4. 5 %的速度增长;丁腈橡胶应用比例大约占4 % ,年增长率在1 %以上,主要用在汽车行业上;近年来己二腈用量增多,年增长率为4 % ,主要用于生产乌洛托品;丙烯酰胺的需求量亦以年均2 %的速率增长,主要用于纸张、废水处理、矿石处理、油品回收、三次采油化学品等方面。丙烯腈在其它方面应用也较多,如生产碳纤维、水处理树脂、防腐剂、涂料等,需求量将以年均3 %的速率增长。见下图。国内丙烯腈主要应用于合成纤维、合成橡胶、合成树脂等领域,其中,腈纶约占丙烯腈总需求的40%,ABS 树脂占35%,其它占25%。 丁腈橡胶 皮革、纺织品 纸张、处理剂 丙烯酸树脂 ABS 塑料 ABS 树脂 丁腈乳胶 丙烯酸 AS 树脂 丙烯腈 丙烯酰胺 抗水剂 己二醇 聚丙烯腈纤维 a-氯化丙烯腈 尼龙66 合成羊毛 (腈纶) 合成纤维

含镉废水怎么处理

含镉废水怎么处理 含镉废水有剧毒,镉易在生物体内聚集,如未经处理直接排放,易引起人畜的慢性中毒,给环境带来很大危害。那么含镉废水怎么处理呢? 镉的毒性非常大,GB 8978—1996明确规定镉是一类污染物,最高允许排放质量浓度为0.1 mg/L,且不能稀释处理。而一般工厂的含镉废水处理前镉的浓度都远远高于标准要求限值。含镉废水常见的处理方法有化学沉淀法、离子交换法、电解法、凝聚法和氧化还原法等,虽然处理效率高,但耗资大并会造成二次污染。笔者采用操作简单、处理效率高的吸附法,利用赤泥对含镉废水进行处理,并寻求最佳吸附条件,从而使含镉废水能够达标排放。 接下来看下水污染成因与污水处理方法?

乡镇工业的污染有一部分是由于生产工艺落后,管理不当,缺乏环境保护意识等造成的。乡镇工业存在的这些问题不仅对环境造成了严重的危害,而且由于污染物的形成大都以各种资源能源的浪费为前提,因此上述问题实际上也提高了生产成本。如果这些问题得不到有效的解决,乡镇工业产品在国内外市场上的竞争力将会不断弱化,乡镇工业的发展也将会因此受到极大的限制。强化乡镇企业环境管理主要从三方面着手:一是完善乡镇企业环境管理的法律体系,即各地政府要根据当地实际情况制订地方性环境保护法规,并且在此基础上制订乡镇企业主要污染行业的环境管理部门规章,使乡镇企业环境管理有法可依。二是将环境保护作为考核地方政府领导的重要内容,杜绝为了追求短期经济利益,牺牲环境的行为。三是实行排污许可证制度,实施排污总量控制,在环境敏感区扩建、改建项目,不能增加污染负荷;新建项目必须实行区域污染物总量削减,确保总量不增加。 我们在平时最好多学习一些水污染安全小知识,饮用水尽量安装家用净水器过虑在饮用,这样更有利于用水安全。

2.2 丙烯腈生产4合成反应器

4.合成反应器 氨氧化法合成丙烯腈是一个气固相催化放热反应,反应热效应较大,丙烯转化率和丙烯腈收率对温度的变化比较敏感,因此,反应器温度的控制就显得十分重要。要求反应器能及时移走反应生成的热量,使反应器的径向和轴向的温度尽可能保持一致,并保证气态物料和固态催化剂在反应器中充分接触。生产中常用的反应器是固定床反应器和流化床反应器。 (1)固定床反应器 合成丙烯腈所用的固定床反应器属于内循环列管式固定床反应器,结构示意图如图2—3l所示。反应器内的热载体是硝酸钾、亚硝酸钾和少量硝酸钠组成的熔盐,、采用螺旋桨式搅拌器强制熔盐在器内循环,使反应器的上下部温度均匀,其温差仅为4℃,熔盐充分吸收反应热并及时传递给器内的盘管式换热器,移出热量。盘管内通入饱和蒸气,吸收反应热后产生的副产高夺蒸气,可作为其它工艺设备的热源反应器内的列管长2.5~5m,内径25mm,一台反应器装有多达l万根列管。装填在列管内的圆柱体催化剂:直径为3~4mm.长3~6mm。原料气体由列管上部引入,为缓和进口段的 反应速率,防止催化剂与高浓度气体反应过快,造成 反应器上部区域温度过高,一般在列管上部填充一段 活性差的催化剂或住催化剂中掺入一些惰性物质以稀 释催化剂。物料的流向自上而下,可避免催化剂床层 因气速变化而受到冲击,发生催化剂破碎或被气流带 走。 在列管式固定床反应器中,催化剂被固定在列管 内,物料返混小,反应的转化率较高,且催化剂不易 磨损。但由于不能充分发挥各部分催化剂的作用,反 应器的生产能力较低,单台反应器生产能力一般只有 5 000吨/年,扩大生产能力使设备显得过于庞大,反 应温度难以控制;以熔盐作为热载体.不仅增加了辅 助设备,而且熔盐还对设备有一定的腐蚀作用;另外, 向列管中装填或更换催化剂都比较困难,这些问题限制了列管式固定床反应器的应用,因此, 工业上采用固定床反应器的并不多。 (2)流化床反应器 流化床反应器是丙烯腈生产中使用最广泛的反应器,如图 2—32所示。它由空气分布板、丙烯和氨混合气体分配管、U 形冷却管和旋风分离器等部分组成。空气分布板、丙烯和氮混 合气体分配管均为管式分布器,空气分布板上均匀开孔,起支 承催化剂、使气体在床层上分布均匀、改善流化条件的作用。 空气分布板与丙烯和氨混合气体分配管之间有一定的距离,在 此间氧气充足,形成催化剂再生区,使催化剂处于高活性的氧 化状态。流化床内装填的催化剂呈微球形,粒径平均55μm。 丙烯和氨与空气分别进料,可使原料混合气的配比不受爆炸极 限的限制,比较安全,对保持催化剂活性和延长寿命,以及对 后处理过程减少含氰污水的排放郁有好处。u形冷却管同多组 冷却管组成的,它不仅移走了反应热,维持适宜的反应温度而 且还起到破碎床内气泡、改善流化质量的作用.在反应器上部 设置的旋风分离器有分离气体夹带的小颗粒催化剂的作用。反应后气体中氧含量很少,催化剂从反应器的扩大段进入旋风分离器后,在流回反应器的过程中,与分布板通入的空气使催

丙烯腈生产现状

国内外丙烯腈生产现状与发展趋势 丙烯腈(AN)是三大合成材料的重要原料之一,在合成树脂、合成纤维、合成橡胶等高分子材料中占有显著的地位并有着广阔的应用前景。目前世界丙烯腈产品用于腈纶生产约占50%。随着西方国家腈纶产量逐年减少,丙烯腈在纤维中的消耗比例正在呈逐年下降趋势。丙烯腈用于ABS、丁睛橡胶生产约占30%,用于生产己二腈约占10%。丙烯腈还应用于己内酞胺、多元醇聚合物等生产中,消耗量占10%左右。 丙烯的主要来源有两个,一是由炼油厂裂化装置的炼厂气回收;二是在石油烃裂解制乙烯时联产所得。丙烯大部分一直来自炼油厂,近年来,由于裂解装置建设较快,丙烯产量相应提高较快。和世界市场一样,近年来我国丙烯的发展速度也逐渐超过了乙烯。2000年,我国乙烯需求量478.89万吨,而丙烯的需求量却达到498.85万吨,首次超过乙烯,之后丙烯的需求量一种保持在乙烯之上。与乙烯相似,由于丙烯分子中含有双键和α-活泼氢,所以具有很高的化学反应活性。在工业生产中,利用丙烯的加成反应、氧化反应,羧基化、烷基化及其聚合反应等,可得一系列有价值的衍生物。 丙烯腈在常温下是无色透明液体,味甜,微臭,沸点77.5℃,凝固点-83.3℃,闪点0℃,自燃点481℃。可溶于有机溶剂如丙酮、苯、四氯化碳、乙醚和乙醇中,与水部分互溶,20℃时在水中的溶解度为7.3%(w),水在丙烯腈中的溶解度为3.1%(w)。其蒸气与空气形成爆炸混合物,爆炸极限为3.05~17.5%(v)。丙烯腈和水、苯、四氯化碳、甲醇、异丙醇等会形成二元共沸混合物,和水的共沸点为71℃,共沸物中丙烯腈的含量为88%(w),在有苯乙烯存在下,还能形成丙烯腈-苯乙烯-水三元共沸混合物。丙烯腈剧毒,其毒性大约为氢氰酸毒性的十分之一,能灼伤皮肤,低浓度时刺激粘膜,长时间吸入其蒸气能引起恶心,呕吐、头晕、疲倦等,因此在生产、贮存和运输中,应采取严格的安全防护措施,工作场所内丙烯腈允许浓度为0.002mg/L。 丙烯腈分子中有双键(c=c)和氰基(C N)两种不饱和键,化学性质很 活泼,能发生聚合、加成、水解、醇解等反应。 聚合反应发生在丙烯腈的C=C双键上,纯丙烯腈在光的作用下就能自行聚合,所以在成品丙烯腈中,通常要加入少量阻聚剂,如对苯二酚甲基醚(阻聚剂MEHQ)、对苯二酚、氯化亚铜和胺类化合物等。除自聚外,丙烯腈还能与苯乙烯、丁二烯、乙酸乙烯、氯乙烯、丙烯酰胺等中的一种或几种发生共聚反应,由此可制得各种合成纤维、合成橡胶、塑料、涂料和粘合剂等。 丙烯腈是三大合成的重要单体,目前主要用它生产聚丙烯腈纤维(商品名叫“腈纶”)。其次用于生产ABS树脂(丙烯腈—丁二烯—苯乙烯的共聚物),和合成橡胶(丙烯腈—丁二烯共聚物)。丙烯腈水解所得的丙烯酸是合成丙烯酸树脂的单体。丙烯腈电解加氢,偶联制得的己二腈,是生产尼龙—66的原料。 一世界丙烯腈产能和市场需求分析 2005年世界丙烯腈产能为614万吨/年,2006年全球丙烯腈产能为617万吨/年。截至2009年,全球丙烯腈能力为623.7万吨/年。

相关文档
最新文档