综合除法与余数定理

综合除法与余数定理
综合除法与余数定理

学科:奥数

教学内容:综合除法与余数定理

【内容综述】

数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。

【要点讲解】

1、综合除法

在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可

以推得

(此处用表示关于x

的多项式)除以的商式系数和余数有如下

规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数乘以

b

加的第二项系数得商式的次高次项系数,以此类推最后得余数。

★例1

计算()

分析

把除式变成形式用综合除法,

解:,

∴商式为,余式为-38

说明用综合除法计算时要注意:

(1)被除式与除式按降幂排列后的缺项要用0补足;

(2

)除式要变成的形式(b可以是负数)

★★例2 用综合除法计算

(1

);

(2

解:(1

∴商式为,余式为-3

(2

)用

,只需先以

除,

再把求得的商用2除,而余数不变。

∴商式为,余式为。

说明一般地,多项式除以一次二项式,用综合除法先将多项式除以,

所得的商式除以p就是所求的商式,所得的余数就是所求的余数。

2、余数定理

若多项式f(x)除以的商式为p(x),余数为r,则

当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。

余数定理多项式除以()所得的余数等于。

特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。

由余数定理易知多项式除以的余数就是的多项式

的值。

余数定理告诉我们,可以不做除法求除以的余数;反过来在计算

复杂时也可以用综合法求。

★★★例3 一个关于x的二次多项式,它被除余2,它被除时

余28,它还可被整除,求。

解:设由题意得

解得a=3,b=1,c=2。

说明因能被整除,所以是的因式,于是可设

,再由,,列出a,b的方程求解。

★★★★例4 利用余数定理判断能否被a-b,a+b整除。

分析含,即把看成是含字母a的多项式,要判断

能否被a-b,a+b整除,即判断,是否为零。

解:令=

当a=b时,,故能被a-b整除;

当a=-b时,

故当n为偶数时,能被a+b整除,当n为奇数时,不能被a+b整除,

余式为.

★★★★例5 试确定a和b,使能被整除。

解:由于,因此,若设,

假如能被整除,则x+1和x+2必是的因式,因此,当x=-1,

,即

当x=-2时,即

由①,②联立,则得时,能被整除。

【同步达纲练习】

A 级

★1、当多项式除以多项式时,其余式为()。

(A)2 (B)-2 (C)2x-2 (D)-2x-2

★★2、多项除以多项式x-3所得余数为()。

(A)-71 (B)71 (C)-59 (C)59

★★3、若多项式含有因式x-1和x-2,则mn=_________。

★★4、求(除以的商式和余式。

B 级

★★5、设,以1991除x,所得余数是()。

(A)0 (B)1 (C)2 (D)4

★★★6、已知,则

值为()。

(A)30 (B)-30 (C)32 (D)-32

★★★7、如果,则_______。

★★★8、已知是二元二次式的一个因式,则a+b= 。

★★★★9、已知能被整除,试求a,b的值。

参考答案

【同步达纲练习】

A 级

1、(C)。

2、(D),提示:利用余数定理。

3、-100,提示:利用余数定理,得从而m=-5,n=20。

4、商式=,余式=

B 级

5、(B),提示:

6、(C),提示:含,得

即。

7、5,提示,

=。

8、-3,提示:含x=y=1,则原式为零,即。

9、含因能整除,因此由余数定理,当

时,即由此得a=11,b=-6。

高斯定理--说课

物理教研室第周教研活动(说课) 高斯定理 说课人: 一、教学对象 授课学生: 2017级大二学生 教学对象分析: 数学基础:对于简单的一维、二维积分基本掌握; 物理基础:在前面我们学习了电场、电场线电场强度、电场强度通量的基本知识,而这一节的内容其实还是电场强度的通量的一种特殊求法。 学生为大学二年级学生,已经学习了高等数学,能够进行微积分和矢量运算;并且已经学习了电场、电场线电场强度、电场强度通量的基本知识, 二、使用教材及参考教材 1.使用教材 《物理学教程》(第三版)下册,马文蔚、周雨青、解希顺编,高等教育出版社。---该教材中高斯定理的验证比较简单,需参考其它教材改进。 2.参考交材 1)《普通物理学》(第五版)第二册,程守洙、江之永主编,高等教育出版社。

2)《新世纪大学物理》下册,陈颖聪、田杨萌主编,华东师范大学出版社。 三、所选内容在本课程中的地位 “高斯定理”是大学物理(二)电磁学篇章中“静电场”(也即教材中第九章)这一章中的重点,是期末考试必考的知识点。高斯定理是电场的重要性质之一。高斯定理是在库仑定律基础上得到的,它适用范围比后者更广泛。库仑定律只适用于真空中的静电场,而高斯适用于静电场和随时间变化的场,高斯定理是电磁理论的基本方程之一。 四、教学目标及其重难点 教学目标: 1)理解电通量的概念 2)理解并识记高斯定理表达式 3)掌握利用高斯定理求电荷对称分布的带电体周围电场强度的方法 教学重难点: 1)高斯定理的理解(重点) 2)高斯定理计算电场强度的条件和方法(重点、难点) 五、教学方法 1.讲授法(主要方法) 复习:电场、电场线、电场强度、电场强度通量复习等基本理论; 新课:高斯定理

综合除法与余数定理

学科:奥数 教学内容:综合除法与余数定理 【内容综述】 数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。 【要点讲解】 1、综合除法 在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可 以推得 (此处用表示关于x 的多项式)除以的商式系数和余数有如下 规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数乘以 b 加的第二项系数得商式的次高次项系数,以此类推最后得余数。 ★例1 计算() 分析 把除式变成形式用综合除法, 解:, ∴商式为,余式为-38 说明用综合除法计算时要注意: (1)被除式与除式按降幂排列后的缺项要用0补足; (2 )除式要变成的形式(b可以是负数) ★★例2 用综合除法计算 (1 ); (2 ) 解:(1 ) ∴商式为,余式为-3 (2 )用 除 ,只需先以 除, 再把求得的商用2除,而余数不变。

∴商式为,余式为。 说明一般地,多项式除以一次二项式,用综合除法先将多项式除以, 所得的商式除以p就是所求的商式,所得的余数就是所求的余数。 2、余数定理 若多项式f(x)除以的商式为p(x),余数为r,则 当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。 余数定理多项式除以()所得的余数等于。 特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。 由余数定理易知多项式除以的余数就是的多项式 的值。 余数定理告诉我们,可以不做除法求除以的余数;反过来在计算 复杂时也可以用综合法求。 ★★★例3 一个关于x的二次多项式,它被除余2,它被除时 余28,它还可被整除,求。 解:设由题意得 解得a=3,b=1,c=2。 ∴ 说明因能被整除,所以是的因式,于是可设 ,再由,,列出a,b的方程求解。 ★★★★例4 利用余数定理判断能否被a-b,a+b整除。 分析含,即把看成是含字母a的多项式,要判断 能否被a-b,a+b整除,即判断,是否为零。 解:令= 当a=b时,,故能被a-b整除;

因式分解定理

§5 因式分解定理 一、不可约多项式 C on i x i x x x R on x x x Q on x x x )2)(2)(2)(2() 2)(2)(2() 2)(2(42224+-+-=++-=+-=-. 1.定义8 数域P 上次数1≥的多项式)(x p 称为域P 上的不可约多项式 (irreducible polynomical),如果它不能表成数域P 上的两个次数比)(x p 的次数低的多项式的 乘积. 2.注:1)、根据定义,一次多项式总是不可约多项式; 2)、一个多项式是否可约是依赖于系数域的; 3)、零多项式与零次多项式不说可约或不可约; 4)、不可约多项式)(x p 的因式只有非零常数(0c ≠) 与它自身的非零常数倍)0)((≠c x cp 这两种,此外就没有了。 反过来,具有这个性质的次数1≥的多项式一定是不可约的 证:若1)(=?x f ,结论显然成立。 1)(>?x f ,假设)(x f 可约, 则)()(),()( ),()()(x f x h x f x g x h x g x f ?

对高斯定理的理解

对高斯定理的理解 1.高斯面S是静电场中的任意闭合曲面.但S面上不能有有限的电荷分布。 2.从高斯定理看电力线的性质:高斯定理说明正电荷是发出E通量的源,负电荷是吸收E通最的源。若闭合面内存在正(负)电荷.则通过闭合面的E通量为正(负).表明有电力线从面内(面外)穿出(穿入),即正(负)源电荷发射(吸收)电场线;若闭合面内没有电荷,则通过闭合面的E通量为零,意味着有多少电场线穿入就有多少电场线穿出,说明在没有电荷的区域内电场线不会中断. 在闭合面内,电荷空间分布的变化将改变闭合面上各点场强的大小和方向,但只要电量相同.就不会改变通过整个闭合面的E通量: 在闭合面外,有无电荷及其如何分布,将会影响闭合面上各处场强的大小和方向,但对通过整个闭合面的E通量没有贡献。 3.利用库仑定律和叠加原理导出高斯定理,库仑定律在电荷分布已知情况下,能求出场强的分布;高斯定理在电场强度分布已知时.能求出任意区域的电荷;当电荷分布具有某种对称分布时.可用高斯定理求出这种电荷系的场强分布,而且这种方法在数学上比用库仑定律简便得多;对于静止电荷的电场,可以说库仑定律与高斯定理是等价的;在研究运动电荷的电场或一般地随时间变化的电场时,库仑定律不再成立,而高斯定理却仍然有效。所以说:高斯定理是关于电场的普遍的摹本规律。 高斯定理求电场步骤 高斯定理的一个重要应用。是用来计算带电体周围电场的电场强度。实际上。对称性不是应用高斯定理求场强的条件,对于具有对称性.且能应用高斯定理求场强的问题,由于具有对称性.总可选择合适的高斯面而使计算较为简便:但在某些非对称情况下,只要高斯定理中的f-E·ds能够进行积分,则无论电荷或电场分布是否具有对称性,均能应用高斯定理求电场强度。因此对称性不是应用高斯定理求场强的条件,应用高斯定理求场强的关键是看(1)左边的积分能否进行,过分强调对称性,往往导致忽视应用高斯定理求场强的数学条件,造成对高斯定理的误解,应用高斯定理求场强问题的步骤: 1.分析场强或电荷分布的特点.进行对称性分析和判断,即由电荷分布的对称性。分析场强分布的对称性,非对称情况下,判断能够进行积分,判断f.E·ds 能否用高斯定理来求电场强度的分布。这一步是解题的关键,也是解题的难点。常见的对称性有球对称性包括均匀带电球面、球体、点电荷;轴对称性包括均匀带电的“无限长”圆柱面、圆柱体、细直线;面对称性包括均匀带电的“无限大”平面、平板。 2.根据场强分布的特点。作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过该高斯面的电通量容易计算。一般地。高斯面各面元的法线矢量n与E平行或垂直,n与E平行时.E的大小要求处处相等,使得E能提到积分号外面。 3.计算电通量f E·dS和高斯面内所包围的电荷的代数和。最后由高斯定理求出场强。

综合除法与余数定理

综合除法与余数定理Revised on November 25, 2020

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。

(2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。 前面讨论了除式都是一次项系数为1的一次式的情形。如果除式是一次式,但一次项系数不是1,能不能利用综合除法计算呢 例2、求)23()1623103(23-÷+-+x x x x 的商式Q 和余式R 。 解:把除式缩小3倍,那么商就扩大3倍,但余式不变。因此先用3 2-x 去除被除式,再把所得的商缩小3倍即可。 ∴Q=542-+x x , R=6。 下面我们将综合除法做进一步的推广,使除式为二次或者二次以上的多项式时也能够利用综合除法来求商和余式。

静电场中的高斯定理

静电场中的高斯定理 [摘要] 高斯定理是静电学的重要定理,它可以通过数学证明方法得到,同时 要注意高斯面的选择和对高斯定理的理解。 [关键字] 高斯定理 高斯面 证明 注意事项 [内容] 高斯定理是静电学中的一个重要定理,它反映了静电场的一个基本性质,即静电场是有源场,其源就是电荷。可以将其表述为:在静电场中,通过任意闭合曲面的电通量,等于该闭合曲面所包围的电荷的代数和的ε0 分之一,而与闭合曲面外的电荷无关。高斯定理的表达式如下: ? ?= ?=ΦV e dq 1 d εS S E 其中,E 表示在闭合曲面上任一dS 面处的电场强度,而EdS 则表示通过面元dS 的电场强度通量, 就表示通过整个闭合曲面S 的电场强度通量, 习惯上称闭合曲面S 为高斯面。由高斯定理可知:静电场是有源的,发散的,源头在电荷所在处,由此确定的电场线起于正电荷,终于负电荷。 下面对于静电场中的高斯定理进行证明: (a )点电荷在球面中心 点电荷q 的电场强度为 r r q 41 30??=πεE 球面的电通量为 2 20S 2 030q r 4r 4q d r 4q d r r q 41 d εππεπεπε= ??==???=????S S S E S S (1) (b )点电荷在任意闭曲面外

闭曲面S 的电通量为 ()??? ?++= ++=??? =?S S S S S E zdxdy r 1ydxdz r 1xdydz r 14q zdxdy ydxdz xdydz r 1 4q d r r q 41d 3330S 3030 πεπεπε (2) 根据高斯公式 ?????++=???? ? ???+??+??S V R Q P R Q P dxdy dzdx dydz dxdydz z y x (3) 并考虑到3 33r z r y ,r x === R Q P ,在S 内有连续一阶的偏导数,故式(2)可以用高斯公式计算。 将式(2)代入式(3)中得 ()???? ?? ? =???? ? ??? ???????? ???+???? ???+???? ???= ++= ++=??? =?V 33303330 S 3030 0dxdydz z r z y r y x r x 4q zdxdy r 1 ydxdz r 1xdydz r 14q zdxdy ydxdz xdydz r 1 4q d r r q 41d πεπεπεπεS S S S S E

初中数学竞赛——余数定理和综合除法

第1讲 余数定理和综合除法 知识总结归纳 一.除法定理: ()f x 和()g x 是两个一元多项式,且()0g x ≠,则恰好有两个多项式()q x 及()r x ,使 ()()()()f x q x g x r x =?+,其中()0r x =,或者()r x 比()g x 次数小。 这里()f x 称为被除式,()g x 称为除式,()q x 称为商式,()r x 称为余式. 二.余数定理: 对于一元n 次多项式1110()n n n n f x a x a x a x a --=++++,用一元多项式x c -去除()f x ,那么余式是一个数。设这时商为多项式()g x ,则有 ()()()()f x x c g x f c =-+ 也就是说,x c -去除()f x 时,所得的余数是()f c . 三.试根法的依据(因式定理): 如果()0f c =,那么x c -是()f x 的一个因式.反过来,如果x c -是()f x 的一个因式,那么()0f c =。 四.试根法的应用: 假定1110()n n n n f x a x a x a x a --=++++是整系数多项式,又设有理数p c q =是()f x 的根(p q 、是互质的两个整数),则p 是常数项0a 的因数,q 是首项系数n a 的因数. 特别的,如果1n a =,即()f x 是首1多项式,这个时候1q =,有理根都是整数根。 典型例题 一. 多项式的除法 【例1】 已知32()4523f x x x x =+--,2()21g x x x =++,试求()f x 除以()g x 所得的商式()Q x 和余式 ()R x .

7.综合除法与余数定理

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 41264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同 -7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面, 同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,

静电场的高斯定理复习题,DOC

-选择题 1.关于高斯定理的理解有下面几种说法,其中正确的是: ()A 如果高斯面上E 处处为零,则该面内必无电荷; ()B 如果高斯面内无电荷,则高斯面上E 处处为零; ()C 如果高斯面上E 处处不为零,则高斯面内必有电荷; ()D 如果高斯面内有净电荷,则通过高斯面的电场强度通量必不为零。 〔〕 答案:()D 2. ()A q 3.面的电通量为1φ,2φ,()A φ()B φ()C φ()D φ 4. () A () B () C () D 〔〕答案:()C 5.有两个点电荷电量都是q +,相距为2a ,今以左边的点电荷所在处为球心,以a 为半径作一球形高斯面。在球面上取两块相等的小面积1S 和2S ,其位置如图所示。设通过1S 和2S 的电场强度通量分别为1φ和2φ,通过整个球面的电场强度通量为φ,则 ()A 120,/q φφφε>=;()B 120,2/q φφφε<=; ()C 120,/q φφφε==;()D 120,/q φφφε<=。 〔〕 q S 2

答案:()D 6.一点电荷,放在球形高斯面的中心处。下列哪一种情况,通过高斯面的电场强度通量发生变化: ()A 将另一点电荷放在高斯面外;()B 将另一点电荷放进高斯面内; ()C 将球心处的点电荷移开,但仍在高斯面内;()D 将高斯面半径缩小。 7.A q -()A ()B 小为()C ()D 〔〕8. ( (9. (Q 60 ε ()C 穿过每一表面的电通量都等于 Q 30 ε;()D 穿过每一表面的电通量都等于0 24Q ε 〔〕 答案:()D 10.高斯定理0 nt i d ε∑?= ?q S E S ()A 适用于任何静电场。

初中数学竞赛余数定理和综合除法

第1讲 余数定理和综合除法 知识总结归纳 一.除法定理: ()f x 和()g x 是两个一元多项式,且()0g x ≠,则恰好有两个多项式()q x 及()r x ,使 ()()()()f x q x g x r x =?+,其中()0r x =,或者()r x 比()g x 次数小。 这里()f x 称为被除式,()g x 称为除式,()q x 称为商式,()r x 称为余式. 二.余数定理: 对于一元n 次多项式1110()n n n n f x a x a x a x a --=++++L ,用一元多项式x c -去除()f x ,那么余式是一个数。设这时商为多项式()g x ,则有 ()()()()f x x c g x f c =-+ 也就是说,x c -去除()f x 时,所得的余数是()f c . 三.试根法的依据(因式定理): 如果()0f c =,那么x c -是()f x 的一个因式.反过来,如果x c -是()f x 的一个因式,那么()0f c =。 四.试根法的应用: 假定1110()n n n n f x a x a x a x a --=++++L 是整系数多项式,又设有理数p c q =是()f x 的根(p q 、是互质的两个整数),则p 是常数项0a 的因数,q 是首项系数n a 的因数. 特别的,如果1n a =,即()f x 是首1多项式,这个时候1q =,有理根都是整数根。 典型例题 一. 多项式的除法 【例1】 已知32()4523f x x x x =+--,2()21g x x x =++,试求()f x 除以()g x 所得的商式()Q x 和余式 ()R x .

综合除法与余数定理修订版

综合除法与余数定理修 订版 IBMT standardization office【IBMT5AB-IBMT08-IBMT2C-

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是 )(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++-

∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。

综合除法与余数定理含答案

综合除法与余数定理 数学运算既要求正确,还要求迅速。简化运算方法与步骤,是速算的一种重要途径。例如,应用正负数的概念,可以把有理数的加减法统一为加法,即求代数和,把两种运算转化成一种运算,就是一种了不起的简化。同样地,整式的加减法也可以统一成加法,即合并同类项,进而简化为求同类项系数的代数和,把代数式的运算转化为数的运算,又是一种了不起的简化。本期主要介绍一种简便的综合除法运算方法。 1、综合除法 在课本上已学习了用竖式计算两个一元多项式相除的问题。由多项式除法我们可 以推得(此处用表示关于x的多项式)除以的商式系数和余数有如 下规律:商式的最高次项系数就是(按降幂排列后)的第一项系数,把这个数 乘以b加的第二项系数得商式的次高次项系数,以此类推最后得余数。 例1 计算() 分析把除式变成形式用综合除法, 解:, ∴商式为,余式为-38 说明用综合除法计算时要注意: (1)被除式与除式按降幂排列后的缺项要用0补足; (2)除式要变成的形式(b可以是负数) 例2用综合除法计算 (1); (2) 解:(1) ∴商式为,余式为-3 (2)用除,只需先以除,再把求得的商用2除,而余数不变。

∴商式为,余式为。 说明一般地,多项式除以一次二项式,用综合除法先将多项式除以 ,所得的商式除以p就是所求的商式,所得的余数就是所求的余数。 2、余数定理 若多项式f(x)除以的商式为p(x),余数为r,则 当时,(此处表示多项式中x用数值b代入后计算出的数值),从而有下面的定理。 余数定理多项式除以()所得的余数等于。 特别地,当时,我们称多项能被整除,即()是的因式,这也称为因式定理。 由余数定理易知多项式除以的余数就是的多项式 的值。 余数定理告诉我们,可以不做除法求除以的余数;反过来在计算 复杂时也可以用综合法求。 例3一个关于x的二次多项式,它被除余2,它被除时余28, 它还可被整除,求。 解:设由题意得 解得 a=3,b=1,c=2。 ∴ 说明因能被整除,所以是的因式,于是可设 ,再由,,列出a,b的方程求解。 例4利用余数定理判断能否被a-b,a+b整除。 分析含,即把看成是含字母a的多项式,要判断 能否被a-b,a+b整除,即判断,是否为零。

余式定理 因式定理

余式定理 1公式 整系数多项式f(x)除以(x-a)商为q(x),余式为r,则f(x)=(x-a)q(x)+r。 如果多项式r=0,那么多项式f(x)必定含有因式(x-a)。反过来,如果f(x)含有因式(x-a),那么,r=0。 2概念 当一个多项式f(x) 除以(x –a) 时,所得的余数等于f(a)。 例如:当f(x)=x^2+x+2 除以(x –1) 时,则余数=f(1)=1^2+1+2=4。 3推论 当一个多项式f(x) 除以(mx –n) 时,所得的余数等于f(n/m)。 例如:求当9x^2+6x–7 除以(3x + 1) 时所得的余数。 设f(x) = 9x^2 + 6x –7,则余数f(-1/3)=1–2–7=-8。 4例题 (全国港澳台华侨联合招生考试题型) 设f(x)以(x-1)除之,余式为8,以(x2+x+1)除之的余式为(7x+16),求(x^3-1)除之的余式为多少? 解:根据题意,得f(1)=8,f(x)=(x^2+x+1)g(x)+7x+16。 因为x^3-1=(x-1)(x^2+x+1) 所以f(x)=(x-1)(x^2+x+1)g(x)+a(x^2+x+1)+7x+16 (其中a(x2+x+1)+7x+16为余式)又f(1)=8 所以f(1)=3a+7+16=8 所以a=-5,因此余式为-5x^2+2x+11 因式定理 1定义 为余式定理的推论之一:如果多项式f(a)=0,那么多项式f(x)必定含有因式x-a。反过来,如果f(x)含有因式x-a,那么,f(a)=0。 2例题 如图, 此题可以利用完全立方公式解答,但较为繁琐。 仔细观察不难发现,当x=y时,原式的值为0。 根据因式定理可知:原式必有因式x-y同样的, 可以得到原式必有因式y-z和z-x(也可以由原式 为对称多项式直接得到) 然后再用待定系数法(结合赋值法)求出待定系 数即可 3意义

高斯定理

简析高斯定理在电场中的应用 高斯定理是静电学中的一个重要定理, 它反映了静电场的一个基本性质, 即静电场是有源场, 其源即是电荷。可表述为: 在静电场中, 通过任意闭合曲面的电通量, 等于该闭合曲面所包围的电荷的代数和的1/ε倍, 与闭合曲面外的电荷无关。表达式为 01 () 1/n i i S E ds q φε==?=∑?? (1) 高斯定理是用来求场强E 分布, 定理中, S 是任意曲面, 由于数学水平的限制, 要由高斯定理计算出E,则对由场的分布有一定的要求, 即电荷分布具有严格的对称性( 若电荷分布不对称性即不是均匀的, 引起电场分布不对称, 不能从高斯定理求空间场强分布,高斯定理当然仍是成立的) , 由于电荷分布的对称性导致场强分布的对称性, 场强分布的对称性应包括大小和方向两个方面。典型情况有三种: 1) 球对称性, 如点电荷, 均匀带电球面或球体等; 2) 轴对称性, 如无限长均匀带电直线, 无限长均匀带电圆柱或圆柱面, 无限长均匀带电同轴圆柱面 3) 面对称性, 如均匀带电无限大平面或平板,或者若干均匀带电无限大平行平面。 根据高斯定理计算场强时, 必须先根据电荷分布的对称性, 分析场强分布的对称性; 再适当选取无厚度的几何面作为高斯面。选取的原则是: ○ 1 待求场强的场点必须在高斯面上;○ 2 使高斯面的各个部分或者与E 垂直, 或者E 平行;○ 3 与E 垂直的那部分高斯面上各点的场强应相等;○ 4 高斯面的形状应是最简单的几何面。 最后由高斯定理求出场强。高斯定理说明的是通过闭合曲面的电通量与闭合 曲面所包围的所有电荷的代数和之间的关系, 即闭合曲面的总场强E 的电通量只与曲面所包围的电荷有关, 但与曲面内电荷的分布无关。但闭合曲面上的电场强度却是与曲面内外所有电荷相联系的,是共同激发的结果。 步骤: 1.进行对称性分析,即由电荷分布的对称性,分析场强分布的对称性,判断能否用高斯定理来求电场强度的分布(常见的对称性有球对称性、轴对称性、面对称性等); 2.根据场强分布的特点,作适当的高斯面,要求:①待求场强的场点应在此高斯面上,②穿过 该高斯面的电通量容易计算。一般地,高斯面各面元的法线矢量n 与E 平行或垂直,n 与E 平行时, E 的大小要求处处相等,使得E 能提到积分号外面; 3.计算电通量???S d E 和高斯面内所包围的电荷的代数和,最后由高斯定理求出场强。 应该指出,在某些情况下(对称),应用高斯定理是比较简单的,但一般情况下,以点电荷场强公式和叠加原理以相互补充,还有其它的方法,应根据具体情况选用。 利用高斯定理,可简洁地求得具有对称性的带电体场源(如球型、圆柱形、无限长和无限大平板型等)的空间场强分布。计算的关键在于选取合适的闭合曲面——高斯面。 典型例题: 例题1、设一块均匀带正电无限大平面,电荷密度为σ=9.3×10-8C/m 2,放置在真空中,求空间任一点的场强. 解:根据电荷的分布情况,可作如下判断:(1)电荷均匀分布在均匀带电无限大平面上,我们知道孤立正的点电荷的电场是以电荷为中心,沿各个方向在空间向外的直线,因此空间任一点的场强只在与平面垂直向外的方向上(如果带负电荷,电场方向相反),其他方向上的电场相互抵消;(2)在平行于带电平面的某一平面上各点的场强相等;(3) 带电面右半空间

综合除法(1)

综合除法与余数定理 一、知识提要与典型例题 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 (一)、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数 826322 4 1264414072++--+--++-444344421 ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。

最新综合除法与余数定理

第七节 综合除法与余数定理 综合除法与余数定理是中学数学中十分重要的内容,它们是研究多项式除法的有力工具。综合除法和余数定理在整个中学数学中有着极为广泛的应用。本节我们将作一些初步介绍。 一、综合除法 一个一元多项式除以另一个一元多项式,并不是总能整除。当被除式)(x f 除以除式)0)((),(≠x g x g 得商式)(x q 及余式)(x r 时,就有下列等式: )()()()(x r x q x g x f +?=。 其中)(x r 的次数小于)(x g 的次数,或者0)(=x r 。当0)(=x r 时,就是)(x f 能被)(x g 整除。 下面我们介绍一个一元多项式除以另一个一元多项式的简便运算——综合除法。 例1、用综合除法求3474142x x x -++除以2-x 所得的商和余式。 解: 余式商的各项的系数826322 4 1264414072++--+--++- ∴)2()74142(34-÷-++x x x x 的商是263223+--x x x ,余式是8。 上述综合除法的步骤是: (1)把被除式按降幂排好,缺项补零。 (2)把除式的第二项-2变成2,写在被除式的右边,中间用一条竖线隔开。 (3)把被除式的第一项的系数2移到横线的下面,得到商的第一项的系数。 (4)用2乘商的第一项的系数2,得4,写在被除式的第二项的系数-7的下面,同-7相加,得到商的第二项系数-3。 (5)用2乘商的第二项的系数-3,得-6,写在被除式的第三项的系数0的下面,同0相加,得到商的第三项的系数-6。 (6)用2乘商的第三项的系数-6,得-12,写在被除式的第四项的系数14的下面,同14相加,得到商的第三项系数2。 (7)用2乘商的常数项2,得4,写在被除式的常数项4的下面,同4相加,得到余式8。

余式定理

余式定理与因式定理 例1. (1)求242)(+--=x x x x f 除以1+x 之余式。 (2)设1537935699357)(2 345+++--=x x x x x x f ,求)2(f 。 类1. 15)(2 4-++=bx ax x x f 以3-x ,1-x 除之,余式分别为45,-15求以1+x 除之,余式为 。 类2. 求=-?-?+?-?-2001246012161258127123 3 4 5 。 类3. 以1+x 除5102610019992000 ++-+x x x x 的余式为 。 类4. 设)(),(x g x f 均为多项式,)(x f 除以12-x 之余式为23+x ,)(x g 除以322 -+x x 之 余式为25+x ,则)()15()()3(2 x g x x f x +++除以1-x 的余式为 。 类5. 已之3 221)(x x x x f -+-=,且)2()1(+=+x f x g ,)2()(+=x g x h ,求 )()(x xg x h +除以1+x 的余式。 Ans: 1. –19,2. 40,3. –12,4. 62,5. -8。 例2. (1)多项式)(x f 除以1-x ,2-x 之余式分别为5,7,求)(x f 除以)2)(1(--x x 之余式。 (2)多项式)(x f 除以2-x ,322 ++x x 之余式分别为5,65+x ,求)(x f 除以 )32)(2(2++-x x x 之余式。 类1. 设多项式)(x f 以2-x 除之余3,以4+x 除之余-9,则以)4)(2(+-x x 除之余式为 。 类2. 设)(x f 为一多项式,0)deg(≥x ,若1-x ,2-x ,3-x 分别除之,余式为3,7,13,则)(x f 以)3)(2)(1(---x x x 除之余式为 。 类3. 多项式)(x f 除以2-x ,12 ++x x 之余式分别为10,1+x ,求)(x f 除以 )1)(2(2++-x x x 之余式。 Ans: 1. 12-x ,2. 12++x x ,3.222 ++x x 。 例3. 多项式)(x f 以2)32(+x 及2 )2(-x 除之余式分别为9978-x ,6+x (deg 4)(≥x f ): (1)今以)2()32(-?+x x 除)(x f 之余式为 。 (2)今以)2()32(2 -+x x 除) (x f

2-2 综合除法、大除法.讲义学生版

板块一 综合除法、多项式除法 记号()f x 关于x 的代数式常用记号()f x 或()g x 等表示,例如,用()f x 表示代数式223x x +-,则可记为 ()223f x x x =+-. 这时()1f 就表示1x =时,代数式223x x +-的值,即()2121130f =?+-=,同样地,有 ()2020033f =?+-=-;()()()2 121132f -=?-+--=-等等. 用()f x 可以代表关于x 的各种不同的代数式,但在同一个问题中,不同的代数式要用不同的字母表示,如()f x ,()g x ,()q x ,()r x 等. 综合除法 在学习多项式除法时,我们有带余除法: ()()()()f x g x q x r x =?+ (1) 其中()f x 表示被除式,()g x 表示除式,()q x 表示商式,()r x 表示余式,且余式()r x 的次数小于除式()g x 的次数. 如果()g x 是一次式x a -,则()r x 的次数小于1,因此,()r x 只能为常数(0或非零常数).这时,余式也叫余数,记为r ,即有 ()()()f x x a q x r =-?+ (2) 当一个多项式除以一个形如x a -的一次式时,有一种简便的运算方法——综合除法,我们用一个例子来说明,如求()2357f x x x =+-除以2x +所得的商式和余式. 解析:先用一般的竖式除法计算 2231 23573672 5 x x x x x x x x -++-+---- 所以,商式为31x -,余数为5-. 从运算中我们可以发现上述运算实际上是它们系数之间的运算,所以我们可以省去字母,将上面的除法用下面的简便方式来表示. 3 5 72 6 2 3 1 5 +----- 商式为31x -,余数为5-. 这种简便的除法,称为综合除法,其演算过程如下: ⑴被除式按x 的降幂排列好,依次写出各项的系数,遇到缺项,必须用“0”补足. ⑵把除式x a -的常数项的相反数a 写在各项系数的左边,彼此用竖线隔开. 例题精讲 综合除法和余数定理

大学物理课堂教学设计:高斯定理

课堂教学设计4:高斯定理 【授课内容】:高斯定理 【所在章节】:第7章:静电场与恒定电场7.2节:高斯定理 【授课对象】:2018级大数据学院(软件工程、数字工程、网络工程专业) 【教学学时】:2学时 一、学情分析 (一)教材内容分析 本书将“高斯定理”编排在第7 章“静电场”的第2节,是整个电学部分两个基本定理之一。在本节之前,教材已经介绍了库仑定律求解真空中静止点电荷周围激发的静电场问题,学生感觉利用该定律求解静电场在有些情况下比较复杂.本节内容安排了从特殊到一般的高斯定理的归纳过程,由特殊的以点电荷为球心的球面积分模型出发,进行不断变化,最终得出一般表达式,让学生亲身经历高斯定理的推导过程.根据电荷的分布特点,选择适当的高斯面,使用此定理能够更为方便地求出具有对称性分布的电场强度,将高斯定理与库仑定律联系对比,使学生认识到用高斯定理求解具有某种对称性的带电体周围分布的电场时较一般方法更加简单方便.同时也说明了静电场是有源场.电场中高斯定理的学习为之后稳恒磁场高斯定理的学习和理工科专业后续专业课程(比如电子信息工程专业课《电磁场与波》的学习)中计算电场强度奠定了基础,学生通过学习该定理能掌握科学的思维方法和研究方法,体验物理学中的对称和谐之美。 (二)学生学习基础分析 学生在学习本节之前,已掌握了利用库仑定律求解真空中静止点电荷周围的电场强度E,体会到利用该定律求解对数学尤其是积分运算要求较高且计算过程比较复杂,那么,求解带电体周围激发的静电场E是否还有其他相对简便的方法?静电场是否是有源场?这些都是要和学生共同解决的问题.更重要的是静电场和稳恒磁场的物理规律具有一定的对称性,静电场的学习将为后续稳恒磁场的学习做铺垫。 二、教学目标设计 (一)知识与技能 1、深刻理解电场强度E的闭合曲面积分(或E的通量)与该闭合面所包围电荷之间的关系; 2、电通量概念的理解和正负的判断; 3、对于多个点电荷或连续分布带电体周围激发的电场,理解闭合曲面上E的本质

余式定理及因式定理的应用

初二数学竞赛培训专题: 余式定理及因式定理的应用 初二( )班 姓名: 学号: _ 一、知识要点: 1、()x f 的意义:已知多项式()x f ,若把x 用c 带入所得到的值,即称为()x f 在x =c 的多项式值,用()c f 表示。 2、被除式、除式、商式、余式之间的关系:设多项式()x f 除以()x g 所得的商式为()x q ,余式为()x r ,则:()x f =()x g ×()x q +()x r 3、余式定理:多项式)(x f 除以b x -之余式为)(b f ;多项式)(x f 除以b ax -之余式)(a b f 。 4、因式定理:设R b a ∈,,0≠a ,)(x f 为关于x 的多项式,则b x -为)(x f 的因式?0)(=b f ; b ax -为)(x f 的因式?0)(=a b f 。 二、余式定理应用: 1、(1)已知132)(3 -+=x x x f , 求f (x )除以)1(-x 、()12+x 所得的余式; (2)设f (x )=2x 2+kx +10除以2x –1余5,求k 的值; (3)以x 2–3x –4除多项式f (x )与g (x ),分别得余式3x +2与–4x +7, 求以x –4除f (x )+g (x ) 所得的余式。 2、设6302546)(2 345-+---=x x x x x x f ,求f (7)。

3、计算:(1)2001246012161258127122345-?-?+?-?-; (2)7111511561172114112345+?+?-?-?-。 4、(1))(x f 、()x g 都是多项式,已知221-=??? ??- f ,2521=??? ??- g ,则以12+x 除()()x g x f ?之余式是什么? (2))(x f 除以12-x 之余式为23+x ,且)(x g 除以322 -+x x 之余式为 25+x ,则1-x 除)()15()()3(2x g x x f x ?++?+的余式是什么 三、因式定理应用: 1、设x –2为f (x )=3x 3+x 2–kx +5的因式,试求k 的值。 2、已知x +1与x –2都是4324++-bx ax x 的因式,试求a 与b 的值。 3、设k 为负整数,若f (x ) x 4 2x 3 x 2 kx 3有整系数一次因式,求k 之值。

相关文档
最新文档