从安全寿命到损伤容限——结构设计的观念演变

从安全寿命到损伤容限——结构设计的观念演变
从安全寿命到损伤容限——结构设计的观念演变

从安全寿命到损伤容限

——结构设计的观念演变

摘要

结构的设计,必须在性能、安全、成本三者间取得平衡。

最早仅考虑材料静力强度;20世纪30年代后为采用线性疲劳观念的“安全寿命”, 50年代改进为“破损安全”;而70年代则使得“损伤容限”成为现今的标准结构设计准则。1988年揭示了散布型疲劳损伤(亦称为“广布疲劳”)成为“损伤容限”结构设计的新课题。

1、静力强度

早期应用中,由于金属材料极富韧性(ductility),结构设计方法很保守,因此结构的安全裕度(Margin of Safety)相当大。在结构遭遇疲劳问题之前,设备早就因为其它使用原因而失效了,因此结构疲劳寿命不是此时的设计重点。结构设计只要满足材料静力强度(Static Strength)就不会有问题,结构分析则以静力试验为佐证,试验负载是使用负载乘以一个安全系数,以计入不确定因素,比如:负载不确定、结构分析不准确、材料性质变异、制造质量变异……等。

为了减轻结构重量以提升使用性能,在材料静力强度主导结构安全的思想下,一些强度高但韧性低的金属材料开始出现在设备结构上。只是此时的设备运行工况已非昔日设计工况可比,结构应力大增,应

力集中(Stress Concentration)效应使高应力情况更加恶化,最后导致产生疲劳裂纹,降低了结构安全裕度,材料静力强度已不足以保证设备运行的结构安全。

2. “安全寿命”

“安全寿命”(Safe Life)设计观念。在这种设计观念里,设备在预定的运行期间内需能承受预期的反复性负载,当结构运行时数到达运行寿命时,认定结构疲劳寿命已经完全耗尽,设备必须报废。

“安全寿命”设计观念的缺点,在于它的疲劳分析与设计一般是采用“疲劳强度耐久限制”(Fatigue Strength‐Endurance Limit)的方法,也就是所谓的麦林法则(Miner's Rule)。它是在实验室里对多片截面积各异的小尺寸材料试片,施加不同的等振幅(Constant Amplitude)负载,直到试片疲劳破坏为止,以获得此材料在各种施加应力和发生疲劳破坏的负载周期之数据,称之为S‐N曲线(S‐N Curve,S代表施加应力,N代表负载周期数),再以实际结构件在各种设计运行条件下的应力,找到相对应的疲劳破坏负载周期数,依线性累加的方式加总,就可预测结构的疲劳寿命,并应用于设计。虽然这种方法已行之多年,且普遍为一般结构设计及分析所接受,然而这种分析方法有其先天上的缺点,使得分析的结果常不符合实际。

因为一般在实验室里做这种小型试片的疲劳试验时,试片表面上都有经过特别处理,以使试片表面尽可能光滑平整而没有任何缺陷,也就是没有任何裂纹的存在。因此,由这种试片所得的疲劳寿命试验数据,就包括了裂纹初始(Crack Initiation)及裂纹生长(Crack Growth)

这两至发小、而裂断裂相信上很造时纹,

的疲两部分。所发现有初始、尺寸、何裂纹生长裂的那一段如果把这信也无法保很可能(事时的非破坏,则它的疲

疲劳试验里所谓裂纹始裂纹(何时会发,则是指初段时间。这种数据保证所有事实上也坏性检验疲劳寿命里,

裂纹初纹初始(Cr Initial Cra 发现,那要初始裂纹

SAE1045应用于设有结构零件早已预先验能力无法中就不再

初始阶段所rack Initiat ck )的那要看该实验纹由此之后

5钢材的设备的结构件都处于完先)存在着法发现。如再包含裂纹

所花的时tion ),是那一段时间验室的非破后继续扩展S ‐N 曲线

构分析及设完美无瑕的着各式各样果结构上纹初始的那

间约占了是指试片表间,至于初破坏性检验展,直到最设计上,由的情况,换样微小的裂上早已预先那一段时间

了全部疲劳表面没有裂初始裂纹的验能力而最终试片完由于我们很换言之,结裂纹,只是先存在着有间,而在传

劳寿命的百裂纹的大定。完全很难结构是制有裂传统

百分

之九十以上。传统的麦林法则分析结果,一律包含了裂纹初始及裂纹生长两阶段时间,显然过于乐观,也因此在传统的疲劳设计里,往往要采用一相当大的安全系数(一般是4)来尽量避免这项偏差,而过大的安全系数又常常会造成设计结构的超重。

至于用来验证结构运行寿命的全结构疲劳试验(Full Scale Fatigue Test),也因为试验设备无法完全表现量产型设备在制造过程中所留下的制造瑕疵,让试验结果充满不确定性。

多项统计数据表明,很多设备的失效案例中,56%以上可归咎于制造过程遗留下的预存(pre‐existing)裂纹,这些裂纹是设备运行期间发生疲劳破坏的主因,但无论是全结构疲劳试验或是麦林法则,都无法计入这些预存裂纹对疲劳寿命的影响。

为确定设备运行具有等效的结构安全,后来认为在结构的设计阶段,需根据以往经验搭配最新理论执行疲劳分析,并以静力试验及全结构疲劳试验进行验证;设备的设计使用寿命(即:安全寿命)为全结构疲劳试验所验证的运行时数除以安全系数(通常是4),以计入材质、制造、组装过程、负载、……等不确定因素;运行阶段需执行设备运行负载的量测,获得运行的真实结构负载,以持续更新设计阶段的疲劳分析数据,确切掌握结构的实际使用寿命。

3.破损安全

在更明确的规范中规定,除了“疲劳强度”(Fatigue Strength,也就是“安全寿命”)设计外,也可采用“破损安全强度”(Fail‐Safe Strength)设计。

设备结构中,那些大幅负担运行负载,一旦损坏又未能发现时,最终会造成设备损毁的结构零组件,称为主结构(Principal Structural Element)。“破损安全”设计要求当设备某一主结构局部损坏或完全破坏时,在运行负载大小不超过百分之八十的限制负载乘以1.15动态因子(Dynamic Factor)的条件下,主结构的负载会由邻近的其它结构分担,设备不会因结构过度变形致使运行特性大幅度恶化,也不致有立即的破坏顾虑。

“安全寿命”设计的设备需有主结构的疲劳分析或试验,且需执行设备静载荷与运行载荷合并作用下的全结构疲劳试验;而采用“破损安全”设计的设备,需以分析或试验的方式证明,在前段所述的静力负载(Static Load)作用下,主结构强度符合设计需求(例如:在施加负载下切断一主结构件,或是在设备上切出一条短裂缝,此时邻近的其它结构仍能承担规定负载),不硬性要求全结构疲劳试验,且旧型设备相同设计观念下的运行经验,亦可成为结构强度的等效佐证。至于是否需对主结构进行定期检查,虽然一般都认为应该要有,但在主结构发生不明显损坏时,是否应依据邻近其它结构的剩余寿命订定检查时距,则没有规定。

“破损安全”设计观念的基本论点是:设备主结构一旦发生损坏时,在运行中会使运行特性明显改变,很容易会被一般的目视检查发现,因此只要是在正常的维修或操作情形下,就能防止主结构突然的致命性毁坏。就疲劳而言,这种设计的结构只要无损坏,几乎就可无限期使用,既无需定期更换,也不必制订特定的检查,加上未强制执

行全结构疲劳试验,节约设备运行成本的优点显而易见,因此,绝大多数的设备主结构都改为采用这种结构设计方式。

“破损安全”设计乍看之下,设备的结构似乎更加安全,但这种设计本身并未保证主结构的损坏一定很明显。换言之,当主结构损坏后的运行特性无明显改变,主结构又无强制性的定期检查时,将导致无法及时发现结构损坏并修复,设备虽然没有立即的损毁顾虑,但主结构负载转由周边结构分担后,加诸于邻近结构的负载大幅增加,如果此负载继续维持一段时间,邻近结构可能很快就会因疲劳、腐蚀、机械……等因素陆续损坏,最终必会危及设备的安全寿命。

在“破损安全”的设计理想中,设备结构在使用寿命期间不会有安全顾虑,但主观的设计错误认定以及缺乏适当的定期检查规定是“破损安全”设计的最大隐忧。

“安全寿命”设计观念的重大缺失是:在制造过程中不小心所造成的微小裂纹有可能因检验疏失而随机存在某些结构上,对设备运行期间的结构安全带来致命威胁,但“安全寿命”的疲劳分析或是全结构疲劳试验,都假设结构件上没有任何初始缺陷或裂纹存在,根本无法计入这些随机小裂纹对结构疲劳寿命造成的影响。

4.损伤容限

对“损伤容限”的定义为:“结构上因疲劳、腐蚀、意外而存在一定大小之单一或分散的损伤下,其仍能维持一段时间的余留强度。”

损伤容限”设计中明确指出︰一、在有裂纹的情况下,结构的余留强度不能低于设计限制负载;二、在裂纹生长前述负载下所允许的

最大料、如:间在备仍安全让设载)会发定期

用大长度前在设计新

、结构制作:R 角、铆在负载作用仍能在一定一般以为全运行,这设备的主结)以下,“发生裂纹期检查的制中的结

损伤,需能检新结构时作、以及铆钉孔……用下逐渐定时间内为“损伤容这是个错误结构强度“损伤容限,但可能在制订依据构强度

伤容限裂纹检出此裂纹,必须假及制程所影…会预存一渐生长,结安全地容容限”设计误的观念。降到极限限”设计主在运行期。主结构未降到极限

纹缓慢生长设纹。

假设结构零影响,每一一定大小结构的设计容忍这些损计可让设。没有任何限负载(U 主要是对期间因环境构如果有裂负载

设计下,规零部件在出一主结构件小的裂纹,计必需在裂损伤。

设备在已知何设计规范ltimate L 于在正常境因素产生裂纹,除非以下,否

规定预存裂出厂时,由件上应力最此裂纹于裂纹存在的知有裂纹的范允许在明oad ,1.5常使用情况生裂纹的主非经工程分则必须马

纹初始长度由于不同的最大的位于设备运行的情况下,的情况下继明知情况倍的限制况下,不预主结构,提分析在后续上修

度与形状 的材置,行期设继续下,制负预期提供续使复。

所谓的裂纹缓慢生长设计,就是结构上的初始裂纹,在一定期间内不会生长到临界值。单一负载路径结构一定得采用这种设计方式,其预存裂纹生长寿命需大于设备的设计运行寿命;而“破损安全”设计则分成:一、多重负载路径结构,如:主结构常以多个接头相接合,任一个接头损坏,其负载会转由其它接头分担。二、裂纹阻滞(Crack Arrest)结构,如:主结构沿圆周方向,会在特定部位每隔一定距离加贴裂纹阻滞条,可阻挡沿主结构方向延伸的裂纹。

“损伤容限”设计必须假设主结构件上,最容易产生裂纹的临界位置(Critical Area)上有一定大小的预存裂纹。

就裂纹缓慢生长结构而言,在固定件孔边的初始裂纹长度与形状为:若结构厚度大于0.127厘米,为半径0.127厘米的四分之一圆;若结构厚度小于或等于0.127厘米,则为长度0.127厘米的穿透裂纹。在非固定件孔边位置的初始裂纹长度与形状为:若结构厚度大于0.318厘米,为直径0.635厘米的半圆;若结构厚度小于或等于0.318厘米,则为长度0.635厘米的穿透裂纹。

就“破损安全”结构而言,初始裂纹长度与形状在固定件孔边为:如果结构厚度大于0.051厘米,为半径0.051厘米的四分之一圆;如果结构厚度小于或等于0.051厘米,则为长度0.051厘米的穿透裂纹。在非固定件孔边位置的初始裂纹长度与形状为:如果结构厚度大于0.127厘米,为直径 0.254厘米的半圆;如果结构厚度小于或等于0.127厘米,则为长度0.254厘米的穿透裂纹。

确定以非毁前发现性检

裂纹损伤设备制造定结构上没非破坏性检前,发现并5.定期“损伤容现裂纹,故应采用破检查文件经由破坏

纹由初始长伤容限破损安造出厂时没有大于检验,在这并予以修期检查

容限”设计故需有定破坏力学(Supplem 坏力学的

长度生长安全设计下,需以非破上述尺寸这些预存裂修复。

计下的结期检查的(Fractur ment Insp 裂纹生长

长到余留强

下,规定的预破坏性检验寸的裂纹;裂纹的长结构安全与的密切配合re Mechan pection Do 长分析,可

强度下可容预存裂纹初验(Non ‐D 设备运行长度生长到与否,取决合。

nics )的方ocument )可获得结构

容忍最大裂初始长度与形Destructive 行后,维修到临界长度决于检验人方法,制订。

构在设计负

裂纹长度形状

e Inspecti 修人员也要度造成设备人员能否及订结构的补负载下,预(即:

临界on )要能备损及时补充预存

界长

度 度生裂纹以造设备

只要)所需的此结构生长到检查后续的再纹由可检造成破坏前备可继续运

要按时执行的时间。

的首次检查人员可再次检查出最小长前,至少运行;如果行检查并

损伤容检查时机(可检出的最查时距(Re 长度生长到少有二次的果发现有损并根据检查

容限设计下Inspectio 最小裂纹长peated In 到临界长度的检出机会损伤,则进查结果执行下的结构检查

n Thresho 长度所需的spection I 度的一半,会。检查结进行结构修行适当措施

查时距制订old ),为裂的时间;

nterval ),以确保在

结果如果结修理或更换施,设备就

订方法

裂纹由初始至多可定在裂纹长度结构无损换。换言之

就可永续运始长定为度足伤,之,运行。

实际运用情况表明:检查结果的不确定性是目前“损伤容限”设计的隐忧,这虽然可以通过缩短检验时距来克服,但会降低设备的有效运行率,增加检验人员的负担。

6.散布型疲劳损伤

设计中假设单一结构件应力最大的位置上存在着散布型疲劳损伤(Widespread Fatigue Damage),这种损伤为:“在多处位置上同时存在的损伤,其大小及分布密度使得结构无法满足规定的余留强度需求。”其特征为:在多处形状雷同且连续的结构细节处(如:固定件孔边),承受均匀应力周期下,同时产生小裂纹。散布疲劳损伤的种类,分成同一结构件上,多处同时发生,且会连接成一长裂纹的多重位置损伤(Multiple Sites Damages);以及同类型的相互搭接结构件上,各相邻搭接处同时发生,且会彼此交互作用(interaction)的多重组件损伤(Multiple Element Damages)。

这需要增加三方面任务:一、增加制造遗留瑕疵为损伤来源之一;

二、需订定结构的检查时距;三、要求设计时必须特别考虑可能发生的散布型疲劳损伤,并以完成至少二倍运行寿命的全结构疲劳试验,完成全设备细部拆检后所得的充足证据,证明在设备的设计运行寿命期间不会发生这种损伤,并且需要有分析数据佐证其发生时机的预测。

“损伤容限”设计经此强化后,除可防止设备在设计运行寿命期间因疲劳、腐蚀、制造瑕疵、意外损伤导致提早损坏外,还可防止老旧设备因散布型疲劳损伤以致发生安全问题。

但即便有此完善的设计准则,如果设备上有不符合制造蓝图规定

的结构件,仍然无法确保设备的结构安全。

结语

为维护设备的运行安全,设备结构的设计观念也历经多次的变革。

早期的静力强度设计观念完全不考虑疲劳效应,这导致了很多的疲劳强度风险。

接续的“安全寿命”设计观念则企图界定结构的疲劳寿命,当结构使用时数到达此数值时,不论其是否完好如初,皆视为其疲劳寿命已使用殆尽而必须更换新件,因此这种设计的结构安全性被称为“以更换保障安全”(Safety‐by‐Retirement)。换言之,如果结构疲劳寿命分析失真,结构安全将面临大灾难.

“破损安全”设计观念则企图藉由良好的设计,让结构上的裂纹在未造成安全顾虑前,零部件在正常操作及维修状态下即能轻易发现它,所以这种设计观念的结构安全性被称为“以设计保障安全”(Safety‐by‐Design),也因此,如果结构设计失当时结构安全亦将不保。

目前业界普遍采用的“损伤容限”设计观念,则是依赖定期检查来发现结构上预期会产生的疲劳裂纹,这种设计观念的结构安全性被称为“以检查保障安全”(Safety‐by‐Inspection),因此,如果是检查人员疏忽或未预期的结构上产生疲劳裂纹,结构安全将面临重大挑战。

西方有一句谚语:“人皆会犯错(To err is human.)”,由于人类头脑的心智过程,在任何工作中都会发生一定程度的人为随机型失误(Random Error),再好的系统及设计也无法完全消弭这种失误。

到目前为止,结构安全的设计仍未完全达到理想目标,而随着未来对设备性能要求的逐渐提升,以及延长设备运行年限来获得最佳经济效益的趋势,结构设计将面临更为艰巨的挑战。

结构设计的四项原则

结构设计的“四项基本原则” 刚柔相济,多道防线,抓大放小,打通关节 1、刚柔相济 合理的建筑结构体系应该是刚柔相济的。结构太刚则变形能力差,强大的破坏力瞬间袭来时,需要承受的力很大,容易造成局部受损最后全部毁坏;而太柔的结构虽然可以很好的消减外力,但容易造成变形过大而无法使用甚至全体倾覆。结构是刚多一点好,还是柔多一点好?刚到什么程度或柔到什么程度才算合适呢?这些问题历来都是专家们争论的焦点,现今的规范给出的也只是一些控制的指标,但无法提供“放之四海皆准”的精确答案。最后,专家们达成难以准确言传的共识:刚柔相济乃是设计者的追求。道也许都是相通的。 想想看,人应该是刚多一点好还是柔多一点好呢?思考的哲人们对此各抒已见,力求给出处世的灵丹妙方。总的来讲,做人太刚和太柔都不受推崇。过份刚强者,应变能力差,难以找到共同受力的合作者,便要我行我素,要鹤立鸡群,即使面对任何突然袭来的恶势力,亦敢于硬顶硬撞而不留变通的余地,这种时候必须有足够的刚度才能立于不败,否则一旦后继乏力,油尽灯枯就会发生脆性破坏,导致伤痕累累、体无完肤的灭顶之灾。在盛赞这种刚

气之余,却鲜有人能够或者愿意完全去做到,英雄的眼泪大抵只有英雄自己能体味。人们唯有感叹道:精神可嘉,方法难取! 世人处世多以“柔”为本,退一步海阔天空,和为贵。柔者易于找到共同受力的构件以协同消化和抵抗外力。但过柔亦为人所不耻。因为“柔”必然产生变形以适应外力,太柔的结果必然是太大的变形,甚至会导致立足不稳而失去根本。处世极为圆滑者,八面玲珑,见风使舵,整日上窜下跳,左右逢源,活得游刃有余,这种柔得无形,表面上着实不容易受到伤害,骨子里却难免有“似我非我”的疑问,弄不好会个性丧失、面目全非,可能还免不了要背上奴颜婢膝的骂名。 所以古人在长期的实践后发现了中庸之道最适合生存。用现代的话来讲大意是做人最好既有原则性又有灵活性,也就是刚柔相济。刚是立足之本,必要刚度不能少,如此方能控制变形在可以忍受的范围内,才不会失掉本质的东西;柔为护身之法,血肉之躯刚度毕竟有限,要学会以柔克刚,不断提高消化转换外力的能力,有时候,牺牲一点变形来抵抗突然到来的摧毁力是必要的,也是值得的,但应以不失去自我为度。 只可惜“道可道,道难行”。不是想刚就能刚,想柔便得柔的,刚柔相济只是理想中的“模糊结构”,每个人的组成材料千差万别,生存的地基也不尽相同,所受的外力更难统一定性。如此的差异下,企望哲人们找到统一的、万无一失的处世良方实在勉为其难。不过,每个人如果都能给自己多一点时间,去思考一下适合于自身的结构体系,想必这世界会有另一番光景。

第八章 复合材料结构耐久性损伤容限设计4-2

课 题 第八章复合材料结构耐久性损伤容限设计(二) 目的与要求耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素 了解耐久性/损伤容限设计实例 材料因素对耐久性/损伤容限设计的影响程度 重点耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素 难 点 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则 教 具 复 习提问耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素? 新知 识点 考查 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则 布置 作业 课堂布置 课后 回忆 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?备注 教员张颖云

1.耐久性/损伤容限设计方法 1.1.概述 1.1.1目的 耐久性/损伤容限的设计方法主要是正确地制定和执行,对结构的耐久性/损伤容限控制计划。 1.1.2主要的两项任务 ●确定关键件根据系统的整体性、零件在系统中的位置、作用以及零件的 服役环境,又设计人员预先或者设计过程中确定零件或部件是否属于关键件,或者重要件。 ●对关键件进行全面的质量控制由设计人员,协同工艺人员、质量控制、 操作人员和其他方面的人员,共同完成关注关键件或重要件的制造过程,要求从材料的定制、运输、存储、下料、铺贴、固化、成形、机械加工,以及随后的试验等方面进行控制。 1.1.3设计原则 ●关键部位、关键件可能出现的缺陷/损伤的类型、尺寸、位置、范围以及 他们的相对严重性; ●评定损伤对疲劳载荷的敏感性及其疲劳扩展性,修理的最佳方案和可能保 留的剩余强度值; ●最后剩余强度的验证,确定检查间隔时间、检查方法,以及中间发生的损 伤扩展; ●环境对带有缺陷或损伤的零部的影响程度,突发事件可能导致的损伤和缺 陷的发展。 1.2.关键件的选择 1.2.1.评价因素 ●一旦破坏或其破坏持续未被查出会对结构安全造成严重的后果的结构危 险部位和构建 ?承受的服役中出现超载能力对飞机而言就是飞行可能出现结构承 力; ?静态试验或启动过程中附加的超大载荷对飞机而言则表示为,地面

损伤容限的概率设计方法

复合材料结构概率损伤容限设计方法研究 1. 研究背景 现阶段在复合材料结构的损伤容限设计方法中,所考虑的主要物理量是按确定量来处理的而忽略了它们的随机性,即确定性方法。例如,复合材料结构在制造或使用期间常常会产生损伤,为了使设计的结构在经受这样的损伤之后仍能安全使用,在实践中一般的做法是限制复合材料结构中的许用应力。典型的做法是,将复合材料结构设计成经得起下述最苛刻的二个条件中的任何一个:(1)极限载荷下任何位置的6.3 mm的开孔;(2)规定尺寸的物体冲击表面时引起的损伤(代表目视勉强可见的冲击损伤威胁)。两个准则都假设在构件的寿命期内存在缺陷。很显然,这些准则降低了复合材料的许用强度。确定性方法规定一个安全系数以覆盖未知量而导致保守的设计,传统上安全系数一般取为1.5。 实际上,飞机结构的安全性要受到很多因素的影响,其中一些主要影响因素还具有明显的、不可忽视的随机特性。因此用统计模式来表征部件尺寸、环境因子、材料特性和外载荷等设计变量更为符合实际情况。确定性方法是找出并定义在设计中要满足的一个最严重情况或极值,而概率设计方法则在设计中利用统计学特征并试图提供一个期望的可靠度。概率方法依赖于一个变量的统计特征来确定它的大小和频率,较确定性方法更为合理。 当前军用和民用飞机的结构设计除满足强度和刚度要求外,已广泛采用耐久性/损伤容限设计思想。其中,损伤容限设计思想是在“破损安全”概念的基础上演变而来的,主要基于如下考虑,即结构带损伤使用是难以避免的事情。损伤容限设计思想要求含损伤结构在损伤被检出之前要保持足够的剩余强度。损伤容限设计是依靠结构对损伤容忍能力和规定的无损检测的有效性来保证安全的。目前的损伤容限设计方法属于确定性设计方法。因此,进一步的设计思想是发展一种能综合考虑各种主要因素的影响及其随机性的设计方法,即复合材料结构可靠性分析与设计方法。 2. 复合材料结构概率损伤容限设计涉及的损伤表征问题研究 2.1 损伤类型及其相应的损伤信息数据库 在复合材料材料结构损伤容限设计中的初始缺陷主要包括制造加工缺陷与使用(服役)缺陷两大类。按照损伤类型又可以分为(1)脱胶分层,(2)孔隙率,(3)开孔,(4)冲击损伤等等。 国外的研究表明,对复合材料结构可靠性进行评估而言,能够利用的有关损伤的定量信息很少。因此建立损伤数据库是实现复合材料结构概率损伤容限设计方法的最基础的工作。 进行复合材料结构概率损伤容限设计与评估需要的损伤信息包括损伤类型、导致损伤的

设计组织架构需要遵循基本原则

设计组织架构需要遵循 基本原则 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

设计组织架构需要遵循基本原则西方管理学家总结的基本原则: 在长期的企业组织变革实践活动中,西方管理学家曾提出过一些组织设计基本原则,如管理学家厄威克曾比较系统地归纳了古典管理学派泰罗、法约尔、马克斯·韦伯等人的观点,提出了8条指导原则:目标原则、相符原则、职责原则、组织阶层原则、管理幅度原则、专业化原则、协调原则和明确性原则。 美国管理学家孔茨等人,在继承古典管理学派的基础上,提出了健全组织工作的l5条基本原则:目标一致原则、效率原则、管理幅度原则、分级原则、授权原则、职责的绝对性原则、职权和职责对等原则、统一指挥原则、职权等级原则、分工原则、职能明确性原则、检查职务与业务部门分设原则、平衡原则、灵活性原则和便于领导原则。 国内管理专家总结的基本原则: ①战略匹配原则 一方面,战略决定组织结构,有什么样的战略就有什么样的组织结构;另一方面,组织结构又支持战略实施,组织结构是实施战略的一项重要工具,一个好的企业战略要通过与企业相适应的组织结构去完成方能起作用。实践证明,一个不适宜的组织结构必将对企业战略产生巨大的损害作用,它会使良好的战略设计变得无济于事。因此,企业组织结构是随着战略而定的,它必须根据战略目标的变化而及时调整。通常情况下企业根据近期和中长期发展战略需要制订近期和中远期组织结构。

②顾客满意原则 顾客是企业赖以生存和发展的载体,企业设计的组织架构和业务流程必须是以提高产品和服务,满足顾客需求为中心的。要确保设计的组织架构和流程能够以最快捷的速度提供客户满意的产品的服务,组织中各部门的工作要优质、高效达到始于顾客需求,终于顾客满意的效果。 ③精简且全面原则 精简原则是为了避免组织在人力资源方面的过量投入,降低组织内部的信息传递、沟通协调成本和控制成本,提高组织应对外界环境变化的灵活性;对于非核心职能,可能的话应比较自建与外包的成本,选择成本最低的方案。全面原则则是体现麻雀虽小,五脏俱全的思想,即组织功能应当齐全,部门职责要明确、具体,这样即使出现一人顶多岗的情况,也能使员工明确认知自身的岗位职责。 ④分工协作原则 如果组织中的每一个人的工作最多只涉及到单个的独立职能,或者在可能的范围内由各部门人员担任单一或专业化分工的业务活动,就可提高工作效率,降低培训成本。分工协作原则不仅强调为了有效实现组织目标而使组织的各部门、各层次、各岗位有明确的分工。还强调分工之后的协调。因此在组织机构设计时,必须强调职能部门之间、分子公司之间的协调与配合,业务上存在互补性或上下游关系时,更需要保持高度的协调与配合,以实现公司的整体目标。 ⑤稳定与灵活结合原则

复合材料损伤研究现状

复合材料损伤研究现状 复合材料是一种新型材料,由于其具有比强度、比模量高等优点,使其在众多领域都具有潜在的应用可能性。然而复合材料是由纤维、基体、界面等组成,其细观构造是一个复杂的多相体系,而且是不均匀和多向异性的,这使其结构内部的损伤与普通材料结构不同,在结构表面可能完全看不出损伤迹象,甚至用X 光和超声分层扫描也探测不到。现有的各种无损检测方法很难对复合材料结构损伤进行准确的探测与损伤程度评估,更无法对使用中的复合材料结构实现在线实时监测。将智能传感器敏感网络埋入复合材料内部,并配合适当的现代信号处理技术,构成智能复合材料结构系统,从而实现对复合材料内部状态的在线实时监测,及时发现并确定材料结构内部损伤的位置和程度,监视损伤区域的扩展,从而为材料结构的损伤检测、维修及自我修复提供准确信息,避免因复合材料结构损伤而带来巨大的损失。由于智能复合材料内部传感网络信号具有高度非线形、大数量、并行等特点,故使用传统的分析方法进行处理往往十分耗时、困难,甚至完全不可能。而现代模式识别方法(包括人工神经网络)、小波分析技术、时间有限元模型理论以及光时域反射计检测技术等就成为实现实时、在线、智能化处理分布式信号的理想工具。 结构损伤诊断,即对结构进行检测与评估,确定结构是否有损伤存在,进而判别结构损伤的程度和方位,一级结构目前的状况、使用功能和结构损伤的变化趋势等。 结构损伤诊断是近40年来发展起来的一门新学科,是一门适应工程实际需要而形成的交叉学科。结构损伤诊断概念的提出和发展,机械故障诊断问题开始引起各国政府的重视。美国国家宇航局(NASA)成立了机械故障预防小组(MFPG),英国成立了机器保健中心(MHMC),这些机构专门从事故障机理、检测、诊断和预报的技术研究,以及可靠性分析及耐久性评价,至此大型旋转机械的状态监测与故障诊断技术开始进入实用化阶段。20世纪80年代,以微型计算机为核心的现代故障诊断技术得到了迅速发展,涌现出许多商业化得计算机辅助监测和故障诊断系统,如美国SCIENTIFIC公司的PM系统、我国研制的大型旋转机械计算机状态检测与故障诊断系统等。在这一阶段,由于传感技术的飞速发展,使得诊断可以利用振动、噪声、温度、力、电、磁、光、射线等多种信号作为信息源,从而发展了振动诊断技术、声发射诊断技术、光谱诊断技术和热成像监测诊断技术等。与此同时,信号处理技术和模式识别、模糊数学、灰色系统理论等新的信息处理方法迅速发展,并在故障诊断技术中得到应用。 结构损伤诊断技术方面的工作在国外大体分为三个发展阶段: (1)20世纪40年代到50年代为探索阶段,注重对建筑结构缺陷原因的分析和补修方法的研究,检测工作大多数以目测方法为主。

组织结构设计的基本原则

组织结构设计,指对企业的组织等级、运营结构及管理模式等进行再造的过程,EMBA、MBA等常见经营管理教育均组织结构设计方法有所探究。 一、定义 组织结构设计,是通过对组织资源(如人力资源)的整合和优化,确立企业某一阶段的最合理的管控模式,实现组织资源价值最大化和组织绩效最大化。狭义地、通俗地说,也就是在人员有限的状况下通过组织结构设计提高组织的执行力和战斗力。 企业的组织结构设计是这样的一项工作:在企业的组织中,对构成企业组织的各要素进行排列、组合,明确管理层次,分清各部门、各岗位之间的职责和相互协作关系,并使其在企业的战略目标过程中,获得最佳的工作业绩。 从最新的观念来看,企业的组织结构设计实质上是一个组织变革的过程,它是把企业的任务、流程、权力和责任重新进行有效组合和协调的一种活动。根据时代和市场的变化,进行组织结构设计或组织结构变革(再设计)的结果是大幅度地提高企业的运行效率和经济效益。 二、目的

创建柔性灵活的组织,动态地反映外在环境变化的要求,并在组织成长过程中,有效地积聚新的组织资源,同时协调好组织中部门与部门之间的关系,人员与任务间的关系,使员工明确自己在组织中应有的权力和应承担的责任,有效地保证组织活动的开展。 三、主要内容 1、职能设计 职能设计是指企业的经营职能和管理职能的设计。企业作为一个经营单位,要根据其战略任务设计经营、管理职能。如果企业的有些职能不合理,那就需要进行调整,对其弱化或取消。 2、框架设计 框架设计是企业组织设计的主要部分,运用较多。其内容简单来说就是纵向的分层次、横向的分部门。 3、协调设计

协调设计是指协调方式的设计。框架设计主要研究分工,有分工就必须要有协作。协调方式的设计就是研究分工的各个层次、各个部门之间如何进行合理的协调、联系、配合,以保证其高效率的配合,发挥管理系统的整体效应。 4、规范设计 规范设计就是管理规范的设计。管理规范就是企业的规章制度,它是管理的规范和准则。结构本身设计最后要落实并体现为规章制度。管理规范保证了各个层次、部门和岗位,按照统一的要求和标准进行配合和行动。 5、人员设计 人员设计就是管理人员的设计。企业结构本身设计和规范设计,都要以管理者为依托,并由管理者来执行。因此,按照组织设计的要求,必须进行人员设计,配备相应数量和质量的人员。 6、激励设计 激励设计就是设计激励制度,对管理人员进行激励,其中包括正激励和负激励。正激励包括工资、福利等,负激励包括各种约束机制,也就是所谓的奖惩制度。激励制度既有利于调动管理人员的积极性,也有利于防止一些不正当和不规范的行为。

纤维增强复合材料层合结构冲击损伤

复合材料定义: 复合材料通常由基体材料和增强材料两大组分构成,它不仅保持了组分材料自身的优良性能,而且通过材料互补改善或突出某些特殊性能。改变组分材料品种或比例,可以得到不同品种和性能的复合材料。 复合材料分类: 复合材料可分为金属基复合材料与非金属基复合材料,非金属基复合材料可分为树脂基复合材料与陶瓷基复合材料,树脂基复合材料具有质量轻、易于加工和改型等优点。 复合材料特点: 1.具有较高的比强度和比刚度 2.具有良好的抗疲劳性能 3.具有良好的减振性能 4.具有良好的可设计性 复合材料中的主要缺陷: 先进复合材料中的缺陷类型一般包括: 孔隙、夹杂、裂纹、疏松、纤维分层与断裂、纤维与基体界面开裂、纤维卷曲、富胶或贫胶、纤维体积百分比超差、纤维基体界面结合不好、铺层或纤维方向误差、缺层、铺层搭接过多、厚度偏离、磨损、划伤等。其中孔隙、分层与夹杂是最主要的缺陷。材料中的缺陷可能只是一种类型, 也可能是好几种类型的缺陷同时存在。 缺陷对复合材料性能的影响: 复合材料在成型、固化、使用过程中产生各种缺陷,不同的缺陷对复合材料性能都有着或多或少的影响。孔隙是复合材料中常见的缺陷之一,过多的孔隙可降低复合材料层间剪切强度约30 %。当受冲击及长期疲劳时,富脂及贫脂区首先开裂,这也标志着这些区域的力学性能不同程度降低。纤维束的断裂也可使碳纤维复合材料拉伸强度下降约25 %,压缩强度损失约11 %。加工过程中直径10mm 纸屑的进入零度层(0°/ ±45°)碳纤维蜂窝结构导致压缩强度降低约25 %。热塑性复合材料碳纤维/ PEEK纤维弯曲导致压缩强度降低约20 %。 总之,复合材料中的各种缺陷对性能有着不同的影响,总体而言倾向于性能降低。下面重点介绍孔隙、杂质对性能的影响。 复合材料在冲击载荷下的损伤形式:

塑料件结构设计基本原则

塑料件结构设计基本原则

可怜的机械狗之塑料件结构设计基本原则(一) 一,产品结构设计前言 正式进入话题之前,咱先抱怨两句,机械工程的待遇可真不咋地,奉劝想要进入机械行业的童鞋们三思后行。待遇低,工作环境差就算了,可美女咋也凤毛麟角呢!都说机械好就业,工作稳定,可那初始工资真是没得说,就说自己刚毕业时,每月2000块,去厂房里做装配工,铁块在手里滚来滚去,整天脏兮兮的,还累的跟狗一样。可相比较其他呢,那些学计算机的,学财务,学管理的,那待遇真是没法比,想我当时就是因为看这个专业名字好听,就跳坑里了。虽然这个说,可梦想仍在,咱还是要向着那里走着,一点一点地走。 进入正题,在玩具,消费类电子产品,大小家电,汽车等相关行业中,都离不开产品的结构设计,各种有形的产品,配件等都必须先确定其外形,所以是产品结构设计是产品研发阶段的核心之一。就拿消费类电子产品来说,结构,硬件,软件是产品研发的三个主要工作团体,而硬件与结构又是结合最紧密的。 一般公司要研发一款产品,首先是市场部签

发开发指令,经过部门评审后,研发部开始进行结构外观建模,然后再进行建模评审,评审通过后,才开始内部的结构设计,然后才是做手板,开模,试模,试产,量产等。而其中的内部结构设计就是产品结构设计师最主要的工作内容。在我国,工业外观设计跟结构设计是分开的,就是说决定产品初步外观的并不是机构工程师,而是工业设计师,他们会依照市场调差和基本的性能需要去绘制产品的外观,这个当然需要一定绘画艺术和审美能力。可怜大多说人都怀疑作为理工科的结构工程师欠缺这些细胞,可事实好像也是这样。最近接手国外的一个充电器产品,是他们已经做好了3D图,要我们来开模生产,可是拿到手后根本开不了膜,不符合开模要求,当然做个样品可以用3D打印做出来,可想要大批量的还是要靠传统模具。这体现了结构工程师的作用了,尽可能保证产品用料,外观,性能,工艺,装配的最佳化,就是在各个环节省钱省时省力,想想就够累的啊! 二,塑料件料厚 我们接触的很多产品是塑料件,其大部分塑料件都是通过塑胶模具注塑成型,而料厚是塑料

复合材料的分层缺陷

复合材料的分层缺陷 引言 目前被广泛用于飞机承力构件的纤维增强树脂基复合材料(CFRP)主要是层合板与层合结构。在层合板的制造过程中,常由于许多不确定的因素,使复合材料结构发生分层、孔隙、气孔等等不同形式的缺陷;同时,复合材料层合板在装配与服役过程中所受到低能冲击很容易引发各种形式的损伤。由于增强纤维铺设方向的不一致常导致铺层间刚度的不匹配,引发较高的层间应力,而层间应力的主要传递介质是较弱的树脂基体,因此对于复合材料层合板,分层是其主要的损伤形式。有报导统计,复合材料层合板在加工、装配和使用过程中产生的分层损伤,占缺陷件的50%以上[1]。 分层常存在于结构内部,无法根据表面状态检测出来,并且分层的存在极大地降低了结构的刚度,特别在压缩载荷作用下,由于发生局部屈曲而导致分层扩展,使结构在低于其压缩强度时发生破坏。在飞机研制与制造过程中,复合材料层合板的分层损伤问题一直是难以解决的结构问题之一,也是影响CFRP 在结构组分中应用的主要限制因素。因此,如何充分地结合试验测试,利用数值模拟的方法评估分层的许和容限,成为决定飞机结构综合性能的亟待解决的关键问题。 1.1分层产生的原因 Pagano 和Schoeppner [2] 根据复合材料构件的形状,将分层产生的原因分为两类。第一类为曲率构件,工程中常见的曲率构件包括扇形体、管状结构、圆柱形结构、球形结构和压力容器等;第二类为变厚度截面,工程中常见于薄层板与补强件连接区域、自由边界处、粘合连接处及螺栓接合处等。在上述结构件中,

临近的两铺层极易在法向和剪切向应力作用下发生脱胶和形成层间裂纹。 以外,温湿效应、层板制备和服役状态等亦是分层产生的原因。由于纤维与树脂的热膨胀系数以及吸湿率均存在差异,因此,不同铺层易在固化过程产生不同程度的收缩并在吸收湿气后产生不同程度的膨胀,不同程度的收缩与膨胀所产生的剩余压力是导致分层的源头之一[3,4] 。在层合板的制备过程中,由于手工铺设质量具有分散性,极易形成富树脂区,进而引发树脂固化时铺层间的收缩程度差异,使层间具有较低的力学特性,极易形成分层[5,6] 。在服役过程中,低速冲击所产生的横向集中力是层合板结构形成分层的重要原因之一。冲击引发的临近铺层间的内部损伤、层合板制造过程中工具的掉落、复合材料部件的组装及维修以及军用飞机及结构的弹道冲击等均会引发层间分层。 1.2 分层的种类 Bolotin [5,6] 将分层分为内部分层(Internal delaminations)和浅表分层(Near-surface delaminations)两类。其中,内部分层源自层合板的内部铺层,由于树脂裂纹和铺层界面间相互作用而形成,它的存在会降低结构件的承载能力。特别是在压缩载荷作用下,层合板的弯曲行为受到严重影响(如图1)。虽然分层将层合板分为两个部分,但是由于两个子层板变形间的相互作用,层合板呈现相似的偏转状态,发生整体屈曲。

冲击损伤下航空复合材料修复技术研究进展

冲击损伤下航空复合材料修复技术研究进展 发表时间:2019-01-02T14:25:47.017Z 来源:《信息技术时代》2018年3期作者:李伟栋董少兵郝伟[导读] 随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展 (河南省新乡市飞机场,河南新乡 453000) 摘要:随着科学技术的不断发展,越来越多的新型材料被制造并且应用在各行各业的发展中。尤其是先进复合材料的出现并且在航天领域中的广泛应用,推动了中国航天事业的进一步发展,同时,航天事业也对复合材料的应用提出了新的要求。在航天器材建造中,所使用的复合材料具有各向异性和非均质性的特点,这种特点使得其对于分层损伤和层间断裂十分敏感,为了减少这种损伤对于航天器材的作用发挥的影响,研究人员开始对于冲击损伤下航空复合材料修复技术进行了研究。 关键词:冲击损伤;航空复合材料;修复技术 一、冲击损伤评估 (一)冲击损伤 航天设备在进行使用的过程中,一般所处的环境都是外太空中,这样的外界环境使得在航天器材发挥作用的过程中,可能会出现众多的不可测因素,这些因素的存在会对航天器作用的正常发挥造成一定的影响,为了减少材料的因素对于航天器材的影响,航天器材制作人员在进行材料选择的过程中,一般都会选择高强度、高刚性的复合材料[1]。但是复合材料在使用的过程中,难免会在制造、服役、维修的过程中不可避免的出现缺陷或者损伤,因此复合材料修理的难题就受到了业界的广泛关注。 航空复合材料结构损伤产生的原因或是由制造缺陷引起或是由机械载荷引起,或是由于外界环境引起,在结构损伤中,冲击损伤是对航天器材造成影响最大的。复合材料在进行作用的发挥过程中,由于其各向异性和非均质性对于冲击及其敏感[2]。并且复合材料冲击损伤的机理较为复杂,因此国内外专家针对复合材料的冲击损伤提出了不同的损伤机理计算模型。这些模型的出现有助于研究人员对于航空复合材料修复的进一步研究,推动航天事业的发展与进步。 (二)损伤评估 在对复合材料进行修复时应当提前进行损伤评估,在对复合材料进行损伤评估的过程中,需要进行多方面内容的评估,但是确定修理容限是损伤评估中最为重要的核心工程。在材料修复行业中,所讲的修理容限是指在材料发生故障时观察材料的整体性能是否发生了变化,判断材料是否还存在修理的价值。世界上的航天部门在对复合材料进行修理的过程中一般都会采用冲击后压缩性能来对复合材料的抗冲击和冲击损伤性能进行表征。并且将这种冲击后压缩性能作为复合材料修理容限的一种测量值,通过这种测量值对于复合材料的修理价值做出具体的评价,但是在这种评估方法的使用过程中,也有研究人员提出不应当将这种方法作为唯一的评价标准,因为损伤阻抗与损伤容限是两个不同的概念,在进行研究的过程中,不应当将这两种概念进行混淆,在这种概念的影响下,作者提出用典型铺层试样在规定的冲击条件下得到的冲击损伤破坏曲线的门槛值作为表征复合材料体系损伤容限的物理量[3]。 二、修复技术 (一)机械连接修理 机械连接修理主要是指在复合材料发生损伤时将补板材料与母体材料利用专用的铆钉或螺栓进行联合,这样的修理方法在复合材料的修理过程中由于成本较低,因此在修理过程中较为常见。但是这种修理技术由于在材料修理过程中所使用的铆钉或螺栓密度较高,在修理处易形成二次损伤,导致材料的整体性能下降。随着中国科技技术的不断发展,在机械连接技术的发展中也在不断融入新型制造技术,使机械连接技术向着高智能化方向进行发展[4]。在进行修理的过程中,为了能够较为清晰的观察到复合材料的修理状况,一般会采用数据模型与实验数据相结合的方式。飞机结构在进行连接的过程中一般都是单搭接,所以在进行修理检测的过程中会采用单相静拉伸的方法。并且在近些年对于修复检测的实验中开始考虑到了螺钉载荷分配问题,因而将智能螺栓测试引用到了机械连接之中。智能螺栓在进行检测的过程中,应用其内变形片的变形量输出所形成的电信号来确定在变形片上所形成的具体载荷。 (二)胶结修复技术 在航天材料的修理过程中,除了机械修理外,胶接修复技术也是较为常见的一种修复技术。这种技术在进行应用的过程中,是通过足量的胶粘剂将复合材料补板与母体进行必要的连接,使复合材料的损伤得到修复。胶接修复技术与机械连接修复技术相比,具有更高的实用价值,胶接技术在使用中所形成的胶接区域受力更加均匀,表面更加光滑,受到二次损伤的可能性较小。在胶接修复技术中较为常见的就是贴补法,贴补法在进行应用的过程中,将补板贴于复合材料的损伤处,通过粘贴剂使得材料之间能够进行充分的联合,使用这种技术进行修复的航天材料,在进行使用的过程中,性能比例能够得到相应提高。但是贴补材料在进行使用的过程中易造成修复表面不平滑现象,因此在进行使用的过程中,一般仅仅是在对气动外形要求不高的结构中进行应用。同时这种贴补技术进行的贴补会因为受到外力的影响,发生贴补脱落的情况,因此在贴补过程中,为了避免这种情况的发生,一般都会采用贴板外张扬的方法。除了贴补法外,挖补法也是一种修复技术,在进行挖补修复的过程中,会将复合材料的损伤处打磨成锥形再将修补材料连接到损伤区域,但是这种修复技术在使用的过程中需要高温作用以满足性能和外部结构的需求[5]。 结语: 冲击损伤下航空复合材料修复技术随着航空事业的发展,被越来越多的国家所重视,在进行修复技术的研究过程中投入了大量的资金和技术资源。我国在航天事业的发展上已经取得了重大的成就,但是对于损伤修复技术额研发中依旧存在众多的不足,因此在航天事业的发展过程中,国家航天部应当加大对修复技术的研究力度。 参考文献 [1]韩志杰,刘振宇.航空复合材料薄壁壳体高速冲击损伤特性仿真研究[J].科技与创新,2018(09):19-21. [2]王长越,邢素丽.冲击损伤下航空复合材料修复技术研究进展[J].玻璃钢/复合材料,2017(12):91-98.

第八章复合材料结构耐久性损伤容限设计4-2概论

第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页 课 题 第八章复合材料结构耐久性损伤容限设计(二) 目的与要求耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素 了解耐久性/损伤容限设计实例 材料因素对耐久性/损伤容限设计的影响程度 重点耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素 难 点 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则 教 具 复 习提问耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?提高零部件耐久性/损伤容限的特殊设计方法和材料使用因素? 新知 识点 考查 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则 布置 作业 课堂布置 课后 回忆 耐久性/损伤容限的基本设计方法、通用过程流程和一般设计原则?备注 教员

第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页

第八章复合材料结构耐久性损伤容限设计(二)第2 页共8 页 1.耐久性/损伤容限设计方法 1.1.概述 1.1.1目的 耐久性/损伤容限的设计方法主要是正确地制定和执行,对结构的耐久性/损伤 容限控制计划。 1.1.2主要的两项任务 ●确定关键件根据系统的整体性、零件在系统中的位置、作用以及零件的 服役环境,又设计人员预先或者设计过程中确定零件或部件是否属于关键件, 或者重要件。 ●对关键件进行全面的质量控制由设计人员,协同工艺人员、质量控制、 操作人员和其他方面的人员,共同完成关注关键件或重要件的制造过程,要求 从材料的定制、运输、存储、下料、铺贴、固化、成形、机械加工,以及随后 的试验等方面进行控制。 1.1.3设计原则 ●关键部位、关键件可能出现的缺陷/损伤的类型、尺寸、位置、范围以及 他们的相对严重性; ●评定损伤对疲劳载荷的敏感性及其疲劳扩展性,修理的最佳方案和可能保 留的剩余强度值; ●最后剩余强度的验证,确定检查间隔时间、检查方法,以及中间发生的损 伤扩展; ●环境对带有缺陷或损伤的零部的影响程度,突发事件可能导致的损伤和缺 陷的发展。 1.2.关键件的选择 1.2.1.评价因素 ●一旦破坏或其破坏持续未被查出会对结构安全造成严重的后果的结构危 险部位和构建 ?承受的服役中出现超载能力对飞机而言就是飞行可能出现结构承 力; ?静态试验或启动过程中附加的超大载荷对飞机而言则表示为,地面

机械结构设计的原则和特点

5.1.1机械结构设计的任务 机械结构设计的任务是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式和表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。所以,结构设计的直接产物虽是技术图纸,但结构设计工作不是简单的机械制图,图纸只是表达设计方案的语言,综合技术的具体化是结构设计的基本内容。 5.1.2机械结构设计特点 机械结构设计的主要特点有:(1)它是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不是唯一的。(3)机械结构设计阶段是一个很活跃的设计环节,常常需反复交叉的进行。为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求 5.2机械结构件的结构要素和设计方法 5.2.1结构件的几何要素 机械结构的功能主要是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。零部件的几何形状由它的表面所构成,

一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。在功能表面之间的联结部分称为联接表面。 零件的功能表面是决定机械功能的重要因素,功能表面的设计是零部件结构设计的核心问题。描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。 5.2.2结构件之间的联接 在机器或机械中,任何零件都不是孤立存在的。因此在结构设计中除了研究零件本身的功能和其它特征外,还必须研究零件之间的相互关系。 零件的相关分为直接相关和间接相关两类。凡两零件有直接装配关系的,成为直接相关。没有直接装配关系的相关成为间接相关。间接相关又分为位置相关和运动相关两类。位置相关是指两零件在相互位置上有要求,如减速器中两相邻的传动轴,其中心距必须保证一定的精度,两轴线必须平行,以保证齿轮的正常啮合。运动相关是指一零件的运动轨迹与另一零件有关,如车床刀架的运动轨迹必须平行于于主轴的中心线,这是靠床身导轨和主轴轴线相平行来保证的,所以,主轴与导轨之间位置相关;而刀架与主轴之间为运动相关。 多数零件都有两个或更多的直接相关零件,故每个零件大都具有两个或多个部位在结构上与其它零件有关。在进行结构设计时,两零件直接相关部位必须同时考虑,以便合理地选择材料的热处理方式、

结构设计的基本原则

结构设计的“四项基本原则” (2007-03-30 15:07:49) 转载 标签: 结构设计 刚柔相济,多道防线,抓大放小,打通关节 1、刚柔相济 合理的建筑结构体系应该是刚柔相济的。结构太刚则变形能力差,强大的破坏力瞬间袭来时,需要承受的力很大,容易造成局部受损最后全部毁坏;而太柔的结构虽然可以很好的消减外力,但容易造成变形过大而无法使用甚至全体倾覆。结构是刚多一点好,还是柔多一点好?刚到什么程度或柔到什么程度才算合适呢?这些问题历来都是专家们争论的焦点,现今的规范给出的也只是一些控制的指标,但无法提供“放之四海皆准”的精确答案。最后,专家们达成难以准确言传的共识:刚柔相济乃是设计者的追求。道也许都是相通的。 想想看,人应该是刚多一点好还是柔多一点好呢?思考的哲人们对此各抒已见,力求给出处世的灵丹妙方。总的来讲,做人太刚和太柔都不受推崇。过份刚强者,应变能力差,难以找到共同受力的合作者,便要我行我素,要鹤立鸡群,即使面对任何突然袭来的恶势力,亦敢于硬顶硬撞而不留变通的余地,这种时候必须有足够的刚度才能立于不败,否则一旦后继乏力,油尽灯枯就会发生脆性破坏,导致伤痕累累、体无完肤的灭顶之灾。在盛赞这种刚气之余,却鲜有人能够或者愿意完全去做到,英雄的眼泪大抵只有英雄自己能体味。人们唯有感叹道:精神可嘉,方法难取!世人处世多以“柔”为本,退一步海阔天空,和为贵。柔者易于找到共同受力的构件以协同消化和抵抗外力。但过柔亦为人所不耻。因为“柔”必然产生变形以适应外力,太柔的结果必然是太大的变形,甚至会导致立足不稳而失去根本。处世极为圆滑者,八面玲珑,见风使舵,整日上窜下跳,左右逢源,活得游刃有余,这种柔得无形,表面上着实不容易受到伤害,骨子里却难免有“似我非我”的疑问,弄不好会个性丧失、面目全非,可能还免不了要背上奴颜婢膝的骂名。 所以古人在长期的实践后发现了中庸之道最适合生存。用现代的话来讲大意是做人最好既有原则性又有灵活性,也就是刚柔相济。刚是立足之本,必要刚度不能少,如此方能控制变形在可以忍受的范围内,才不会失掉本质的东西;柔为护身之法,血肉之躯刚度毕竟有限,要学会以柔克刚,不断提高消化转换外力的能力,有时候,牺牲一点变形来抵抗突然到来的摧毁力是必要的,也是值得的,但应以不失去自我为度。只可惜“道可道,道难行”。不是想刚就能刚,想柔便得柔的,刚柔相济只是理想中的“模糊结构”,每个人的组成材料千差万别,生存的地基也不尽相同,所受的外力更难统一定性。如此的差异下,企望哲人们找到统一的、万无一失的处世良方实在勉为其难。不过,每个人如果都能给自己多一点时间,去思考一下适合于自身的结构体系,想必这世界会有另一番光景。 2、多道防线 安全的结构体系是层层设防的,灾难来临,所有抵抗外力的结构都在通力合作,前仆后继。这时候,如果把“生存”的希望全部寄托在某个单一的构件上,是非常非常危险的。多肢墙比单片墙好,框架剪力墙比纯框架好等等,就是体现了多道防线的设计思路。也许我们会自信计算的正确性,但更要牢记绝对安全的防备构件是不存在的,还是应该多多考虑:当第一道防线跨了,

从安全寿命到损伤容限——结构设计的观念演变

从安全寿命到损伤容限 ——结构设计的观念演变 摘要 结构的设计,必须在性能、安全、成本三者间取得平衡。 最早仅考虑材料静力强度;20世纪30年代后为采用线性疲劳观念的“安全寿命”, 50年代改进为“破损安全”;而70年代则使得“损伤容限”成为现今的标准结构设计准则。1988年揭示了散布型疲劳损伤(亦称为“广布疲劳”)成为“损伤容限”结构设计的新课题。 1、静力强度 早期应用中,由于金属材料极富韧性(ductility),结构设计方法很保守,因此结构的安全裕度(Margin of Safety)相当大。在结构遭遇疲劳问题之前,设备早就因为其它使用原因而失效了,因此结构疲劳寿命不是此时的设计重点。结构设计只要满足材料静力强度(Static Strength)就不会有问题,结构分析则以静力试验为佐证,试验负载是使用负载乘以一个安全系数,以计入不确定因素,比如:负载不确定、结构分析不准确、材料性质变异、制造质量变异……等。 为了减轻结构重量以提升使用性能,在材料静力强度主导结构安全的思想下,一些强度高但韧性低的金属材料开始出现在设备结构上。只是此时的设备运行工况已非昔日设计工况可比,结构应力大增,应

力集中(Stress Concentration)效应使高应力情况更加恶化,最后导致产生疲劳裂纹,降低了结构安全裕度,材料静力强度已不足以保证设备运行的结构安全。 2. “安全寿命” “安全寿命”(Safe Life)设计观念。在这种设计观念里,设备在预定的运行期间内需能承受预期的反复性负载,当结构运行时数到达运行寿命时,认定结构疲劳寿命已经完全耗尽,设备必须报废。 “安全寿命”设计观念的缺点,在于它的疲劳分析与设计一般是采用“疲劳强度耐久限制”(Fatigue Strength‐Endurance Limit)的方法,也就是所谓的麦林法则(Miner's Rule)。它是在实验室里对多片截面积各异的小尺寸材料试片,施加不同的等振幅(Constant Amplitude)负载,直到试片疲劳破坏为止,以获得此材料在各种施加应力和发生疲劳破坏的负载周期之数据,称之为S‐N曲线(S‐N Curve,S代表施加应力,N代表负载周期数),再以实际结构件在各种设计运行条件下的应力,找到相对应的疲劳破坏负载周期数,依线性累加的方式加总,就可预测结构的疲劳寿命,并应用于设计。虽然这种方法已行之多年,且普遍为一般结构设计及分析所接受,然而这种分析方法有其先天上的缺点,使得分析的结果常不符合实际。 因为一般在实验室里做这种小型试片的疲劳试验时,试片表面上都有经过特别处理,以使试片表面尽可能光滑平整而没有任何缺陷,也就是没有任何裂纹的存在。因此,由这种试片所得的疲劳寿命试验数据,就包括了裂纹初始(Crack Initiation)及裂纹生长(Crack Growth)

荷载与与结构设计原则复习

荷载与与结构设计原则复习

第一章荷载类型 1.荷载类型: 1.荷载与作用:荷载、直接作用、间接作用、效应 2.作用的分类:按随时间的变异、随空间位置的变异和结构的反应分类 例如: 1、由各种环境因素产生的直接作用在结构上的各种力称为荷载。(√) 2、由各种环境因素产生的间接作用在结构上的各种力称为荷载。(×) 3、什么是荷载? (荷载的定义是什么?)?) 答:由各种环境因素产生的直接作用在结构的各种力称为荷载。 4、土压力、风压力和水压力是荷载,由爆炸、离心作用等产生的作用在物体上的惯性力不是荷载。(×)

5、什么是效应? 答:作用在结构上的荷载使结构产生的内力、变形、裂缝等就叫做效应。 6、什么是作用?直接作用和间接作用? 答:使结构产生效应(结构或构件的内力、应力、位移、应变、裂缝等)的各种因素总称为作用。 可归结为作用在结构上的力的因素称为直接作用; 不是作用力但同样引起结构效应的因素称为间接作用。 7、只有直接作用才能引起结构效应,间接作用并不能引起结构效应。(×) 8、严格意义上讲,只有直接作用才能称为荷载。(√) 9、以下几项中属于间接作用的是C C 10、预应力属于 A 。温度变化属于 B 。 A、永久作用 B、静态作用 C、直接作用 D、动态作用

第二章重力 1.重力(静载) 1)结构自重 2)土的自重应力 3)雪荷载(基本雪压、雪重度、屋面的雪压) 例如: 1、基本雪压是指当地空旷平坦地面上根据气象记录资料经统计得到的在结构使用期间可能出现的最大雪压值。(√) 2、我国基本雪压分布图是按照 C 一遇的重现期确定的。 A、10年 B、30年 C、50年 D、100年 3、虽然最大雪重度和最大雪深两者有很密切的关系,但是两者不一定是同时出现。(√) 4、造成屋面积雪与地面积雪不同的主要原因有:风、屋面形式和屋面散热等。

结构设计的原则

结构设计的原则 1强柱弱梁 强柱弱梁(strong column and weak beam)指的是使框架结构塑性铰出现在梁端的设计要求。用以提高结构的变形能力,防止在强烈地震作用下倒塌。“强柱弱梁”不仅是手段,也是目的,其手段表现在人们对柱的设计弯矩人为放大,对梁不放大。其目的表现在调整后,柱的抗弯能力比之前强了,而梁不变。即柱的能力提高程度比梁大。这样梁柱一起受力时,梁端可以先于柱屈服。 强柱弱梁是一个从结构抗震设计角度提出的一个结构概念。就是柱子不先于梁破坏,因为梁破坏属于构件破坏,是局部性的,柱子破坏将危及整个结构的安全---可能会整体倒塌,后果严重。要保证柱子更“相对”安全,故要“强柱弱梁”。 二十世纪70年代后期,新西兰的T.Paulay和R.Park提出了保证钢筋混凝土结构具有足够弹塑性变形能力的能力设计方法。该方法是基于对非弹性性能对结构抗震能力贡献的理解和超静定结构在地震作用下实现具有延性破坏机制的控制思想提出的,可有效保证和达到结构抗震设防目标,同时又使设计做到经济合理。 能力设计方法的核心是,(1)引导框架结构或框架-剪力墙(核心筒)结构在地震作用下形成梁铰机构,即控制塑性变形能力大的梁端先于柱出现塑性铰,即所谓“强柱弱梁”;(2) 避免构件(梁、柱、墙)剪力较大的部位在梁端达到塑性变形能力极限之前发生非延性破坏,即控制脆性破坏形式的发生,即所谓“强剪弱弯”;(3)通过各类构造措施保证将出现较大塑性变形的部位确实具有所需要的非弹性变形能力。 到二十世纪80年代,各国规范均在不同程度上采用了能力设计方法的思路。 能力设计方法的关键在于将控制概念引入结构抗震设计,有目的的引导结构破坏机制,避免不合理的破坏形态。该方法不仅使得结构抗震性能和能力更易于掌握,同时也使得抗震设计变得更为简便明确,即后来在抗震概念设计中提出的主动抗震设计思想。 第一,楼板的作用,在我们的结构设计中一般都是不考虑楼板参与整体计算的,大部分情况下是直接将荷载倒算的梁上,而在计算水平荷载(地震跟风荷载)的时候考虑楼板对梁刚度的提高作用,用一个中梁刚度放大系数(及边梁刚度放大系数)来考虑楼板的作用,但梁配筋的时候又只考虑矩形截面,这样一来形成了本来是T型梁承受荷载,钢筋却完全集中在矩形截面中,而T型截面的翼缘也没有少陪钢筋(因为板中钢筋不能少配),这从无梁楼盖的配筋形式中可以发现我们现阶段采用的设计方法一方面是非常费,另一方面还吃力不讨好,对抗震规范的基本要求“强柱弱梁”没有任何好处(其实还起到坏处)。所以,在以后的设计中应加强对楼板的利用,让楼板参与计算必将是大势所趋。 第二,程序计算过程中没有考虑柱刚域的影响,在实际设计过程中对梁支座钢筋的超配,支座处裂缝验算对支座钢筋的加大(说明:楼板及其配钢筋对裂缝大有帮助)等都是造成“强梁弱柱”的罪魁祸首。

相关文档
最新文档