结构损伤容限分析

飞机结构损伤容限设计第2讲结构损伤容限分析

内容概要

1.损伤容限结构定义

2.分析目标

3.分析要素

4.破坏准则

5.分析流程

损伤容限结构:

容许结构存在一定限度的损伤,并依靠检查来保证安全服役的结构。

实践和分析都表明:把结构设计成能承受定量损伤并实施计划检查的损伤容限结构,是提高装备安全水平的有效途径。

结构损伤容限分析目标:

通过损伤容限技术分析,可以准确定量评估结构的剩余强度、裂纹扩展寿命以及它们的可靠程度,并制定结构安全裂纹扩展寿命,即检查周期,保证结构在服役期内的安全。

组成结构损伤容限特性有三个同等主要的因素:

损伤检测:结构检查部位、各种

检查方法及检查间隔的选择;

裂纹扩展:在该结构部位的载荷

谱和环境谱作用下,裂纹从初始

假设尺寸至某一确定尺寸之间的

裂纹扩展期;

临界裂纹尺寸:在剩余强度要求

载荷下,结构允许存在的最大损

伤;或在某一规定的损伤情况

下,要求结构剩余强度能力大于

对该结构的剩余强度要求值。

4 破坏准则

结构损伤容限分析中的破坏准则:

开裂结构的剩余强度(σS )、承载能力随裂纹长度的增长而单调下降,当结构剩余强度降低到使用载荷历程中的最大应力水平时,结构便会发生断裂破坏。

()max S C S K f a σσσ=??

=?

求临界尺寸a cr 下的疲劳寿命N C

求可检裂纹尺寸下的疲

劳寿命N D

确定结构类型

计算裂纹扩展曲线a -N 剩余强度降曲线σS -N

9GJB776-89规定;9破损安全结构;

9缓慢扩展型。确定未修使用期PUSU=N C -N D

N C -N D ≥MPUSU

符合规定,结束

9结构材料;

9a 0, a cr ;

9裂纹扩展模型。9断裂力学;

9传力结构类型;

9临界强度等。

9设计要求规定断裂应力。9可检规范;

9不可检结构,按”出厂时间”或“第1次飞行时间”;9制定检测周期。

9由标准文件给出最小未修使用期。

1. 裂纹扩展曲线a-N 图

2. 结构强度降曲线σS -N 图

3. 未修使用期示意图

基于振动的结构损伤识别方法的近期研究进展

收稿日期:2002-05-30 *基金项目:广东省自然科学基金资助项目(000387) 作者简介:韩大建(1940-),女,教授,博士生导师,主要从事结构工程方面的研究.文章编号:1000-565X(2003)01-0091-06 基于振动的结构损伤识别方法的近期研究进展* 韩大建王文东 (华南理工大学建筑学院,广东广州510640) 摘要:基于振动的损伤识别方法是少有的几种全局损伤检测方法之一.文中介绍了该方法的现状及发展,对有关方法进行了总结和评述,同时指出了基于振动的损伤识别方法还需要进一步解决的问题. 关键词:损伤检测;健康监测;振动特性 中图分类号:TU311文献标识码:A 近几十年来,结构的健康监测越来越受到人们的重视.早期的研究主要集中在航空航天器方面,这主要是为了降低人的生命危险.随着大量基础设施使用时间的增长,许多土木结构进入了老化阶段,土木工程结构健康监测问题变得越来越重要.与结构造价及通过早期发现结构损伤所节约的维修费用相比,健康监测技术应用和研究所投入的费用实在是微不足道. 到目前为止,桥梁的长期检查主要还是定期的人工检测[1].但定期人工检测的局限性比较多:(1)不能及时发现间隔期内的损伤,如在美国的姥岛大桥上,一个工程师推测该桥的主要裂纹在被发现以前已经发展了3天,又如铁岭的青洋河大桥主梁翼板的断裂[2];(2)结构的一些部位人难以到达;(3)工作量大、费用高.要实现连续监测,不破坏结构的性能和整体性是最基本的要求,无损检测(NDE)技术是结构健康监测系统的根本检测方法.传统的NDE方法是可视化或者局部化的试验方法,例如声波或超声波方法、磁场方法、雷达成像、涡流及温度场等方法,所有这些方法都要求事先知道损伤的近似位置以及损伤的结构可以接近[3].由于这些限制,上述的试验方法只能检测结构表面或附近的损伤.能够应用到复杂结构的定量的整体检测方法已成为迫切的要求,这导致基于结构振动的损伤识别方法的发展. 基于结构振动的损伤识别方法通常称为损伤识别(Dam age Identif ica tio n),其基本原理是结构模态参数(固有频率、模态振型等)是结构物理特性(质量、阻尼和刚度)的函数,因而物理特性的改变会引起系统动力响应的改变.这种损伤探测方法属于结构整体检测范畴,已经被广泛应用在航空、航天以及精密机械结构等方面.除了整体检测的优点外,对于石油平台、大型桥梁等大型土木工程结构,可以利用环境激励引起的结构振动来对结构进行检测,从而实现实时监测,这是很吸引人的.但是对于大型土木结构,该方法目前还存在一定的困难.进入实际应用还有很多研究工作要做,主要体现在:(1)土木结构较多的不确定因素、复杂的工作环境以及大型性导致结构的动力特性测量精度低,损伤识别困难;(2)目前该方法对结构损伤的识别灵敏度过低,与早期发现损伤这一目标差距较大;(3)有关方法往往要求提供结构早期信息.基于振动的损伤识别方法是一种有着良好前景而又远未成熟的方法,必须进行更深入的研究. 1损伤识别方法 基于振动的损伤识别方法按照所利用的特征量是否使用结构模型,可分为以下两类: (1)无模型识别方法(No n_mo de lBasedM e_ 华南理工大学学报(自然科学版) 第31卷第1期Jo urnal of So uth C hina Univ ersity o f Techno logy V o l.31N o.1 2003年1月(Natur al Scie nce Editio n)January2003

损伤容限的概率设计方法

复合材料结构概率损伤容限设计方法研究 1. 研究背景 现阶段在复合材料结构的损伤容限设计方法中,所考虑的主要物理量是按确定量来处理的而忽略了它们的随机性,即确定性方法。例如,复合材料结构在制造或使用期间常常会产生损伤,为了使设计的结构在经受这样的损伤之后仍能安全使用,在实践中一般的做法是限制复合材料结构中的许用应力。典型的做法是,将复合材料结构设计成经得起下述最苛刻的二个条件中的任何一个:(1)极限载荷下任何位置的6.3 mm的开孔;(2)规定尺寸的物体冲击表面时引起的损伤(代表目视勉强可见的冲击损伤威胁)。两个准则都假设在构件的寿命期内存在缺陷。很显然,这些准则降低了复合材料的许用强度。确定性方法规定一个安全系数以覆盖未知量而导致保守的设计,传统上安全系数一般取为1.5。 实际上,飞机结构的安全性要受到很多因素的影响,其中一些主要影响因素还具有明显的、不可忽视的随机特性。因此用统计模式来表征部件尺寸、环境因子、材料特性和外载荷等设计变量更为符合实际情况。确定性方法是找出并定义在设计中要满足的一个最严重情况或极值,而概率设计方法则在设计中利用统计学特征并试图提供一个期望的可靠度。概率方法依赖于一个变量的统计特征来确定它的大小和频率,较确定性方法更为合理。 当前军用和民用飞机的结构设计除满足强度和刚度要求外,已广泛采用耐久性/损伤容限设计思想。其中,损伤容限设计思想是在“破损安全”概念的基础上演变而来的,主要基于如下考虑,即结构带损伤使用是难以避免的事情。损伤容限设计思想要求含损伤结构在损伤被检出之前要保持足够的剩余强度。损伤容限设计是依靠结构对损伤容忍能力和规定的无损检测的有效性来保证安全的。目前的损伤容限设计方法属于确定性设计方法。因此,进一步的设计思想是发展一种能综合考虑各种主要因素的影响及其随机性的设计方法,即复合材料结构可靠性分析与设计方法。 2. 复合材料结构概率损伤容限设计涉及的损伤表征问题研究 2.1 损伤类型及其相应的损伤信息数据库 在复合材料材料结构损伤容限设计中的初始缺陷主要包括制造加工缺陷与使用(服役)缺陷两大类。按照损伤类型又可以分为(1)脱胶分层,(2)孔隙率,(3)开孔,(4)冲击损伤等等。 国外的研究表明,对复合材料结构可靠性进行评估而言,能够利用的有关损伤的定量信息很少。因此建立损伤数据库是实现复合材料结构概率损伤容限设计方法的最基础的工作。 进行复合材料结构概率损伤容限设计与评估需要的损伤信息包括损伤类型、导致损伤的

脊髓解剖及损伤结构分析

一、脊髓的位置 正常成人的脊髓下端平( )下缘

二、脊髓的外形 三、脊髓内部结构的一般形式

解析: 马尾。 解析: 中央管(中央管周围 是“H”形灰质),灰质包括前角、外侧角和后角。白质包括前索、外侧索和后索,灰质前、后连合白质前、后连合和网状结构。

解析: 脊髓的内部结构。 解析: 主要脊髓的灰、白质配布。 (一)脊髓的灰质 Gray matter 前角内的神经元包括a神经元,其支配肌梭外骨骼肌,g神经元支配肌梭内骨骼肌。(Renshaw 细胞 :对 a神经元起反馈抑制作用 ) 。前角 anterior horn :a运动神经元:大型神经元,支配骨胳肌梭外肌纤维,引起肌肉收缩;g运动神经元:小型神经元,支配骨胳肌梭内肌纤维,保持肌肉张力;Renshaw 细胞:小型抑制性神经元。

解析: 前角运动神经元的分布方式。 前角运动神经元的分布方式包括:内侧群:见于脊髓全长,支配颈部和躯干部的固有肌,即中轴肌。外侧群:见于颈膨大和腰骶膨大节段,支配四肢肌。前角运动神经元损伤 —— 迟缓性瘫痪。 解析: 前角。 解析: 胸髓和上腰髓 C8-L2.3 )节段:中间外侧核,为交感神经的节前神经元骶髓( S2-4 )节段骶副交感核,为副交感神经的节前神经元。

解析 :胸髓和上腰髓( C8-L2 , 3 )节段:中间外侧核,为交感神经的节前神经元 。 骶髓( S2-4 )节段:骶副交感核,为副交感神经的节前神经元。 解析: 后角内的神经元属于感觉性神经元,接受后根来的感觉信息,并将这些信息传递到脑。主要核团有 : 后角边缘核、 胶状质、 后角固有核、胸核。

耐久性和损伤容限分析软件MSC

耐久性和损伤容限分析软件MSC.Fatigue介绍 耐久性和损伤容限分析软件MSC.Fatigue介绍 在操作中失败的机械系统引起包括在其中的各个部件的严重问题。制造商面临高额的保证花费和负担,而更重要的是操纵有缺陷的小汽车、卡车、飞行器或机械设备的人的安全性可能是冒险的。为减少产品可能过早疲劳破坏或预料不到破坏的这些风险,制造商可能: -使用更高的安全系数保守设计部件,结果是增加了重量和费用。 -依赖于繁重的物理疲劳试验,预测疲劳情况和寿命期望。这将导致费用增加和推向市场的时间加长。同时也限制了能进行试验工况数量和操作环境。 作为用户“产品虚拟开发(VPD)”过程的一个关键环节,MSC.Fatigue可以帮助用户快速而准确地预测产品在任何与时间相关和频率相关的载荷工况作用下的寿命,并优化产品的重量和形状。 MSC.Fatigue产品家族软件提供了可以由用户根据需求而定一系列集成的产品: 核心产品:例如:Basic, Pre&Post, Strain Gauge, and Utilities。提供建模、测试、功能、评估和从耐久性观点对产品性能的提高等基本的功能。 可选产品:例如Fracture, Multiaxial,和Vibration ,扩展核心产品的能力。 工业领域专业产品:例如Spot Weld和 Wheels。为特定的工业或应用领域提供的疲劳计算。 MSC.Fatigue是MSC与MSC在疲劳和耐久性分析领域的合作伙伴nCode合作开发的。我们推荐MSC.Patran 作为MSC.Fatigue分析的前后处理软件工具。可以从其它MSC的软件产品中获得MSC.Fatigue需要的几何和有限元结果,例如MSC.Nastran, MSC.Marc和MSC.Dytran。载荷工况可以从MSC.ADAMS或物理试验中获得。需要的材料信息可以从MSC.Fatigue的标准库中获得,从MSC.EnterpriseMvision材料数据库中获得,或者由用户自己提供。 获益: -通过识别需要时间处理的部件的薄弱环节,加速创新。 -所有的可能的载荷工况情况下,对产品进行虚拟试验,增加产品最终设计时的信心。 -使新设计快速走向市场,避免沉长的物理上“装与拆”的循环,而它需要数周或数月才能充分地达到正常的循环寿命时间。 -最大限度地减少产之间品数据传递的时间,而此产品与MSC公司的其它仿真工具有很好的集成。最大限度地减少部件保守设计而节省费用。 -通过将此产品作为MSC校园Licensing系统的一部分,节省在仿真技术方面的投资。 应用: -承受低循环或随机振动载荷的飞行器。 -汽车悬架系统和刹车系统。 -非高速路行驶的车辆,具有相对粗糙的操作环境。 -发动机噪声,风力涡轮机和有随机振动的海洋钻井平台。

从安全寿命到损伤容限——结构设计的观念演变

从安全寿命到损伤容限 ——结构设计的观念演变 摘要 结构的设计,必须在性能、安全、成本三者间取得平衡。 最早仅考虑材料静力强度;20世纪30年代后为采用线性疲劳观念的“安全寿命”, 50年代改进为“破损安全”;而70年代则使得“损伤容限”成为现今的标准结构设计准则。1988年揭示了散布型疲劳损伤(亦称为“广布疲劳”)成为“损伤容限”结构设计的新课题。 1、静力强度 早期应用中,由于金属材料极富韧性(ductility),结构设计方法很保守,因此结构的安全裕度(Margin of Safety)相当大。在结构遭遇疲劳问题之前,设备早就因为其它使用原因而失效了,因此结构疲劳寿命不是此时的设计重点。结构设计只要满足材料静力强度(Static Strength)就不会有问题,结构分析则以静力试验为佐证,试验负载是使用负载乘以一个安全系数,以计入不确定因素,比如:负载不确定、结构分析不准确、材料性质变异、制造质量变异……等。 为了减轻结构重量以提升使用性能,在材料静力强度主导结构安全的思想下,一些强度高但韧性低的金属材料开始出现在设备结构上。只是此时的设备运行工况已非昔日设计工况可比,结构应力大增,应

力集中(Stress Concentration)效应使高应力情况更加恶化,最后导致产生疲劳裂纹,降低了结构安全裕度,材料静力强度已不足以保证设备运行的结构安全。 2. “安全寿命” “安全寿命”(Safe Life)设计观念。在这种设计观念里,设备在预定的运行期间内需能承受预期的反复性负载,当结构运行时数到达运行寿命时,认定结构疲劳寿命已经完全耗尽,设备必须报废。 “安全寿命”设计观念的缺点,在于它的疲劳分析与设计一般是采用“疲劳强度耐久限制”(Fatigue Strength‐Endurance Limit)的方法,也就是所谓的麦林法则(Miner's Rule)。它是在实验室里对多片截面积各异的小尺寸材料试片,施加不同的等振幅(Constant Amplitude)负载,直到试片疲劳破坏为止,以获得此材料在各种施加应力和发生疲劳破坏的负载周期之数据,称之为S‐N曲线(S‐N Curve,S代表施加应力,N代表负载周期数),再以实际结构件在各种设计运行条件下的应力,找到相对应的疲劳破坏负载周期数,依线性累加的方式加总,就可预测结构的疲劳寿命,并应用于设计。虽然这种方法已行之多年,且普遍为一般结构设计及分析所接受,然而这种分析方法有其先天上的缺点,使得分析的结果常不符合实际。 因为一般在实验室里做这种小型试片的疲劳试验时,试片表面上都有经过特别处理,以使试片表面尽可能光滑平整而没有任何缺陷,也就是没有任何裂纹的存在。因此,由这种试片所得的疲劳寿命试验数据,就包括了裂纹初始(Crack Initiation)及裂纹生长(Crack Growth)

建筑工程结构的损伤检测技术

建筑工程结构的损伤检测技术 摘要:建筑工程结构会受到来自各种因素、不同环境的影响,例如使用过度、年久失修、环境破坏、人为损害等,无论多么优越的建筑工程结构都会因为自身缺陷及损伤的加深而不能有效发挥其效果,因此检测建筑工程结构可十分精准地检测出缺陷位置与损伤程度,可谓具有十分重要的现实意义。 关键词:建筑工程;结构损伤;检测技术 1 损伤检测技术的应用 建筑工程结构损伤检测借助科技发展之力已完成了由最传统、最原始的专家检验一家之言向较科学、较规范的仪器检测先进之法的过渡,而且评定既有结构物的可靠性从某种程度上说对科学仪器的依赖性也是只增不减。关于建筑工程结构损伤检测的研究工作从时间跨度上分有探索阶段、发展阶段和完善阶段:1940~1950年是采用目测法、凭经验判断的探索阶段,主要研究结构缺陷为什么会产生及如何修补;1960~1970年是引入多种检测及评价方法的发展阶段,主要研究建筑物的检测与评估方法;1980年之后是一系列的规范、标准都已制定的完善阶段,此阶段强调建筑物的综合评价并应用到实际检测的工作中去。 2 传统的损伤检测技术 对建筑工程结构进行损伤检测最常用的即是简便易行的目测法,目测法作为人工检测方法之一仅仅适用于结构规模小、复杂程度低的结构检测,结构规模与复杂程度一旦增加,应用该法的检测效率则会大打折扣,同时还会因部分构件材料老化、检测区域肉眼所不能及等原因导致检测工作费时费力、检测结果也不准确。 无损检测法是结构局部损伤检测方法的一种,仅仅适用于结构损伤区域已知的环境。应用无损检测技术还需要配备专业的测试设备与检测人员,无损检测的工作量大、强度高,还存在一定缺陷,即特殊部位很难检测得到,而且在线监测与整体损伤检测实现起来也有一定的难度。 局部检测法同样存在诸多局限且应用环境要求较高。例如,要预先知道建筑工程结构缺陷的大概位置并确定结构缺陷之间是否接近,对于部分难以到达的结构缺陷及结构规模较大、复杂程度较高的结构损伤检测,此法则毫无作用;局部检测法需要人工定期进行检测,所以检测期间部分结构的功能会停工或禁用,这势必会影响经济增长;此外,如果间隔期内的损伤不能被及时发现,则会“牵一发而动全身”,结构实时在线的连续监测便无从谈起。 传统的目测法和无损检测法都是针对结构局部而言,因此对结构整体性能参数的变化很难做到有效预测,实时、在线的健康监测和损伤检测都难以实现。建筑工程结构一旦出现损伤,就会影响结构性能参数,此种影响若能被检测并归类,

脊髓解剖与损伤结构分析详解

写在课前的话 脊髓损伤是临床上比较常见的疾病之一,本病起病急、变化快、病情重、致残率高,也是让临床医生头疼的难治疾病。近年来,本病的发病率不断增高,致残率也是逐年上升,但是在临床上并没有得到合理规范的诊治。本课件就该方面进行详细阐述,旨在促进脊髓损伤在临床中得到更加合理而有效的诊治。 一、脊髓的位置 解析:脊髓位于椎管内,上端平枕骨大孔水平。下端:第一腰椎下缘(成人);第三腰椎下缘(新生儿)。 正常成人的脊髓下端平()下缘 A. 第一腰椎 B. 第二腰椎 C. 第三腰椎 D. 第四腰椎 正确答案:A 解析:脊髓位于椎管内,上端平枕骨大孔水平。下端:第一腰椎下缘(成人)。

二、脊髓的外形 解析:脊髓呈现扁圆柱体形,有颈膨大、腰骶膨大、脊髓圆锥和终丝。脊髓共有 31 节:颈髓 8 节、胸髓 12 节、腰髓 5 节、骶髓 5 节和尾髓 1 节。 脊髓的位置和外形分别是什么? 三、脊髓内部结构的一般形式 解析:脊髓内部结构:脊髓表面有 6 条纵沟:前正中裂、后正中沟、前外侧沟(前根)、后外侧沟(后根)。

解析:马尾。 解析:中央管(中央管周围是“H”形灰质),灰质包括前角、外侧角和后角。白质包括 前索、外侧索和后索,灰质前、后连合白质前、后连合和网状结构。

解析:脊髓的内部结构。 解析:主要脊髓的灰、白质配布。 (一)脊髓的灰质 Gray matter 前角内的神经元包括α神经元,其支配肌梭外骨骼肌,γ神经元支配肌梭内骨骼肌。(Renshaw 细胞 : 对α神经元起反馈抑制作用 ) 。前角 anterior horn :α运动神经元:大型神经元,支配骨胳肌梭外肌纤维,引起肌肉收缩;γ运动神经元:小型神经元,支配骨胳肌梭内肌纤维,保持肌肉张力;Renshaw 细胞:小型抑制性神经元。

基于动力的结构损伤识别方法

基于动力的结构损伤识别方法研究综述 摘要:结构损伤识别问题是桥梁健康监测的基础和重要组成部分,其对于桥梁结构的安全性和可靠性具有重要的影响,在众多的结构损伤识别方法中,基于动力的结构损伤识别方法凭借其一系列独特的优点成为当前国内外研究和发展的热点。该研究能适合工程实际应用,并且损伤识别结果可靠准确,该方法具有十分重要的现实意义。本文介绍了国内外近年来较为成熟的结构损伤动力特性识别方法。 关键词:损伤识别;健康检测;动力特性 Research on Structural Damage Identification Based on Dynamic Abstract:Structural damage identification is the basis and important part of bridge health monitoring, and it has an important influence on security and reliability of the bridge.Among the numerous methods of structural damage identification,the structural damage identification method based on dynamic with its unique advantage is becoming a hot spot of current research and development at home and abroad.This study can be suitable for engineering application,and the damage identification result is reliable and accurate,the method has very important practical significance.Some mature methods of structural damage identification based on the dynamic characteristics at home and abroad in recent years were introduced in this paper. Key words:Damage identification;Health detection;The dynamic characteristics 0 引言 结构损伤识别不仅仅是单纯意义上的对损伤的诊断和修复,它更积极的意义 在于使人们重新认识结构的特征,并指导设计人员对以后的类似结构进行修改和 重新设计。在工程上,大部分结构损伤的产生都是由于长期外界因素的作用而累 积形成的疲劳失效。损伤的位置可能是受影响最剧烈的位置,可能是自身的材料 缺陷导致,也可能是结构设计中最薄弱的环节,这些因素往往是结构设计中没有 考虑到的。从这个角度上来看,损伤识别的结果可被用于探寻结构中较刚度和强 度薄弱的区域,对结构的后续设计具有重大的指导意义。此外,我国正处于社会 建设的全面发展时期,大批原有的工程结构需要进行损伤评估。对于轻微损伤的 结构,进行及时的补救,使之满足生产生活的需要;对于严重损伤的结构,进行 二次再利用,发挥其仍有的价值。这与现如今提出的绿色、节能、低碳的可持续 发展战略也是相适应的。因此,损伤识别不仅是一门重要的实验科学,同时对现 今社会的发展也具有重大的实际意义。 完整意义上的结构损伤识别包含以下四个任务:(1)判断结构是否存在损伤。 通常需要对结构进行长期的监测,或者事先获得该结构健康状态下的损伤评判指 标;(2)损伤的定位。在确定结构发生损伤后,采用损伤定位指标来确定损伤发 生的具体位置;(3)损伤的程度分析。该问题可以分为相对损伤程度和绝对损伤

钢结构损伤机理及检测方法

钢结构损伤机理及检测方法 姓名:** 班级:土木****班 学号:********

摘要:本文从钢结构损伤机理与损伤检测方法入手,介绍了国内外结构损伤检测方法的现状,并详细阐述了基于小波变换的结构损伤检测方法、基于柔度的结构损伤检测方法、基于神经网络的结构损伤检测方法等几种结构损伤检测方法。 关键词:钢结构损伤检测方法小波变换柔度神经网络 1 引言 重大工程诸如跨江跨海的大跨度桥梁、用于大型体育赛事的大跨度空间结构、代表城市象征的超高层建筑、开发江河能源的大型水利工程以及核电站工程等,它们的使用期长达几十年甚至上百年,在环境侵蚀、材料老化和荷载的长期效应、疲劳效应和突变效应等灾害因素的共同作用下,将必可避免地出现结构系统的损伤累积和抗力衰减,从而导致抵抗自然灾害甚至正常环境作用的能力下降。尽管这些都是设计时能够预料到的结果,但是却无法完全考虑所有因素的影响,从而无法推断结构内部应力的实时状况,也无法预知结构随着时间的推移,在一定荷载作用下的反应。 因此,为了保障结构的安全性、完整性、适用性与耐久性,已建成的重大工程结构和基础设施需采用有效地技术手段监测和评定其安全状况,并及时修复和控制结构损伤;而对于新建的大型结构和基础设施应总结以往的经验和教训,在工程建设的同时安装长期的结构健康监测体系,以监测结构的服役安全情况,同时为研究结构服役期间的损伤演化提供有效和直接的实验平台。 2 钢结构损伤机理及危害 2.1 钢结构的稳定问题 钢材的强度远较混凝土、砌体及其他常见结构材料的强度高,在通常的建筑结构中按允许应力求得的钢结构构件所需的断面较小,因此,在多数情况下,钢结构构件的截面尺寸是由稳定控制的。钢结构构件的失稳分两类:丧失整体稳定性和丧失局部稳定性。两类失稳形式都将影响结构或构造的正常承载和使用或引发结构的其他形式破坏。 影响结构构件整体稳定性的主要原因有: (1)构件设计的整体稳定不满足,即长细比不满足要求。 (2)构件的各类初始缺陷,包括初弯矩、初偏心、热轧和冷加工产生的残余应力和残余变形及其分布、焊接残余应力和残余变形等。 (3)构件受力条件的改变,如超载、节点的破坏、温度的变化、基础的不均匀沉降、

北航-结构与耐久性损伤容限设计-考试题目范围-关老师

结构耐久性和损伤容限设计理论与方法梁昆2012年12月7日 1、张开型或I 型:外载荷为垂直于裂纹平面的正应力,裂纹面相对位移垂直于裂纹平面。 滑开型或II 型:外载荷为面内垂直裂纹前缘的剪力。裂纹在其自身平面内作垂直于裂纹前缘的滑动。 撕开型或III 型:外载荷为离面剪力。裂纹面在其自身平面内作平行于裂纹前缘的错动。 2、应力强度因子:应力强度因子K 则是构件几何、裂纹尺寸与外载荷的函数,它表征了裂纹尖端受载和变形的强度,是裂纹扩展趋势或者裂纹扩展推动力的度量。 三种种类:受双向拉伸载荷情况、无穷远处收均匀建立情况、受离面建立情况分别对应I 、II 、III 型裂纹的应力场和位移场可表达为:a K I πσ =,a K II πτ=,a q K III π= 3、应力强度因子求法: 1、解析法a 、无限大板含有无限多个均匀相距2b 而各长2a 的共线裂纹 可见,无限大板上有共线的无限多裂纹时,其应力强度因子等于只有一个裂纹时的应力强度因子乘以一个系数,此系数永远大于1.0 b 、含中心裂纹无限大板受楔力P 2.数值解法 数值方法有边界积分方程法、边界配置法、有限元法以及一些建立在能量原理上的方法。 下面简要介绍使用有限元法求解应力强度因子的原理。 用有限元法计算应力强度因子,可用两种方法: 一种方法是直接应用裂纹尖端应力或位移场渐进解的表达式: 另一种方法是通过能量关系,例如应用J 积分计算,用来计算应力强度因子。 3.实验方法 应力强度因子不可能通过实验直接求得,但可以通过它与某些可测量的量的关系求得。 4.叠加法 由于应力强度因子的概念是建立在线弹性力学基础上的,叠加原理可用于求应力强度因子。 4、求下图所示情况的应力强度因子 已知图1.7(b)的应力强度因子解为:,利用叠加原理可知图1.7(a)的应力强度因子为,所以,解为 5、断裂韧度是材料抵抗裂纹扩展的抗力。Kc ,Gc 等称为材料的断裂韧度。 断裂韧度的特点1、与试件厚度有关系2、与材料状态(热处理等)有关3、与温度有关。 6、比较脆性断裂与准脆性断裂之间的异同 脆性断裂:材料是理想脆性,裂纹尖端无塑性区,可用K 或G 准则。 准脆性断裂:裂纹尖端附近材料存在小范围屈服,但仍使用K 或G 准则。 7、能量释放率G 与应力强度因子K 的关系:见书P18 8、J 积分定义:??ΓΓ?? ? ????-=???? ?????-=ds x u T Wdy x u T Wdy J i i

损伤容限技术

民用飞机损伤容限技术 (FAA专家Swift 在华培训班讲课摘录) 1. 损伤容限评定主要目标 (1)对强度、细节设计和制造的评定必须表明,飞机在整个使用寿命期间将避免由于疲劳、腐蚀、制造缺陷或意外损伤引起的灾难性破坏; (2) 新研制的飞机,必须进行损伤容限评定;此后更改的老机,更改部分也必须进行损伤容限评定; (3) 损伤容限评定的主要目标: a. 裂纹增长和剩余强度分析; b. 检测。 2. 损伤容限要求的主要更改 (1)剩余强度载荷为100%限制载荷;取消了动强度因子。 (2)结构必须是损伤容限的,除非是无法实施。 (3)检查必须依据谱载作用下裂纹增长速率来确定。 (4)必须考虑广布疲劳损伤的情况: a. 多条小裂纹的独立增长,即便每一条都小于可检长度,有可能突然连接起 来形成单个临界裂纹; b. 先前的疲劳暴露产生的次结构件上的裂纹,由于主结构上的破坏而引起载 荷的重新分布; c. 多传力路径结构中,有相近应力水平的独立元件,可能发生同时破坏。3. 试验支持的分析评估(略) 4. 评定临界部位的选择准则 飞机在外场主要靠目视检查,一架大型飞机的检查面积约15,000 in2,关键部位一般约150个。A320的关键部位有500个,B767则仅有27个。 (1)受拉或剪的元件; (2)低静强度裕度部位; (3)高应力集中处; (4)高载传递处; (5)当主元件破坏后,次元件出现高应力处; (6)有高裂纹扩展率的材料; (7)易受偶然性损伤的部位; (8)部件试验结果; (9)全尺寸试验结果。 5. 损伤容限评定的任务 (1)确定飞机用途。 (2)编制重心过载谱。

损伤容限设计方法和设计数据

文章编号:1001-2354(2000)05-0004-04 损伤容限设计方法和设计数据Ξ 赵少汴 (机械工业部郑州机械研究所先进制造技术研究中心,河南郑州 450052) 摘要:论述了损伤容限设计方法,研究了长裂纹的疲劳裂纹扩展寿命估算方法和初始裂纹尺寸a0的确定方法。并提供了常用国产机械材料的疲劳裂纹扩展速率和疲劳裂纹扩展门槛值的试验数据。 关键词:疲劳裂纹扩展速率;剩余寿命;疲劳裂纹扩展门槛值 中图分类号:TH123 文献标识码:A 1 引言 常规疲劳设计方法和局部应力应变法都是以材料的完整性为前提的。但是,实际零构件在加工制造过程中,由于种种原因,往往存在这样那样的缺陷或裂纹。为了考虑初始缺陷或裂纹对疲劳寿命的影响,便在断裂力学和破损-安全设计原理的基础上,提出了一种新的疲劳设计方法———损伤容限设计。 简单说来,损伤容限设计就是以断裂力学为理论基础,以无损检验技术和断裂韧度的测量技术为手段,以有初始缺陷或裂纹零构件的剩余寿命估算为中心,以断裂控制为保证,确保零构件在其服役期内能够安全使用的一种疲劳设计方法。 损伤容限设计,允许零构件在使用期内有初始缺陷,或在服役期内出现裂纹,发生破损,但在下次检修前要保持一定的剩余强度,能够安全使用,直至下次检修时能够发现,予以修复或更换。因此,损伤容限设计的关键问题是正确估算剩余寿命。 2 疲劳裂纹扩展速率 疲劳裂纹扩展速率d a/d N是剩余寿命估算的基础。它又可分为长裂纹的疲劳裂纹扩展速率与短裂纹的疲劳裂纹扩展速率。短裂纹的疲劳裂纹扩展速率尚在研究阶段,这里仅介绍长裂纹的疲劳裂纹扩展速率。 长裂纹的疲劳裂纹扩展速率d a/d N通常用以下的Paris公式表达: d a d N=C (ΔK)m(1)式中:ΔK———应力强度因子范围。 表1 某些国产材料的疲劳裂纹扩展速率参数材料热处理 应力 比 试验频 率(Hz) 最大载 荷(kN) Paris公式中的参数 C(×10-10)m 00Cr17Ni14Mo2油淬0.21109.26 1.0138 4.1694 0Cr19Ni9固溶处理0.21049.2646.104 3.0456 10Cr2Mo1调质0.110011.300.7240 2.9200 10Ti热轧0.1540-3170.0 1.3600 12Cr2Ni4调质0.256713.33814.14 2.2413 13MnNiMoNb调质0.1 6.013.00 1.3850 4.1700 15MnV正火0.11408.410.54165 4.6900 16Mn热轧0.115010.420.00106 4.6631 16MnCr5淬火后低温回火0.161709.810.11537 3.4737 16MnL热轧0.2095 2.459.8000 3.5220 16MnL热轧0.2095 2.450.02020 4.0430 16MnL热轧0.2095 2.45 4.6200 3.7650 16MnR热轧0.205010.78 1.7400 3.9900 16MnR热轧0.205010.78 3.9000 3.8900 16MnR热轧0.205010.78 1.2600 4.1600 16Mng热轧0.201457.60 2.1449 3.8492 18Cr2Ni4WA调质0.20150 6.5741.100 3.2108 19Mn5①正火0.10 6.012.014.900 3.5000 19Mn5①正火0.10 6.012.016.000 3.5400 1Cr17Ni2调质0.20115 5.931793.7 2.0559 1Cr18Ni9Ti淬火后时效0.101757.46 6.4535 4.0300 20正火0.100.00 6.800.21160 3.4576 20Cr2Ni4A淬火后低温回火0.10170 5.4044.771 2.0639 20CrMnSi调质0.2567 3.92148.92 2.7999 20CrMnCr5淬火后低温回火0.1017011.7724.806 2.9047 20Ni2Mo调质0.1083 4.910.01100 2.8500 20R-0.2016011.77256.10 2.3966 20R-0.2015011.77525.10 2.1849 20R-0.2016011.77677.10 2.0852 25Cr2MoV调质0.1092 4.913017.9 1.2203 25Cr2Ni3MoV调质0.10120 6.700.36300 3.2600 2Cr13调质0.2018010.87 5.5600 2.7878 28CrNiMoV调质0.20150 6.87173.90 2.7903 30Cr1Mo1V调质0.1060-0.04200 2.9800 35CrMo调质0.20200 6.8435.700 2.7800 4 可靠性与失效分析设计领域综述《机械设计》2000年5月№5 Ξ收稿日期:1999-09-06 作者简介:赵少汴(1932-),男,教授级高级工程师。曾多次获得国家、省部级科技进步奖。研究方向:疲劳设计研究。

损伤识别

桥梁结构损伤识别研究综述 摘要:首先阐述了桥梁结构损伤识别在桥梁结构中的重要性,介绍了国内外桥梁结构损伤识别研究现状,在此基础上,又介绍了用于桥梁结构的各种损伤识别方法和存在的问题,最后提出了桥梁结构损伤识别的发展方向。 关键词:损伤识别,桥梁结构,神经网络,曲率模态 引言 桥梁结构在长期使用过程中会发生各种损伤,导致桥梁结构的承载能力的降低,甚至会导致桥梁的倒塌,造成巨大的经济损失和人员伤亡。为了保证桥梁的安全性,需要及时的发现桥梁结构存在的损伤情况。目前,桥梁结构损伤识别已经成为国内外研究的热点。 1 国内外桥梁结构损伤识别研究现状 损伤识别最早用在航天及机械领域并得到了广泛的研究,在健康监测引起普遍关注的同时被应用在桥梁领域。鉴于桥梁所处环境的复杂性及结构特性的随机性,桥梁的损伤识别目前还没有一个统一的标准或准则参考,实际的应用也较少,但还是取得了一些成就。 自70年代以来,随着振动测试和分析技术的发展,国际上广泛开展了应用振动技术对机器设备与工程结构进行损伤识别和监测的研究。近年来,国外学者在利用振动模态分析理论进行结构损伤识别方面开展了大量的研究工作,提出了各种各样的识别方法。早期,主要是以Vandiver和Begg[9]等的研究工作为基础,根据模态频率的变化来探测桥梁结构的损伤。Spyrakos[5]进行了一系列的桥梁模型试验,分别测试了模型梁在不同类型、位置和程度损伤条件下的低频自振特性,发现一定水平的损伤与结构动态特性有确定的相关性,但是仅用频率改变作为结构损伤因子是不充分的。Aktan等则从结构静力柔度阵出发,根据桥梁载重汽车静力测试结果,通过对比观测模态柔度和静力测试柔度,评估了模态柔度作为损伤指针的可靠性。除了这些较为零星的工作以外,美国通过I-40桥梁项目和Alamosa峡谷项目,对桥粱健康诊断中的结构损伤识别方法进行了系统的研究,试验结果表明振型关于结构损伤识别伤较为敏感。Stubbs等[8]也对I-40桥进行了损伤识别的研究,利用振型曲率计算了结构局部应变能,通过应变能的改变来识别桥梁的损伤。这种算法能在未知结构材料特性的条件下,进行结构损伤定位。Farrar和Jauregui仍然以I-40桥为研究对象,认为振型数据对损伤定位和定量的研究更加有用。同时,运用神经网络进行损伤识别的方法也被推广到桥梁工程中。1997年worden用神经网络作为自联想器来对结构进行异常检测,并提出了自联想器的形成、异常指标、模式识别的特征及学习方法。 国内对结构损伤识别问题也开展了大量的研究工作。关于结构损伤识别,袁万城等[10]将其分为模型修正法和指纹分析法两大类。模型修正法主要用试验结构的振动反应记录与原先的模型计算结果进行综合比较,利用直接或间接测知的模态参数、加速度时程记录、频率响应函数等,通过条件优化约束,不断地修正模型中的刚度分布,从而得到结构刚度变化的信息,实现结构的损伤判别与定位。秦权等以香港青马大桥为背景,对桥梁健康监测中的模态识别、损伤识别、传感器优化布置和误差分析等问题进行了研究,为青马大桥健康诊断系统的实现提供了一定的理论依据。 2 桥梁结构损伤识别方法 损伤识别是基于结构振动的损伤识别方法,其基本原理是结构模态参数(固

飞机结构耐久性和损伤容限设计

飞机结构耐久性和损伤容限设计 【摘要】飞机结构设计质量的高低直接决定其耐久性与损伤容限特性的优劣。耐久性设计和损伤容限设计互相补充,共同保障飞机结构的安全性、可靠性和经济性,是保证飞机结构完整性的重要手段。本文对飞机结构设计思想的发展,损伤容限的设计原理和设计要素进行了归纳阐述。 【关键词】飞机结构设计;耐久性;损伤容限 1、飞机结构设计思想的发展 飞机设计思想的发展来源于飞机的使用实践和科学技术的不断进步。飞机设计思想的演变,对军用飞机,主要取决于飞行和战斗性能、生存能力以及经济成本等。对民用飞机特别重要的是安全性和经济性。二次大战后的几十年来航空运输市场迅猛发展,飞机的性能迅速提高,对飞机的安全性和经济性提出了越来越高的要求,同时,断裂力学等相关学科逐步发展成熟,促使飞机结构设计思想发生了深刻的变化。几十年来,飞机设计思想经历了从静强度设计、疲劳(安全寿命)设计、安全寿命/破损安全设计、安全寿命/损伤容限设计,到耐久性/损伤容限设计等多次的演变。 2、耐久性和损伤容限设计概论 结构耐久性是结构的一种基本品质,它代表飞机结构在规定的使用期内,结构抵抗疲劳开裂、腐蚀(包括应力腐蚀)和意外损伤引起开裂的能力。在规定的使用期内,不允许出现功能损伤(刚度降低、操纵效率下降、座舱减压、油箱漏油等)。耐久性设计目标是经济寿命,而不是安全寿命,也就是说具有耐久性设计的飞机在整个服役期内,能有效的使用、随时处于良好状态,不需附加的维护和操作费用。损伤容限设计承认飞机结构在使用前就带有初始缺陷,在使用过程中,在重复载荷作用下不断扩展,但必须把这些缺陷或损伤的增长控制在一定的范围内,在规定的检查期内,结构应满足规定的剩余强度要求,以保证飞机结构的安全性和可靠性。利用安全寿命给出飞机的使用寿命,或通过耐久性设计和试验保证飞机结构的经济修理极限和经济寿命满足设计使用寿命要求,用损伤容限设计来保证飞机结构的安全。目前飞机设计主要是采用这个设计思想。 3、损伤容限设计原理 3.1损伤容限工程 (1)损伤容限是在“安全寿命”和“破损—安全”之后发展起来的一项工程技术。它是以断裂力学为基础,以保证结构安全为目标,以损伤检查为手段。涉及结构设计、载荷、强度、材料、工艺、试验质量控制、使用维修和组织管理各环节的系统工程。在各环节中的重要改变对传统理论和方法是一个巨大的冲击和革新。

(完整版)第七章损伤容限要求-2009汇总

第七章损伤容限设计要求 第1节概述 1、设计思想的转变 飞机结构安全性的要求, 主要依赖于结构的损伤容限设计技术。 损伤容限设计成为保证结构安全、防止发生灾难性破坏事故的重要设计原则和方法。 损伤容限是在“安全寿命”和“破损—安全”之后发展起来的一项工程技术。它是以断裂力学为基础,以保证结构安全为目标,以损伤检查为手段。涉及结构设计、载荷、强度、材料、工艺、试验质量控制、使用维修和组织管理各环节的系统工程。在各环节中的重要改变对传统理论和方法是一 个巨大的冲击和革新。表现在: (1) 设计思想承认损伤不可避免, 不断发展新的设计准则; (2) 结构提出新的结构设计概念, 进行结构分类, 完善结构总体安排和细节设计要求; (3) 载荷和环境要求飞—续—飞载荷谱,强调温度、湿度和介质环境,考虑离散源损伤; ——载荷谱的谱型分为“等幅谱”、程序块谱、飞—续—飞谱3种简化的排列形式。 ——飞—续—飞载荷谱是以一次飞行接一次飞行地排列飞机所经历的载荷—时间历程。每次飞行代表飞机一种特定的典型使用任务,该谱一般以一定的时间作为循环周期,在一个循环周期内,各次飞行之间的载荷历程有差别,但它们的总和代表飞机所有典型使用任务。飞机将周而复始地依次重复该周期内的各次飞行,直至飞机的总寿命结束为止。

(4) 材料大量增加了对材料性能的严格要求, 增加裂纹扩展及断裂、腐蚀的十余个材料常数,提出新的选材准则; (5)强度贯彻损伤容限准则和新的分析方法; (6)工艺对损伤容限重要结构件实施工艺控制; (7)试验增加全尺寸损伤容限试验(裂纹扩展和剩余强度试验); (8)质量控制无损检验,重要结构件跟踪控制; (9)使用和维修制定并实施结构维修大纲,机队监测监控; (10) 组织管理要实现损伤容限需要设计方(设计、分析、制造、用户保证)、使用方(检查、维护、修理、报告)和适航管理部门(管理条例、机队监控)三方明确分工,紧密合作,才可能实现。 安全性 在整个预期使用寿命期内, 每架飞机的飞行结构的安全性将达到和保持规定的剩余强度水平(存在未发现的损伤)的保证。 在任何结构材料可能出现失效的情况中, 裂纹状缺陷的存在只会加大失效的危险性。因此, 从飞行安全的立场出发, 假定结构可能而且总是经常含有初始损伤是谨慎的。 2、基本思想 损伤容限 结构在规定的未修使用周期内, 抵抗由缺陷、裂纹或其它损伤而导致破坏的能力。 ——在规定的寿命增量内,结构能成功地遏制损伤而无损于飞行安全的能力。 ——在遭受疲劳、腐蚀、意外或离散源引起的定量损伤后,在一定使用期内,结构保持其剩余强度的能力。

桥梁结构损伤识别方法综述

龙源期刊网 https://www.360docs.net/doc/3813471168.html, 桥梁结构损伤识别方法综述 作者:贾明晓连鑫 来源:《科技风》2017年第11期 摘要:我国的地貌丰富,为满足交通需求,大批跨河桥梁和高架桥应运而生,而随之到来的桥梁结构损伤问题也逐渐受到关注。在交通量大且运营压力大的今天,桥梁经常超载运营,再加之各种不可预见的自然灾害,使得桥梁结构疲劳损伤日趋严重。出现这些问题,首先要对桥梁工作状态,损伤程度和安全性进行评估,然后提出相应处理措施。经过多年的理论研究和实践,国内外学者们提出许多关于桥梁结构损伤识别的方法。本文通过对桥梁检测技术的综合叙述,阐明了桥梁检测的主要项目。从而系统梳理桥梁检测技术知识和提高桥梁损伤识别的有效性。 关键词:桥梁检测;损伤识别;识别方法 Abstract:China is rich in landscape, to meet the traffic demand, a large bridge across a river and viaduct arises at the historic moment, and then come the bridge structure damage problem also gradually attention. In today's traffic flow and operation pressure big, Bridges often overload operation, plus all sorts of unpredictable natural disaster, the bridge structure fatigue damage has become increasingly serious. In the face of these problems, first of all to work state of the bridge,the damage degree and safety assessment, and then put forward the corresponding measures. After years of theoretical research and practice, many domestic and foreign scholars put forward a variety of structural damage identification method. Based on the comprehensive description of bridge detection technology, illustrates the main bridge detection project. Furthermore, combing the knowledge of bridge detection technology and improve the effectiveness of bridge damage identification. Keywords:bridge detection;damage identification;identifying methods 桥梁是满足交通的重要组成部分,对社会经济的发展起到关键作用。但桥梁结构在长期超载运营中肯定会出现损伤以及安全隐患[1]。想要保证桥梁的安全运营,就必须不时的对桥梁 进行整体检测,而最有效的方法就是研究结构的损伤识别[2]。桥梁检测能准确地检查诊断出 桥梁内部的各种损伤[3] (如裂纹、磨耗和钢筋锈蚀等),对裂缝及其他损伤的发展趋势进行评估,从而能更好的保护桥梁结构。 一、传统的结构损伤识别方法 近半个世纪以来,许多国内外学者经过大量的研究开发了多种损伤检测方法[4]。主要有 半损检测和无损检测两种。由于需要修复的桥梁一般在役,用于桥梁结构检测的主要是无损伤的识别方法,无损伤的识别方法包括结构局部识别方法和结构整体识别方法。而结构损伤识别方法根据是否反演又分为模型修正法和动力指纹法。此外,自计算机技术发展以来人工神经元

相关文档
最新文档