分子生物学简答题

分子生物学简答题
分子生物学简答题

1.(1)说明基因组的大小和基因组复杂性的含义

基因组的大小:指在基因组中DNA的总量

基因组复杂性:指基因组中所有单一序列的总长度

(2)这个基因组的大小怎样?4000bp

(3)这个基因组的复杂性如何?450 bp

2.试比较原核生物与真核生物的翻译

原核生物与真核生物的翻译比较如下:仅述真核生物的,原核生物与此相反。

①起始Met不需甲酰化

②无SD序列,但需要一个扫描过程

③tRNA先于mRNA与核糖体小亚基结合

④起始因子比较多

⑤只一个终止释放因子

3.试比较真核生物与原核生物mRNA转录的主要区别

原核生物:操纵子RNA聚合酶核心酶加δ因子不需加工与翻译相偶联类核

真核生物:单基因RNA聚合酶Ⅱ聚合酶加转录因子需加工故与翻译相分离核内

4.激活蛋白(CAP)对转录的正调控作用

环腺苷酸(cAMP)受体蛋白CRP,cAMP与CRP结合后所形成的复合物称激活蛋白CAP。当大肠杆菌生长在缺乏葡萄糖的培养基中时,CAP合成量增加,CAP具有激活乳糖(Lac)等启动子的功能。一些依赖于CRP的启动子缺乏一般启动子所具有的典型的-35区序列特征(TTGACA)。因此RNA聚合酶难以与其结合。

CAP的存在(功能):能显著提高酶与启动子结合常数。主要表现以下二方面:

①CAP通过改变启动子的构象以及与酶的相互作用帮助酶分子正确定向,以便与-10区结合,起到取代-35区功能的作用。

②CAP还能抑制RNA聚合酶与DNA中其它位点的结合,从而提高与其特定启动子结合的概率。

5.原核生物与真核生物启动子的主要差别

原核生物

TTGACA——TATAA T——起始位点

-35 -10

真核生物

增强子——GC——CAAT——TA TAA——5mGpp——起始位点

-110 -70 -25

6.比较DNA复制和RNA转录的异同

相同点:DNA复制和RNA转录在原理上是基本一致的,体现在:

①这两种合成的直接前提是核苷三磷酸,从它的一个焦磷酸键获得能量促使反应走向合成

②两种合成都是一个酶为四种核苷酸工作

③两种合成都是以DNA为模板

④合成前都必须将双链DNA解旋成单链

⑤合成的方向都是5-3

7.假设从一种生物抽提了核酸,你将用什么简便的方法,区别它是DNA或RNA?是单股或双股?

我们可用紫外分光光度计对抽提的核酸进行鉴定。因为不同的核苷酸有不同的吸收特性,纯品DNA在260nm与280nm的OD值之比为1.8,纯DNA应为2.0。根据OD值之比即可判断是DNA还是RNA。

判断是单股还是双股,可采取测定核酸溶液中磷的含量及紫外线的吸收值,得到摩尔磷的消光系数。一般摩尔磷的消光系数DNA为6000~8000,RNA为7000~10000,单链核酸的摩尔磷的消光系数明显高于双链核酸,即所谓的增色效应,据此可判断是单股还是双股。

8.将大肠杆菌培养在以甘油为唯一碳源的低限培养基中,lac操纵子表达吗?加入乳糖之后呢?除了乳糖,还加葡萄糖吗?为什么?

不表达,因为细胞内没有乳糖作为诱导物,调节基因lac产生的阻遏蛋白与操纵子结合,阻止了基因的转录。当加入了乳糖之后,由于细胞中缺少葡萄糖,腺苷酸环化酶将ATP转变成CAMP样,CAMP与其受体蛋白CAP结合成复合物,它再与启动子上的CAP位点结合。这样启动子上的进入位点方能与RNA聚合酶结合,此时,乳糖与阻抑蛋白结合,变成无活性的阻抑蛋白复合物,从操作子上解离下来,RNA聚合酶与操作子结合,开始转录,合成分解乳糖的相关酶。当加入葡萄糖时,CAMP不能形成CAP也就不能与启动子上的CAP 位点结合,启动子上的RNA聚合酶位点就不能结合RNA聚合酶,与乳糖分解利用相关的酶就不转录,也不会利用乳糖。

9.大肠杆菌染色体的分子质量是2.5*109道尔顿,每个核苷酸碱基的平均分子质量是330道尔顿,B型DNA双螺旋结构,试问:

(1)有多少碱基对?2.5×109÷330÷2=3.8×1023

(2)有多长?3.8×106×0.34=1.3×106mm

(3)有多少螺圈?3.8×106÷10=3.8×105个螺圈

10.只要培养基中有葡萄糖,大肠杆菌就决不利用其他种类的糖,这是什么道理?

当细胞内缺少葡糖糖时,腺苷酸环化酶就将A TP转化成cAMP,cAMP与其受体蛋白CAP 结合成复合物,这个复合物再与启动子上的CAP位点结合,这样,RNA聚合酶就能够与启动子上的进入位点相结合,启动基因的转录,合成利用其他糖类的相关酶。

11.衰减作用如何调控E·coil中色氨酸操纵子的表达?

衰减作用根据tRNATrp的数量去调节Trp操纵子的表达,而tRNATrp的数量又取决于细胞中Trp的水平,Trp操纵子mRNA前导序列很长,包括了编码一个长14个氨基酸的多肽所需的全部遗传信息(包括一个AUG起始密码和一个UGA终止密码)。这个多肽含有两个相邻的Trp残基,因此色氨酰-tRNA对前导肽的翻译是必不可少的。

12.试比较转录与复制的区别

(1)目的不同,所使用的酶、原料及其它辅助因子不同,转录是合成RNA,复制是合成DNA

(2)方式不同:转录是不对称的,只在双链DNA的一条链上进行,只以DNA的一条链为模板,复制为半不连续的,分别以DNA的两条链为模板,在DNA的两条链上进行

(3)复制需要引物,转录不需要引物

(4)复制过程存在校正机制,转录过程则没有

(5)转录产物需要加工,复制产物不需要加工

(6)复制与转录都经历起始、延长、终止阶段,都以DNA为模板,新链按碱基互补原则,5’-3’方向合成。

13.真核基因和原核基因的转录有什么共同之处?有什么不同之处?

相同:在转录过程中需RNA聚合酶作用,且新链的合成不需要引物的存在,但需有终止子的结构。

不同:细菌的RNA聚合酶是全酶,而真核生物有三种RNA聚合酶,分别转录RNA基因,且细胞器中有自己的RNA聚合酶;真核生物中,功能相近的基因通常前后相连成为操纵子,有一个共同的控制区进行转录的控制。而真核生物的三种RNA聚合酶有自己各自的启动子类型;原核生物的终止子在RNA水平上发挥作用,不依赖于p因子的终止子在柄部富含

G/C碱基对,且紧接一串富含U的柄-loop结构;而依赖于p因子的终止子通过p因子与β亚基的作用,促使转录终止。真核生物三类RNA聚合酶的转录终止子可能都需要富含A/T 的序列;几乎所有的真核mRNA的5’端都有帽子结构,3’端具有多聚A尾部。

14.试述蛋白质合成步骤

大肠杆菌为例:(1)氨基酸的活化:游离的氨基酸必须讲过活化以获得能量才能参与蛋白质合成,由氨酰-tRNA合成酶催化,消耗1分子ATP,形成氨酰-tRNA;

(2)肽链合成的起始:由起始因子参与,mRNA与30S小亚基、50S大亚基及起始加酰甲硫氨酸-tRNA(fMet-tRNAt)形成70S起始复合物,整个过程需GTP水解提供能量;(3)肽链的延长:起始复合物形成后肽链即开始延长。首先氨酰-tRNA结合到核糖体的A 位,然后,由氨酰转移酶催化与P位的起始氨基酸或肽酰基形成肽键,tRNA或空载tRNA 仍留在P位,最后核糖体沿mRNA5’—3’方向移动一个密码子距离,A位上的延长一个氨基酸单位的肽酰-tRNA转移到P位,全过程需要延伸因子EF-Tu、EF-Ts,能量由GTP提供;(4)肽链合成终止:当核糖体移至终止密码UAA、UAG、UGA时,终止因子RF-1、RF-2识别终止密码,并使肽酰转移酶活性转为水解作用,将P位肽酰-tRNA水解,释放肽链,合成终止。

15.参与蛋白质生物合成体系的组分有哪些?它们具有什么功能?

(1)mRNA:蛋白质合成的模板

(2)tRNA:蛋白质合成的氨基酸运载工具

(3)核糖体:蛋白质合成的场所

(4)辅助因子

①起始因子:参与蛋白质合成起始复合物形成

②延长因子:肽链的延伸作用

③释放因子:终止肽链合成并从核糖体上释放出来。

16.分别说出5种以上RNA的功能

(1)转运RNA(tRNA):转运氨基酸

(2)核糖体RNA(rRNA):核糖体组成

(3)信使RNA(mRNA):蛋白质合成模板

(4)小核RNA(snRNA):参与hnRNA的剪接

(5)反义RNA(micRNA):对基因的表达起调节作用

(6)核酶:有酶活性的RNA

17.简述乳糖操纵子的正负调控机制

(1)阻遏蛋白的负调控:

①当细胞内有诱导物时,诱导物结合阻遏蛋白,此刻聚合酶与启动子形成开放式启动子复合物转录乳糖操纵子结构基因

②当无诱导物时,阻遏蛋白结合与启动子与蛋白质部分重叠不转录

(2)CAP正调控:

①当细胞内缺少葡萄糖时ATP-CAMP结合,CRP生成CAP与CAP位点结合,增前RNA 聚合酶转录活性。

②当有葡萄糖存在时CAMP分解多合成少,CAP不与启动子上的CAP位点结合RNA聚合酶不与操纵区结合无法起始转录结构基因表达下降。

18.简述转录的基本过程

模板的识别,转录起始,通过启动子,转录的延伸和终止。

19.简述原核和真核细胞在蛋白质翻译过程中的差异

起始因子不同,翻译过程因子不同,终止因子不同。

20.试比较原核和真核细胞的mRNA的异同

①真核生物5’端有帽子结构大部分成熟没mRNA还同时具有3’多聚A尾巴,原核一般没有

②原核的没mRNA可以编码几个多肽真核只能编码一个

③原核生物以AUG作为起始密码有时以GUG,UUG作为起始密码,真核几乎永远以AUG 作为起始密码

④原核生物mRNA半衰期短,真核长

⑤原核生物以多顺反子的形式存在,真核以单顺反子形式存在

21.什么是增强子?它们与其他调控序列有何不同?

增强子:可强烈促进一个或几个基因转录的DNA元件,增强子通常位于作用基因的上游,但当它们被反转或移到几百甚至几千碱基对外时,也能发挥作用。

(1)可以与所调控转录的基因距离几千碱基

(2)可位于基因的上游或下游

(3)作用时无方向性,因而能同时影响两侧两个基因的表达

(4)必须与受调控的基因位于同一DNA分子中,但可位于任一条DNA链上

(5)没有基因特异性,增强子可激活两侧的任意基因

(6)有组织特异性,因而,免疫球蛋白基因的增强子只能促进免疫系统细胞中邻近基因的转录

(7)优先作用于最邻近启动子的转录

(8)与增强子结合的蛋白包括激素受体蛋白,因而,发育过程中增强子可能在基因活性的调控中起重要作用。

22.比较原核生物与真核生物基因表达调控的异同点

相同:在转录水平进行调控

不同:原核生物转录与翻译偶联,以操纵子调控的现象普遍,真核生物基因表达复杂,转录和翻译是分开的,转录后从细胞核进入细胞质,调控因此也比较复杂,在DNA水平、转录水平和翻译水平均存在。

23.简述tRNA的二级结构特征并指明作用与作用机制

(1)tRNA携带AA,是一种酶促反应,也称AA的活化。

(2)氨基酰是tRNA是AA参与蛋白合成的活化形式。AA的活化:氨基酸+AMP-E 氨基酸-AMP-E+PPi;

(3)每活化一分子AA需消耗ATP的2个高能磷酸键。AA的转移:氨基酸+AMP-E+tRNA 氨基酸-tRNA+AMP+E

(4)氨基酰tRNA合成酶是高度专一性,既能高度特异性识别AA,又能高度特异性识别相应,这两点是保证翻译准确进行的基本条件之一

(5)氨基酰AMP-E复合体,作为中间产物,利于酶分别对AA和tRNA两种底物特异辨认,如有配错,合成酶有校正活性,水解磷酸酯键,与正确底物结合。

24.简述PCR原理

PCR是在体外扩增DNA序列的方法,原理并不复杂,首先将双链DNA分子在邻近沸点的温度下加热分离成两条单链DNA分子,DNA聚合酶以单链DNA为模板并利用反应混合物当中的四种脱氧核苷三磷酸合成新生的DNA互补链。包括:DNA解链(变性)、引物与模板DNA结合(退火)、DNA合成(延伸)三步,可以被不断重复。

25.遗传密码有什么特点

(1)密码无标点:从起始密码始到终止密码止,需连续阅读,不可中断。增加或删除某个核苷酸会发生移码突变;(2)密码不重叠:组成一个密码子的三个核苷酸只代表一个氨基酸,只使用一次,不重叠使用;(3)密码的简并行:在密码子表中,除Met、Trp各对应一

个密码外,其余氨基酸均有两个以上的密码,对保持生物遗传的稳定性具有重要意义;(4)变偶假说:密码的专一性主要由头两位碱基决定,第三位碱基重要性不大,因此在与反密码子的相互作用中具有一定的灵活性;(5)通用性及例外:地球上的一切生物都使用同一套遗传密码,但近年来已发现某些个别例外现象,如某些哺乳动物线粒体中的UGA不是终止密码而是色氨酸密码子;(6)起始密码子AUG,同时也代表Met,终止密码子UAA、UAG、UGA使用频率不同。

(完整版)分子生物学试题及答案(整理版)

分子生物学试题及答案 一、名词解释 1.cDNA与cccDNA:cDNA是由mRNA通过反转录酶合成的双链DNA;cccDNA是游离于染色体之外的质粒双链闭合环形DNA。 2.标准折叠单位:蛋白质二级结构单元α-螺旋与β-折叠通过各种连接多肽可以组成特殊几何排列的结构块,此种确定的折叠类型通常称为超二级结构。几乎所有的三级结构都可以用这些折叠类型,乃至他们的组合型来予以描述,因此又将其称为标准折叠单位。 3.CAP:环腺苷酸(cAMP)受体蛋白CRP(cAMP receptor protein ),cAMP与CRP结合后所形成的复合物称激活蛋白CAP(cAMP activated protein ) 4.回文序列:DNA片段上的一段所具有的反向互补序列,常是限制性酶切位点。 5.micRNA:互补干扰RNA或称反义RNA,与mRNA序列互补,可抑制mRNA的翻译。 6.核酶:具有催化活性的RNA,在RNA的剪接加工过程中起到自我催化的作用。 7.模体:蛋白质分子空间结构中存在着某些立体形状和拓扑结构颇为类似的局部区域 8.信号肽:在蛋白质合成过程中N端有15~36个氨基酸残基的肽段,引导蛋白质的跨膜。 9.弱化子:在操纵区与结构基因之间的一段可以终止转录作用的核苷酸序列。 10.魔斑:当细菌生长过程中,遇到氨基酸全面缺乏时,细菌将会产生一个应急反应,停止全部基因的表达。产生这一应急反应的信号是鸟苷四磷酸(ppGpp)和鸟苷五磷酸(pppGpp)。PpGpp与pppGpp的作用不只是一个或几个操纵子,而是影响一大批,所以称他们是超级调控子或称为魔斑。 11.上游启动子元件:是指对启动子的活性起到一种调节作用的DNA序列,-10区的TATA、-35区的TGACA 及增强子,弱化子等。 12.DNA探针:是带有标记的一段已知序列DNA,用以检测未知序列、筛选目的基因等方面广泛应用。13.SD序列:是核糖体与mRNA结合序列,对翻译起到调控作用。 14.单克隆抗体:只针对单一抗原决定簇起作用的抗体。 15.考斯质粒:是经过人工构建的一种外源DNA载体,保留噬菌体两端的COS区,与质粒连接构成。16.蓝-白斑筛选:含LacZ基因(编码β半乳糖苷酶)该酶能分解生色底物X-gal(5-溴-4-氯-3-吲哚-β-D-半乳糖苷)产生蓝色,从而使菌株变蓝。当外源DNA插入后,LacZ基因不能表达,菌株呈白色,以此来筛选重组细菌。称之为蓝-白斑筛选。 17.顺式作用元件:在DNA中一段特殊的碱基序列,对基因的表达起到调控作用的基因元件。18.Klenow酶:DNA聚合酶I大片段,只是从DNA聚合酶I全酶中去除了5’→3’外切酶活性 19.锚定PCR:用于扩增已知一端序列的目的DNA。在未知序列一端加上一段多聚dG的尾巴,然后分别用多聚dC和已知的序列作为引物进行PCR扩增。 20.融合蛋白:真核蛋白的基因与外源基因连接,同时表达翻译出的原基因蛋白与外源蛋白结合在一起所组成的蛋白质。 二、填空 1. DNA的物理图谱是DNA分子的(限制性内切酶酶解)片段的排列顺序。 2. RNA酶的剪切分为(自体催化)、(异体催化)两种类型。 3.原核生物中有三种起始因子分别是(IF-1)、(IF-2)和(IF-3)。 4.蛋白质的跨膜需要(信号肽)的引导,蛋白伴侣的作用是(辅助肽链折叠成天然构象的蛋白质)。5.启动子中的元件通常可以分为两种:(核心启动子元件)和(上游启动子元件)。 6.分子生物学的研究内容主要包含(结构分子生物学)、(基因表达与调控)、(DNA重组技术)三部分。7.证明DNA是遗传物质的两个关键性实验是(肺炎球菌感染小鼠)、( T2噬菌体感染大肠杆菌)这两个实验中主要的论点证据是:(生物体吸收的外源DNA改变了其遗传潜能)。 8.hnRNA与mRNA之间的差别主要有两点:(hnRNA在转变为mRNA的过程中经过剪接,)、 (mRNA的5′末端被加上一个m7pGppp帽子,在mRNA3′末端多了一个多聚腺苷酸(polyA)尾巴)。 9.蛋白质多亚基形式的优点是(亚基对DNA的利用来说是一种经济的方法)、(可以减少蛋白质合成过程中随机的错误对蛋白质活性的影响)、(活性能够非常有效和迅速地被打开和被关闭)。 10.蛋白质折叠机制首先成核理论的主要内容包括(成核)、(结构充实)、(最后重排)。 11.半乳糖对细菌有双重作用;一方面(可以作为碳源供细胞生长);另一方面(它又是细胞壁的成分)。所以需要一个不依赖于cAMP—CRP的启动子S2进行本底水平的永久型合成;同时需要一个依赖于cAMP—CRP的启动子S1对高水平合成进行调节。有G时转录从( S2)开始,无G时转录从( S1)开

分子生物学简答题

分子生物学:研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学。 C值反常:也称c值谬误,指c值往往与种系进化复杂性不一致的现象,及基因组的大小与遗传复杂性之间没有必然的联系,某些较低等的生物c值却很大。DNA重组技术:又称基因工程。将不同的DNA片段按照预先的设计定向连接起来,在特定的受体细胞中与载体同时复制并得到表达,产生影响受体细胞的新的遗传性状的技术。 GU-AG法则:多数细胞核mRNA前体中内含子的5’边界序列为GU,3’边界为AG,因此,GU表示供体衔接点的5’端,AG 表示接纳点的3’端序列,习惯上,把这种保守序列模式称为GU-AG法则。 RNA干涉:是利用双链小RNA高效,特异性降解细胞内同源MRNA,从而阻断体内靶基因的表达,使细胞内出现靶基因缺失表性的方法。 摆动假说:crick为解释反密码子中子某些稀有成分的配对(如I)以及许多氨基酸中有两个以上密码子而提出的假设。编码链/有义链:在DNA双链中,与mRNA 序列(除t/u替换外)和方向相同的那条DNA,又称有义链 模板链:指双链DNA中能够作为模板通过碱基互补原则指导mRNA前体的合成的DNA链,又称反义链 操纵子:原核生物中由一个或多个相关基因以及转录翻译调控原件组成的基因表达单元。 反式作用因子:能直接或间接识别或结合在各类顺式作用元件中核心序列上参与调控靶基因转录效率的pro。 基因定点突变:向靶DNA片段中引入所需的变化,包括碱基的添加,删除,或改变基因家族:在基因组进化中,一个基因通过基因重复发生了两个或更多的拷贝,这些基因即构成一个基因家族,是具有显著相似性的一组基因,编码相似的蛋白质产物 基因敲除技术:针对一个序列已知打包功能未知的基因,从DNA水平上设计实验,彻底破坏该基因的功能或消除其表达机制,从而推测该基因的生物学功能 基因组DNA文库:某一生物体全部或部分基因的集合,将某个生物的基因组DNA 或cDNA片段与适当的载体体外重组后,转化宿主细胞,所谓的菌落或噬菌体的集合即为…… 基因治疗:是将具有治疗价值的基因即“治疗基因“装配于带有在人体细胞中表达所必备元件的载体中,导入人体细胞,通过靶基因的表达来治疗遗传疾病 聚合酶链反应:指通过模拟体内DNA复制方式在体外选择性的将DNA某个特定区域扩增出来的 魔斑核苷酸:在应急反应过程中,由大量GTP合成的ppGpp和pppGpp,它们的主要作用可能是影响RNA聚合酶与启动子结合的专一性,诱发应急反应,帮助细菌度过难关 弱化子:原核生物操纵子中能明显减弱甚至终止转录作用的一段核苷酸序列 同工tRNA:几个代表AA,能够被一个特殊的氨酰—tRNA合成酶识别的Trna 顺式作用元件:存在于基因旁侧序列中能影响基因表达的序列,包括启动子,增强子等,本身不编码任何pro,仅提供一个作用位点,与反式作用因子相互作用参与基因表达调控 原位杂交技术:用标记的核苷酸探针,经放射自显影或非放射检测体系,在组织,细胞及染色体水平上对核苷酸进行定位和相对定量研究的手段 转座/移位:遗传信息从一个基因座转移至另一个基因座的现象,由可移问位因子介导的遗传物质的重排 管家基因:维持细胞正常生长发育的必需基因,所以细胞中均需表达的一类基因转座子:是存在染色体上的可自主复制和移位的基本单位,参与转座子易位及DNA 链整合的酶称为转座酶 原癌基因:正常细胞中与病毒癌基因具有显著同源性的基因,本身没有致癌作用,但是经过致癌因子的催化下激活成为致 癌基因,使正常细胞向恶性转化。 SP序列:mRNA中用于结合原核生物核糖 体的序列 无义突变:在蛋白质的结构基因中,一个 核苷酸的改变可能是代表某个AA的密码 子变成终止密码子(UAG UGA UAA),使 pro合成提前终止,合成无功能或无意义 的多肽,这称— 错义突变:由于结构基因中某个核苷酸的 变化使一种AA的密码子变成另外一种AA 的密码 指导RNA:与已正确编码的RNA序列互补 的一小段RNA,被用来作为向未经编辑的 RNA中插入碱基的模板。 上游启动子元件:将TATA区上游的保守 序列称为— 启动子:与基因表达启动相关的顺式作用 原件,是结构基因的重要成分。它是一段 位于转录起始位点5’端上游区大约 100~200bp以内的具有独立功能的DNA序 列,能活化RNA聚合酶,使之与模板DNA 准确地相结合并具有转录起始的特异性。 细菌转化:是一种细菌菌株由于捕获了来 自供体菌株的DNA而导致性状特征发生 遗传改变的过程,提供转化DNA的菌株叫 做供体菌株,接受转化DNA的菌株被称作 受体菌株。 实时定量PCR技术:利用带荧光检测的 PCR仪对整个PCR过程中扩增DNA的累积 速率绘制动态变化图。 基因工程:在体外将核算分子插入病毒, 质粒或其他载体分子,构成遗传物质的新 组合,使之进入新的宿主细胞内并获得持 续稳定增殖能力和表达。 应答原件:能与某个(类)专一蛋白因子 结合,从而控制基因特异表达的DNA上游 序列。 增强子:是指能使与它连锁的基因转录频 率明显增加的DNA序列(1.5分)。它可 以在启动子的上游,也可以在启动子的下 游,绝大多数增强子具有组织特异性(1.0 分)。 分子伴侣:是结合其他不稳定蛋白质并稳 定其构象的一类蛋白质(1.0分)。通过 与部分折叠的多肽协调性地结合与释放, 分子伴侣促进了包括蛋白质折叠、寡聚体 装配、亚细胞定位和蛋白质降 负调控:阻遏蛋白结合在操作子位点,阻 止基因的表达。没有调节蛋白时操纵元内 结构基因是表达的,而加入调节蛋白后结 构基因的表达活性被关闭,这种调节称为 负调节。 应急因子:是指与核糖体相结合的蛋白质 RelA,当空载的tRNA进入A位时,它催 化GTP形成pppGpp或催化GDP形成 ppGpp。 信号肽:在蛋白质合成过程中N端有 15~36个氨基酸残基的肽段,引导蛋白质 的跨膜。 密码的简并性:由一种以上密码子编码同 一个氨基酸的现象称为密码的简并性 移码突变(frame-shift mutation):在 mRNA中,若插入或删去一个核苷酸,就 会使读码发错误,称为移码,由于移码而 造成的突变、称移码突变 简答题 1原核生物与真核生物基因组的不同? 答:原核基因组:常仅由一条环状双链DNA 分子组成,结构简单;基因组中只有一个复 制起点;具有操纵子结构,转录的RNA为多 顺反子;有重叠基因(1、基因内基因 2、部 分重叠基因 3、一个碱基重叠);无内含子; 编码pro的DNA在基因组中所占比例较大; 结构基因为单贝 真核基因组:真核基因组庞大,一般都远 大于原核生物;真核基因组存在大量的重复 序列;真核基因组的大部分为非编码序列, 占整个基因组序列的90%以上;真核基因组的 转录产物为单顺反子;真核生物为断裂基因、 有内含子结构;真核基因组存在大量的顺式 作用原件;真核基因组中存在大量的DNA多 态性;真核基因组具有端粒结构。 2比较RNA转录与DNA复制的异同? 答:相同:都以DNA链作为模板;合成方向 均为5’—3’;聚合反应均是通过核苷酸之间 形成的3’,5’—磷酸二酯建使核苷酸链延长 不同:复制转录 模板:两条链均复制;模板链转录(不对称 转录) 原料:dNDP ; NTP 酶:DNA聚合酶;RNA聚合酶 产物:子代双链DNA;mRNA,tENA,rRNA 配对:A---T ,G---C; A—U,T---A,G---C 引物:RNA引物;无 试比较转录与复制的区别。: 1,目的不同,所使用的酶、原料及其它辅助 因子不同,转录是合成RNA,复制是合成DNA; 2,方式不同:转录是不对称的,只在双链DNA 的一条链上进行,只以DNA的一条链为模板, 复制为半不连续的,分别以DNA的两条链为 模板,在DNA的两条链上进行;3,复制需要 引物,转录不需要引物;,4复制过程存在校 正机制,转录过程则没有;5转录产物需要加 工,复制产物不需要加工;6复制与转录都经 历起始、延长、终止阶段,都以DNA为模板, 新链按碱基互补原则,5'→3’方向合成。 3、 RNA转录的基本过程? 转录的基本过程包括:模板识别、转录起始、 转录的延伸和终止。 模板识别:RNA聚合酶与启动子DNA双链相互 作用并与之结合; 转录起始:RNA聚合酶结合在启动子上以后, 是启动子附近的DNA双链解旋并解链,形成 转录泡以促使底物核糖核苷酸与模板DNA的 碱基配对,当RNA链上第一个核苷酸键产生 标志着转录的起始,一旦RNA聚合酶成功地 合成9个以上核苷酸并离开启动子区,转录 就进入正常的延伸阶段。 转录的延伸:RNA聚合酶释放因子离开启动子 后,核心酶沿模板DNA链移动并使新生成RNA 链不断伸长,在解链区形成RNA—DNA杂合物。 转录终止:当RNA链延伸到转录终止位点时, RNA聚合酶不再形成新的磷酸二酯建,DNA— RNA杂合物分离,转录泡瓦解,DNA恢复成双 链状态,DNA聚合酶和RNA链都从模板上释放 出来,转录终止。 4.DNA复制的过程和机制? 答:分三个阶段:即复制的起始、延伸、终 止。 复制的起始:DNA解旋解链,形成复制叉,引 发体组装,然后在引发酶的催化下以DNA链 为模板合成一段短的RNA引物。 延伸:DNA链的延伸由DNA聚合酶催化以亲代 DNA链为模板引发体移动,从5’—>3’方向 聚合子代DNA链,前导键的合成以5’—>3’ 方向随着亲本双链体的解开而连续进行复 制,后随链在合成过程中,一段亲本DNA单 恋首先暴露出来,然后以与复制叉移动相反 方向,按5’—>3’方向合成一系列冈崎片段。 终止:当子链延伸到终止位点时,DNA复制终 止,切除RNA引物,填充缺口,在DNA连接 酶的催化下将相邻的DNA片段连接起来形成 完整的DNA长链。 5、真核生物与原核生物在翻译的起始过程中 有哪些区别? 答:真核生物的起始tRNA是met-tRNA met 原核是fmet-tRNA fmet; 真核生物核糖体小亚基识别mRNA的帽子结 构,而原核生物通过与mRNA的SD序列结合; 真核生物小亚基先与met-tRNAmet结合再与 mRNA结合,而原核生物小亚基先与mRNA结合 再与fmet-tRNAfmet结合;真核生物有较多 的起始因子参与,且核糖体较大为80S,而原 核生物有较少的起始因子参与,且核糖体较 小为70S 6.简述蛋白质生物合成过程。,以大肠杆菌为 例: (1)氨基酸的活化:游离的氨基酸必须经过活 化以获得能量才能参与蛋白质合成,由氨酰 -tRNA合成酶催化,消耗1分子ATP,形成氨 酰-tRNA。 (2)肽链合成的起始:由起始因子参与,mRNA 与30S小亚基、50S大亚基及起始甲酰甲硫氨 酰-tRNA(fMet-tRNAt)形成70S起始复合物, 整个过程需GTP水解提供能 (3)肽链的延长:起始复合物形成后肽链即开 始延长。首先氨酰-tRNA结合到核糖体的A 位,然后,由肽酰转移酶催化与P位的起始 氨基酸或肽酰基形成肽键,tRNA f 或空载tRNA 仍留在P位.最后核糖体沿mRNA5’→3’方 向移动一个密码子距离,A位上的延长一个氨 基酸单位的肽酰-tRNA转移到P位,全部过程 需延伸因子EF-Tu、EF-Ts,能量由GTP提供 (4)肽链合成终止,当核糖体移至终止密码 UAA、UAG或UGA时,终止因子RF-1、RF-2 识别终止密码,并使肽酰转移酶活性转为水 解作用,将P位肽酰-tRNA水解,释放肽链, 合成终止。 7.试比较真核生物与原核生物mRNA转录的主 要区别。 答:转录单元:原核生物常为多顺反子转录, 真核生物常为单顺反子转录。酶:RNA聚合酶 核心酶加p因子,原核生物为RNA聚合酶Ⅱ 聚合酶加转录因子。转录产物:真核生物不 需加工与翻译相偶联真核生物需加工与翻译 分开。转录过程:无核小体的结局和组装的 过程,原核生物有核小体的结局和组成的过 程。转录终止“原核生物两种方式分别是依 赖P因子的终止和不依赖P因子的终止,真 核生物转录的终止加尾修饰同步进行。反应 部位:原核生物在类核,真核生物在核内。 8.比较原核和真核生物mRNA的区别? 答:(1)、原核生物mRNA5’端无帽子结构,3’ 端没有或只少较短的polyA结构,真核生物 5’端存在帽子结构,3’端具有polyA尾巴. (2)、许多原核生物mRNA可能以多顺反子形 式存在,而真核生物几乎都是单顺反子(3)原 核生物mRNA的半衰期短,转录与翻译是紧密 相连的,两个过程不仅发生在同一细胞间里, 而且几乎是同步进行的,真核生物mRNA的录 翻译是发生在不同空间和时间范畴内的。(4) 原核生物以AUG作为起始密码有时以GUG, UUG作为起始密码,真核几乎永远以AUG作为 起始密码。 9.乳糖操纵子调控机理 答:是大肠杆菌中控制半乳糖苷酶诱导合成 的操纵子。包括调控元件P(启动子)和O(操 纵基因)阻遏子(I),以及结构基因lacZ(编 码半乳糖苷酶)、lacY(编码通透酶)和lacA (编码硫代半乳糖苷转乙酰基酶)。转录时 RNA聚合酶首先与启动子结合,通过操纵区向 右转录,转录从O区中间开始,按Z→Y→A 方向进行,每次转录出来的一条mRNA上都带 有这3个基因,转录的调控是在启动区和操 纵区进行的。 1、无乳糖时,调节基因lacI编码阻遏蛋白, 与操纵子基因O结合后抑制结构基因转录, 不产生代谢乳糖的酶。 2、只有乳糖存在时,乳糖可以与lac阻遏蛋 白结合,而使阻遏蛋白不与操纵基因结合, 诱导结构基因转录,代谢乳糖的酶产生以代 谢乳糖。 3、葡萄糖和乳糖同时存在时,葡萄糖的降解 产物能降低cAMP的含量,影响CAP与启动基 因结合,抑制结构基因转录,抑制代谢乳糖 的酶产生。 10、色氨酸操纵子及机制? 答:负责色氨酸的生物合成,当培养基中有 足够的色氨酸时,这个操纵子自动关闭,缺 乏时操纵子打开,trp基因表达,色氨酸或与 其代谢有关的某种物质在阻遏过程中起作 用。由于trp体系参与生物合成而不是降解, 它不受葡萄糖或cAMP-CAP的调控。 弱化作用:当色氨酸达到一定浓度、但还没 有高到能够活化R使其起阻遏作用的程度时, 产生色氨酸合成酶类的量已经明显降低,而 且产生的酶量与色氨酸的浓度呈负相关。先 导序列起到随色氨酸浓度升高降低转录的作 用,这段序列就称为衰减子或弱化子。在trp 操纵元中,对结构基因的转录阻遏蛋白的负 调控起到粗调的作用,而衰减子起到细调的 作用。 11.原核生物和真核生物复制的差异? 答:原核真核 复制起点:一般为单复制起点;一般为多复 制起点 主要的酶:DNA聚合酶Ⅲ;DNA聚合酶& 单链复制叉复制速度:快;慢 复制的延伸:无核小体的解聚及诚信组装; 有核小体…… 终止:两个复制叉相遇终止复制(环形DNA); 端粒酶复制末端完成复制(线性DNA) 12原核细胞和真核细胞在合成蛋白质的 起始过程有什么区别。 .(1)起始因子不同:原核为IF-1,IF-2, IF-2,真核起始因子达十几种。 (2)起始氨酰-tRNA不同:原核为 fMet-tRNA f ,真核Met-tRNAi (3)核糖体不同:原核为70S核粒体, 可分为30S和50S两种亚基,真核为80S 核糖体,分40S和60S两种亚基

分子生物学试题及答案

生命科学系本科2010-2011学年第1学期试题分子生物学(A)答案及评分标准 一、选择题,选择一个最佳答案(每小题1分,共15分) 1、1953年Watson和Crick提出(A ) A、多核苷酸DNA链通过氢键连接成一个双螺旋 B、DNA的复制是半保留的,常常形成亲本——子代双螺旋杂合链 C、三个连续的核苷酸代表一个遗传密码 D、遗传物质通常是DNA而非RNA 2、基因组是(D ) A、一个生物体内所有基因的分子总量 B、一个二倍体细胞中的染色体数 C、遗传单位 D、生物体的一个特定细胞内所有基因的分子总量 3、下面关于DNA复制的说法正确的是(D ) A、按全保留机制进行 B、按3'→5'方向进行 C、需要4种NTP加入 D、需要DNA聚合酶的作用 4、当过量的RNA与限量的DNA杂交时(A ) A、所有的DNA均杂交 B、所有的RNA均杂交 C、50%的DNA杂交 D、50%的RNA杂交 5、以下有关大肠杆菌转录的叙述,哪一个是正确的?(B ) A、-35区和-10区序列间的间隔序列是保守的 B、-35区和-10区序列距离对转录效率非常重要 C、转录起始位点后的序列对于转录效率不重要 D、-10区序列通常正好位于转录起始位点上游10bp处 6、真核生物mRNA转录后加工不包括(A ) A、加CCA—OH B、5'端“帽子”结构 C、3'端poly(A)尾巴 D、内含子的剪接 7、翻译后的加工过程不包括(C ) A、N端fMet或Met的切除 B、二硫键的形成 C、3'末端加poly(A)尾 D、特定氨基酸的修饰

8、有关肽链合成的终止,错误的是(C ) A、释放因子RF具有GTP酶活性 B、真核细胞中只有一个终止因子 C、只要有RF因子存在,蛋白质的合成就会自动终止 D、细菌细胞内存在3种不同的终止因子:RF1、RF2、RF3 9、酵母双杂交体系被用来研究(C ) A、哺乳动物功能基因的表型分析 B、酵母细胞的功能基因 C、蛋白质的相互作用 D、基因的表达调控 10、用于分子生物学和基因工程研究的载体必须具备两个条件(B ) A、含有复制原点,抗性选择基因 B、含有复制原点,合适的酶切位点 C、抗性基因,合适的酶切位点 11、原核生物基因表达调控的意义是(D ) A、调节生长与分化 B、调节发育与分化 C、调节生长、发育与分化 D、调节代谢,适应环境 E、维持细胞特性和调节生长 12、乳糖、色氨酸等小分子物质在基因表达调控中作用的共同特点是(E ) A、与DNA结合影响模板活性 B、与启动子结合 C、与操纵基因结合 D、与RNA聚合酶结合影响其活性 E、与蛋白质结合影响该蛋白质结合DNA 13、Lac阻遏蛋白由(D )编码 A、Z基因 B、Y基因 C、A基因 D、I基因 14、紫外线照射引起DNA损伤时,细菌DNA修复酶基因表达反应性增强,这种现象称为(A ) A、诱导 B、阻遏 C、正反馈 D、负反馈 15、ppGpp在何种情况下被合成?(A ) A、细菌缺乏氮源时 B、细菌缺乏碳源时 C、细菌在环境温度太高时 D、细菌在环境温度太低时 E、细菌在环境中氨基酸含量过高时

分子生物学复习题

1、分子生物学的定义。 从分子水平研究生物大分子的结构与功能从而阐明生命现象本质的科学,主要指遗传信息的传递(复制)、保持(损伤和修复)、基因的表达(转录和翻译)与调控。 2、简述分子生物学的主要研究内容。 a.DNA重组技术(基因工程) (1)可被用于大量生产某些在正常细胞代谢中产量很低的多肽 ; (2)可用于定向改造某些生物的基因组结构 ; (3)可被用来进行基础研究 b.基因的表达调控 在个体生长发育过程中生物遗传信息的表达按一定时序发生变化(时序调节),并随着内外环境的变化而不断加以修正(环境调控)。 c.生物大分子的结构和功能研究(结构分子生物学) 一个生物大分子,无论是核酸、蛋白质或多糖,在发挥生物学功能时,必须具备两个前提: (1)拥有特定的空间结构(三维结构); (2)发挥生物学功能的过程中必定存在着结构和构象的变化。 结构分子生物学就是研究生物大分子特定的空间结构及结构的运动变化与其生物学功能关系的科学。它包括3个主要研究方向: (1) 结构的测定 (2) 结构运动变化规律的探索 (3) 结构与功能相互关系 d.基因组、功能基因组与生物信息学研究 3、谈谈你对分子生物学未来发展的看法? (1)分子生物学的发展揭示了生命本质的高度有序性和一致性,是人类认识论上的重大飞跃。生命活动的一致性,决定了二十一世纪的生物学将是真正的系统生物学,是生物学范围内所有学科在分子水平上的统一。 (2)分子生物学是目前自然学科中进展最迅速、最具活力和生气的领域,也是新世纪的带头学科。

(3)分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以及信息科学等多学科相互渗透、综合融会而产生并发展起来的,同时也推动这些学科的发展。 (4)分子生物学涉及认识生命的本质,它也就自然广泛的渗透到医学、药学各学科领域中,成为现代医药学重要的基础。 1、DNA双螺旋模型是哪年、由谁提出的?简述其基本内容。 DNA双螺旋模型在1953年由Watson和Crick提出的。 基本内容: (1) 两条反向平行的多核苷酸链围绕同一中心轴相互缠绕,两条链均为右手双螺旋。 (2) 嘌呤与嘧啶碱位于双螺旋的内侧,3′,5′- 磷酸与核糖在外侧,彼此通过磷酸二酯键相连接,形成DNA分子的骨架。 (3) 双螺旋的平均直径为2nm,两个相邻碱基对之间相距的高度即碱基堆积距离 为0.34nm,两个核苷酸之间的夹角为36。。 (4) 两条核苷酸链依靠彼此碱基之间形成的氢键相连系而结合在一起,A与T相配对形成两个氢键,G与C相配对形成3个氢键。 (5) 碱基在一条链上的排列顺序不受任何限制,但根据碱基互补配对原则,当一条多核苷酸的序列被确定后,即可决定另一条互补链的序列。

分子生物学问答题

1.什么是转座? 转座因子在一个DNA分子内部或者两个DNA之间不同位置 间的移动。 2.病毒基因组有哪些特点?答:不同病毒基因组大小相差较大;不同病 毒基因组可以是不同结构的核酸;除逆转录病毒外,为单倍体基因组;病毒基因组有的是连续的,有的分节段;有的基因有内含子;病毒基因组大部分为编码序列;功能相关基因转录为多顺反子mRNA有基因重叠现象。 3.原核生物基因组有哪些特点?答:基因组由一条环状双链DNA组成; 只有一个复制起始点;大多数结构基因组成操纵子结构;结构基因无重叠现象;无内含子,转录后不需要剪接;基因组中编码区大于非编码区;重复基因少,结构基因一般为单拷贝;有编码同工酶的等基因;基因组中存在可移动的DNA序列;非编码区主要是调控序列。 4.真核生物基因组有哪些特点?答:每一种真核生物都有一定的染色 体数目;远大于原核基因组,结构复杂,基因数庞大;真核生物基因转录为单顺反子;有大量重复序列;真核基因为断裂基因;非编码序列多于编码序列;功能相关基因构成各种基因家族。 5.基因重叠有什么意义?答:利用有限的核酸储存更多的遗传信息,提 高自身在进化过程中的适应能力。 6.质粒有哪些特性? 答:在宿主细胞内可自主复制;细胞分裂时恒定地 传给子代;所携带的遗传信息能赋予宿主特定的遗传性状;质粒可以转移。 7.什么是顺式作用元件? 答:基因中能影响基因表达,但不编码RNA 和蛋白质的DNA序列。顺式作用元件主要包括启动子、增强子、负调控元件等。 8.简述原核基因表达的特点。答:(1)只有一种RNA聚合酶。(2)原核 生物的基因表达以操纵子为基本单位。(3)转录和翻译是偶联进行的。(4)mR

分子生物学题库

分子生物学备选考题 名词解释: 1.功能基因组学 2.分子生物学 3.epigenetics 4.C值矛盾 5.基因簇 6.间隔基因 7.基因芯片 8.基序(Motifs) 9.CpG岛 10.染色体重建 11.Telomerase 12.足迹分析实验 13.RNA editing 14.RNA干涉(RNA interference) 15.反义RNA 16.启动子(Promoter) 17.SD序列(SD sequence) 18.碳末端结构域(carboxyl terminal domain,CTD) 19.single nucleotide polymorphism,SNP 20.切口平移(Nick translation) 21.原位杂交 22.Expressing vector 23.Multiple cloning sites 24.同源重组 25.转座 26.密码的摆动性 27.热休克蛋白嵌套基因 28.基因家族增强子 29.终止子 30.前导肽RNAi 31.分子伴侣 32.魔斑核苷酸 33.同源域 34.引物酶 35.多顺反子mRNA 36.物理图谱、 37.载体(vector) 38.位点特异性重组 39.原癌基因(oncogene) 40.重叠基因、 41.母源影响基因、

42.抑癌基因(anti-oncogene)、 43.回文序列(palindrome sequence)、 44.熔解温度(melting temperature, Tm) 45.DNA的呼吸作用(DNA respiration) 46..增色效应(hyperchromicity)、 47.C0t曲线(C0t curve)、 48.DNA的C值(C value) 49.超螺旋(superhelix) 、 50.拓扑异构酶(topoisomerase)、 51.引发酶(primase) 、 52.引发体(primosome) 53.转录激活(transcriptional activation) 54.dna基因(dna gene)、 55.从头起始(de novo initiation) 、 56.端粒(telomere) 57.酵母人工染色体(yeast artificial chromosome, YAC)、 58.SSB蛋白(single strand binding protein)、 59.复制叉(replication fork)、 60.保留复制(semiconservative replication) 61.滚环式复制(rolling circle replication)、 62.复制原点(replication origin)、 63.切口(nick) 64.居民DNA (resident DNA) 65.有义链(sense strand) 66.反义链(antisense strand) 67.操纵子(operon) 、 68.操纵基因(operator) 69.内含子(内元intron) 70.外显子(外元exon) 、 71.突变子(muton) 、 72.密码子(codon)、、 73.同义密码(synonymous codons)、 74.GC盒(GC box) 75.增强子(enhancer) 76.沉默子(silencer) 77.终止子(terminator) 78.弱化子(衰减子)(attenuator) 79.同位酶(isoschizomers) 、 80.同尾酶(isocandamers) 81.阻抑蛋白(阻遏蛋白)(repressor) 82.诱导物(inducer)、 83.CTD尾(carboxyl-terminal domain ) 84.载体(vector)、 85.转化体(transformant)

病毒分子生物学鉴定常用技术

实验二十三病毒核酸检测常用技术 (Techniques of Detecting Nucleic Acid of Viruses in Common Use ) 近年来随着分子生物学的发展,基因检测技术在微生物学实验室诊断中也取得了长足的进展。由于部分病原微生物的基因组已成功地被克隆并进行了核苷酸序列测定,因此根据病原微生物的基因特点,应用分子生物学技术检测样品中有无相应病原微生物的核酸,从而可以特异、灵敏地判定标本中是否含有相应的病原微生物。在微生物学的研究及感染性疾病的诊断中,最常使用的微生物核酸检测技术有PCR、RT-PCR、核酸杂交等技术,现对病毒核酸(DNA、RNA)的分离、PCR、RT-PCR、核酸杂交等技术的基本原理、操作方法、应用及影响因素等进行概述。 实验 1 PCR 检测传染性喉气管炎病毒核酸 【目的要求】 通过本实验使学生初步了解和熟悉病毒核酸(DNA)的分离与PCR技术的基本原理、操作方法、影响因素和应用。 【基本原理】 鸡传染性喉气管炎(Infectious laryngotracheitis, ILT)是由疱疹病毒科、α-疱疹病毒亚科的喉气管炎病毒(Infectious laryngotracheitis Virus, ILTV)引起的一种急性上呼吸道传染病, 常表现呼吸困难、产蛋鸡产蛋下降和死亡, 是危害养鸡业发展的重要疫病之一。但在临诊上极易与其它一些呼吸道疾病相混淆, 如禽流感、新城疫、传染性支气管炎、支原体感染等。常规检测IL TV 的方法有病原分离鉴定和血清学试验, 这些方法虽经典,但费时且敏感性差, 不能检测亚临床感染, 而传染性喉气管炎潜伏感染是疾病的一种重要表现形式。聚合酶链式反应(Polymerase Chain Reaction,PCR)是目前比较快速、敏感、特异的检测手段,已被广泛应用在病毒核酸检测方面。本实验以PCR方法检测鸡传染性喉气管炎病毒核酸为例,对PCR方法进行介绍。 PCR是体外酶促合成特异DNA片段的一种方法,典型的PCR由(1)高温变性模板;(2)引物与模板退火;(3)引物沿模板延伸三步反应组成一个循环,通过多次循环反应,使目的DNA得以迅速扩增。其主要步骤是:将待扩增的模板DNA置高温下(通常为93~94℃)使其变性解成单链;人工合成的两个寡核苷酸引物在其合适的复性温度下分别与目的基因两侧的两条单链互补结合,两个引物在模板上结合的位置决定了扩增片段的长短;耐热的DNA聚合酶(Taq酶)在72℃将单核苷酸从引物的3’端开始掺入,以目的基因为模板从5’→3’方向延伸,合成DNA的新互补链。如此反复进行,每一次循环所产生的DNA 均能成为下一次循环的模板,每一次循环都使两条人工合成的引物间的DNA特异区拷贝数扩增一倍,PCR产物得以2n的批数形式迅速扩增,经过25~30个循环后,理论上可使基因扩增109倍以上,实际上一般可达106~107倍(图23-1)。

(完整版)分子生物学简答题全

简答题 6.为什么利用RNAi抑制一个基因的表达较利用反义RNA技术更为彻底。 答:RNAi是外源或内源性的双链RNA 进入细胞后引起与其同源的mRNA特异性降解.dsRNA进入细胞后,在Dicer作用下,分解为21-22bp的SiRNA.SiRNA结合相关 酶,形成RNA介导的沉默复合物RISC.RISC在ATP作用下,将双链SiRNA变成单链 SiRNA,进而成为有活性的RISC,又称为slicer.slicer与靶mRNA结合,导致其断裂,进 而导致其彻底降解。 反义RNA是与靶mRNA互补的RNA,它通过与靶mRNA特异结合而抑制其翻译表达,反义RNA是与靶mRNA是随机碰撞并通过碱基互补配对,所以,mRNA不一定完全 被抑制。 8.简述真核基因表达的调控机制。 答:(1)DNA和染色质结构对转录的调控: ①DNA甲基化,②组蛋白对基因表达的抑制,③染色质结构对基因表达的调控作 用,④基因重排,⑤染色质的丢失,⑥基因扩增; (2)转录起始调控: ①反式作用因子活性调节,包括表达调节、共价调节,配体调节等蛋白质相互作用 调节),②反式作用因子与顺式作用原件结合对转录过程进行调控; (3)转录后调控: ①5’端加帽和3’端多核苷酸化调控,②选择剪接调控,③mRNA运输调控,④mRNA 稳定性调控; (4)翻译起始的调控: ①阻遏蛋白的调控,②对翻译因子的调控,③对AUG的调控,④mRNA 5’端非编 码区的调控,⑤小分子RNA; (5)翻译后加工调控: ①新生肽链的水解,②肽链中氨基酸的共价修饰,③信号肽调控。 9.简述mRNA加工过程。 答:(1)5′端加帽(由加帽酶催化5′端加入7-甲苷乌苷酸,形成帽子结构m7GpppmNP-)。(2)3′端加入Poly(A)尾(A、组蛋白的成熟mRNA无需加polyA尾;B、加尾信号包括AAUAAA和富含GU的序列;C、加尾不需模板;D剪切过程需要多种蛋白质因 子的辅助)。 (3)mRNA前体的剪接(剪接加工以除去内含子序列,并将外显子序列连接成为成熟的有功能的mRNA分子。内含子两端的结构通常是5′-GU……AG-3′。选择性剪接的作 用机制包括;A使用不同的剪接位点,B选择使用外显子,C、反式剪接,D、使用 不同的启动子,E、使用不同的多腺苷酸化位点)。 (4)RNA的编辑(发生于转录后水平,改编mRNA序列,C→U或A→G,增加遗传信息容量)。 10.简述生物的中心法则。 答:中心法则(genetic central dogma),是指遗传信息从DNA传递给RNA,再从RNA传递给蛋白质,即完成遗传信息的转录和翻译的过程。也可以从DNA传递给DNA,即完成DNA的复制过程。

分子生物学试题库

第2章染色体与DNA 名词解释 原癌基因:细胞内与细胞增殖相关的正常基因,是维持机体正常生命活动所必须的,在进化上高等保守。当原癌基因的结构或调控区发生变异,基因产物增多或活性增强时,使细胞过度增殖,从而形成肿瘤。 复制:以亲代DNA或RNA为模板,根据碱基配对的原则,在一系列酶的作用下,生成与亲代相同的子代DNA或RNA的过程。 转座子 (transposon 或 transposable element):位于染色体DNA上可自主复制和位移的基本单位。包括插入序列和复合转座子。 半保留复制:以亲代DNA双链为模板以碱基互补方式合成子代DNA,这样新形成的子代DNA 中,一条链来自亲代DNA,而另一条链则是新合成的,这种复制方式叫半保留复制。 染色体:染色体是遗传信息的载体,由DNA、RNA和蛋白质构成,其形态和数目具有种系的特性。在细胞间期核中,以染色质形式存在。在细胞分裂时,染色质丝经过螺旋化、折叠、包装成为染色体,为显微镜下可见的具不同形状的小体。 核小体:是构成真核生物染色体的基本单位,是DNA和蛋白质构成的紧密结构形式,包括200bp左右的DNA和9个组蛋白分子构成的致密结构。 填空题 1.真核细胞核小体的组成是 DNA和蛋白 2.天然染色体末端不能与其他染色体断裂片段发生连接,这是因为天然染色体末端存在端粒结构。 3.在聚合酶链反应中,除了需要模板DNA外,还需加入引物、DNA聚合酶、dNTP和镁离子。 4.引起DNA损伤的因素有自发因素、物理因素、化学因素。 5.DNA复制时与DNA解链有关的酶和蛋白质有拓扑异构酶Ⅱ、解螺旋酶、单链DNA结合蛋白。 6.参与DNA切除修复的酶有DNA聚合酶Ⅰ、DNA连接酶、特异的核酸内切酶。 7.在真核生物中DNA复制的主要酶是DNA聚合酶δ。在原核生物中是DNA聚合酶Ⅲ。 8.端粒酶是端粒酶是含一段RNA的逆转录酶。 9.DNA的修复方式有错配修复、碱基切除修复、核苷酸切除修复、DNA的直接修复。 选择题 1.真核生物复制起点的特征包括(B) A. 富含G-C区 B. 富含A-T区 C. Z-DNA D. 无明显特征 2.插入序列(IS)编码(A) A.转座酶 B.逆转录酶 C. DNA合成酶 D.核糖核酸酶 3.紫外线照射对DNA分子的损伤主要是(D) A.碱基替换 B.磷酸脂键断裂 C。碱基丢失 D.形成共价连接的嘧啶二聚体 4.自然界中以DNA为遗传物质的大多数生物DNA的复制方式(C) A.环式 B.D环式 C.半保留 D.全保留 5.原核生物基因组中没有(A) A.内含子 B.外显子 C.转录因子 D.插入序列 6.关于组蛋白下列说法正确的是(D)

分子生物学简答题

分子史上得经典事件? 答:1953watson 与crick 提出得DNA分子双螺旋模型在科研过程中,要具有清醒得宏观洞察力、非凡得科学想像力与严密得逻辑思维能力,选择正确得研究路线,广泛借鉴她人得研究成果并加以综合性得科学思考。 分子生物学得理论基础就是?主要得研究策略有?(第一章) 答:1958年,克里克提出两个学说,奠定了分子生物学得理论基础。第一个学说就是“序列学说”,它认为一段核酸得特殊性完全由它得碱基序列决定,碱基序列编码一个特定蛋白质得氨基酸序列,蛋白质得氨基酸序列决定了蛋白质得三维结构。第二个学说就是“中心法则”,遗传信息只能从核酸传递给核酸,或核酸传递给蛋白质,而不能从蛋白质传递给蛋白质,或就是从蛋白质传回核酸。研究策略:体内与体外实验得结合将遗传与DNA联系起来。体内(In v ivo)实验:在活体内进行得实验,包括在培养得细胞或组织。体外(In vitro)实验:在细胞提取物中,或者就是人工合成得细胞成分混合物中。 分子与其她学科关系?生物学离不开生物学技术? 答:分子生物学就是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来得。现代生物学得发展越来越多得应用分子生物学得理论与方法进行研究。 什么就是分子生物学? 广义得概念:分子生物学就是研究核酸、蛋白质等生物大分子形态、结构特征及其重要性、规律性与相互关系得科学、 狭义得概念:从分子水平研究生物大分子得结构与功能从而阐明生命现象本质得科学,主要指遗传信息得传递(复制)、保持(损伤与修复)、基因得表达(转录与翻译)与调控等,也称之为基因得分子生物学。 DNA分子在结构上为什么最适合作为遗传信息载体?(第二章第一节) 化学性质比较稳定,DNA复制时严格遵守碱基互补配对原则,且为半保留复制;四种脱氧核糖核苷酸可以组成不同得长链,可以携带大量遗传信息。 DNA提取操作要点就是?(第二章第一节) 提取原则:保持一级结构得完整性,将其她生物大分子得污染降到最低。 提取流程:破碎细胞;DNA释放到水相;去垢剂或蛋白变性剂抽提;除去蛋白等杂质。DNA沉淀, DNA溶解与保存。 DNA提取与鉴定得相关操作中需要注意什么? 1)DNA分子较大应注意防止机械张力将其打断,所以操作要轻柔,离心速度要控制。 2)要灭活DNA酶,采用0、01M得EDTA或者柠檬酸钠处理,或者用去垢剂(SDS)、蛋白变性剂(苯酚、氯仿等)就可以基本灭活,此外,55 ℃处理也经常用于灭活残余得DNA酶、3)除去蛋白质等杂质时酚抽提要彻底,上清要去尽,吸取上清时不要带有沉淀。 4)鉴定时注意电泳时得电压,电泳缓冲液得浓度,pH;选用合适得凝胶以及凝胶得浓度。 简述RNA得功能、 (1)RNA就是一些病毒得遗传物质。 (2)与蛋白质合成有关,mRNA 在功能上就是基因与蛋白合成机器之间得中介;tRNA在功能 上就是mRNA上密码子与氨基酸之间得衔接分子。 (3)有些RNA具有催化活性(核酶)。例如研究发现,四膜虫得26srRNA得单个内含子在体外具有自我剪接功能;RNase P中得RNA组分在体外能对tRNA前体进行加工。(4)RNA可以通过多种途径调节基因表达。调解途径包括不同得RNA折叠,核糖开关,与非编 码RNA有关得RNA干扰现象、X染色体随机失活现象等、 获得高质量RNA得操作应注意什么?

分子生物学zuq题库

问答题: 1 衰老与基因的结构与功能的变化有关,涉及到:(1)生长停滞;(2)端粒缩短现象;(3)DNA损伤的累积与修复能力减退;(4)基因调控能力减退。 2 超螺旋的生物学意义:(1)超螺旋的DNA比松驰型DNA更紧密,使DNA分子体积变得更小,对其在细胞的包装过程更为有利;(2)超螺旋能影响双螺旋的解链程序,因而影响DNA分子与其它分子(如酶、蛋白质)之间的相互作用。 3 原核与真核生物学mRNA的区别: 原核:(1)往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息(来自几个结构基因)。(2)5端无帽子结构,3端一般无多聚A尾巴。(3)一般没有修饰碱基,即这类mRNA分子链完全不被修饰。 真核:(1)5端有帽子结构(2)3端绝大多数均带有多聚腺苷酸尾巴,其长度为20-200个腺苷酸。(3)分子中可能有修饰碱基,主要有甲基化,(4)分子中有编码区与非编码区。 4 tRNA的共同特征: (!)单链小分子,含73-93个核苷酸。(2)含有很多稀有碱基或修饰碱基。(3)5端总是磷酸化,5末端核苷酸往往是pG。(4)3端是CPCPAOH序列。(5)分子中约半数的碱基通过链内碱基配对互相结合,开成双螺旋,从而构成其二级结构,开头类似三叶草。(6)三级结构是倒L型。 5 核酶分类:(1)异体催化的剪切型,如RNaseP;(2)自体催化的剪切型,如植物类病毒等;(3)内含子的自我剪接型,如四膜虫大核26SrRNA前体。 6 hnRNA变成有活性的成熟的mRNA的加工过程: (1)5端加帽;(2)3端加尾(3)内含子的切除和外显子的拼接;(4)分子内部的甲基化修饰作用,(5)核苷酸序列的编辑作用。 7 反义RNA及其功能: 碱基序列正好与有意义mRNA互补的RNA称为反意义或反义RNA,又称调节RNA,这类RNA是单链RNA,可与mRNA配对结合形成双链,最终抑制mRNA作为模板进行翻译。这是其主要调控功能,还可作为DNA复制的抑制因子,与引物RNA互补结合抑制DNA的复制,以及在转录水平上与mRNA5末端互补,阻止RNA合成转录。 8 病毒基因组分型:(1)双链DNA(2)单链正股DNA(3)双链RNA(4)单链负股RNA(5)单链正股RNA 9 病毒基因组结构与功能的特点: (1)不同病毒基因组大小相差较大;(2)不同病毒的基因组可以是不同结构的核酸。(3)病毒基因组有连续的也有不连续的;(4)病毒基因组的编码序列大于90%;(5)单倍体基因组,(6)基因有连续的和间断的,(7)相关基因丛集;(8)基因重叠(9)病毒基因组含有不规则结构基因,主要类型有:a几个结构基因的编码区无间隔;bmRNA没有5端的帽结构;c结构基因本身没有翻译起始序列。 10 原核生物基因组的结构的功能特点: (1)基因组通常仅由一条环状双链DNA分子组成。 (2)基因组中只有1个复制起点。 (3)具有操纵子结构。(4)编码顺序一般不会重叠。(5)基因是连续的,无内含子,因此转录后不需要剪切。(6)编码区在基因组中所占的比例(约占50%)远远大于真核基因组,但又远远小于病毒基因组。(7)基因组中重复序列很少(8)具有编码同工酶的基因。(9)细菌基因组中存在着可移动的DNA序列,包括插入序列和转座子。 (10)在DNA分子中具有多种功能的识别区域。 11??真核生物基因组结构与功能的特点:

相关文档
最新文档