5第四章 土壤质能交换(4h)

土壤交换性钙和镁的测定

土壤交换性钙和镁的测定 乙酸铵交换——原子吸收分光光度法 1 方法提要 以乙酸铵为土壤交换剂,浸出液中的交换性钙、镁,可直接用原子吸收分光光度法测定。测定时所用的钙、镁标准溶液中要同时加入同量的乙酸铵溶液,以消除基本效应。此外,在土壤浸出液中,还要加入释放剂锶(Sr),以消除铝、磷和硅对钙测定的干扰。 2 应用范围 适用于酸性、中性土壤交换性钙镁的测定。 3 主要仪器和设备 3.1 天平(感量:0.01g) 3.2 原子吸收分光光度计(配置钙和镁空心阴极灯); 3.3 离心机; 3.4 离心管,100mL。 4 试剂和溶液 4.1乙酸铵溶液[c(CH3COONH4) = 1mol·L-1,pH7.0]:称取乙酸铵(CH3COONH4)77.08g 溶于约950mL水中,用(1:1)氨水和稀乙酸调节至pH7.0,加水稀释到1L; 4.2 氯化锶溶液[ρ(SrCl2?6H2O) = 30g·L-1]:称取氯化锶(SrCl2?6H2O)30g溶于水,定容至1L; 4.3 盐酸溶液(1:1):一份盐酸与等体积的水混合均匀; 4.4钙标准贮备液[ρ(Ca) = 1000μg·mL-1]:称取经110℃烘4h的碳酸钙(CaCO3,优级纯)2.4972g于250mL高型烧杯中,加少许水,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL 溶解,待反应完全后,用水洗净表面皿,小心煮沸赶去二氧化碳,将溶液无损移入1L容量瓶中,用水定容; 4.5钙标准溶液[ρ(Ca) =100μg·mL-1]:吸取10.00mL钙标准贮备溶液于100mL容量瓶中,定容; 4.6镁标准贮备液[ρ(Mg) =500μg·mL-1]:称取金属镁(光谱纯)0.5000g于250mL高型烧杯中,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL 溶解,用水洗净表面皿,将溶液无损移入1L容量瓶中,定容;

土壤酸性土交换性酸的测定 和阳离子交换性能的测定

土壤酸性土交换性酸的测定 和阳离子交换性能的测定 简述实验目的与意义 土壤交换性盐基成分是指交换性Ca2+、Mg2+、K+、Na+等,NH4+、Zn2+、Cu2+等也常以交换态存在,但因其数量极少,通常<0.03cmol(+)/kg,因而没有计入交换性盐基。 测定交换性盐基成分的意义和必要性是因土而异的。 酸性土壤中,交换性Ca2+的含量是影响植物根际营养的重要元素,同时这些交换性盐基成分实际上也是作物所必需的营养元素,因而,在培养土壤肥力上具有重要意义。 一般测定交换性盐基成分都以1mol/LNH 4 Ac作为交换剂;中性和酸性土用 pH7NH 4Ac:石灰性土或碱性土用pH9的NH 4 Ac-NH 4 OH;盐土则用乙醇洗去游离盐分 后再用pH9的NH 4Ac-NH 4 OH醋酸铵交换。 本次实验测定酸性土交换性阳离子盐基成分,以pH7,1mol/LNH 4 Ac作为交换剂进行测定。 土壤交换性酸是指土壤酸性表现的强弱程度。土壤交换性酸又称为“土壤潜在(性)酸”,它由胶体所吸附的H+和Al3+构成。Al3+因水解作用产生H+,因此,又称为“水解(性)酸”。 Al3++3H 2O→Al(OH) 3 +3H+ 土壤交换性H+、Al3+含量多少,在一定程度上体现了土壤矿物胶体化学风化程度的深浅和土壤淋溶作用的强弱。而交换性H+和Al3+在土壤中的转化关系经实验证明土壤pH值≤5.5时,才会有水解性酸存在,也就是说,只有相当量的交换性H+存在时,才有交换性Al3+的出现。但对于强酸性土壤来说,交换性Al3+是占主导地位的。 一、酸性土交换性阳离子盐基成分的测定

1.实验原理 (1)土壤样品的交换处理 用pH7、1mol/LNH 4 Ac作为交换剂处理土壤,土壤的交换性阳离子与交换剂 中指示性阳离子(NH 4 +)实现交换平衡,交换反应式如下: 土粒[Ca2+、Mg2+、K+、Na+]+nNH 4Ac→土粒[6 NH 4 +]+(n-6)NH 4 Ac+(Ca2+、Mg2+、 K+、Na+) 若不断将交换出来的溶液分离开来,并加入新的交换剂。交换反应将不断向右移动,一直到交换完全。 (2)交换性Ca2+、Mg2+的测定——原子吸收分光光度法 Ca、Mg均是原子吸收光谱分析较好的元素,特别是Mg的测定,灵敏度和准确度极高,且基本无干扰,交换液经适当稀释后可直接上机测定(Ca2+测定范围为0.1~10μg/mL,Mg2+的测定范围为0.01~3μg/mL);但Ca2+、Mg2+的测定均 可能有化学干扰(P0 43-、S0 4 2-)存在,可采用加释放剂(LaCl 3 )或保护剂的方法消 除干扰。 (3)交换性K+、Na+的测定——火焰光度法 交换液中的K+、Na+经雾化喷入火焰时转变为基态自由原子,再受高温激发产生特征谱线。K原子谱线的波长是766.4nm(红色光);Na原子谱线的波长是589.0nm(黄色光)。分别使用相应波长的干涉型滤光片作为单色器,由光电转换器将过滤光片的光强转变为电流,则K+、Na+发射的光强可以通过检流计反应为光电流强度而测定。此外,也可以在原子吸收分光光度计上用火焰发射法或吸收法进行测定。 2.实验仪器及试剂 100ml烧杯、台称、离心管、玻棒、离心机、50ml容量瓶、漏斗、AP1401火焰光度计、Z-5000原子吸收分光光度计、移液管 pH7,1mol/LNH 4Ac、铬黑T指示剂、5%LaCl 3 土样信息表

土壤阳离子交换量的测定

土壤阳离子交换量的测定 A. EDTA-乙酸铵盐交换法 1 方法提要 用0.005mol·L-1EDTA与1 mol·L-1乙酸铵的混合液作为交换提取剂,在适宜的pH 条件下(酸性、中性土壤用pH7.0,石灰性土壤用pH8.5),与土壤吸收性复合体的Ca2+、Mg2+、Al3+等交换,在瞬间形成解离度很小而稳定性大的络合物,且不会破坏土壤胶体。由于NH4+的存在,交换性H+、K+、Na+也能交换完全,形成铵质土。通过使用95%乙醇洗去过剩铵盐,以蒸馏法蒸馏,用标准酸溶液滴定氨量,即可计算出土壤阳离子交换量。 2 适用范围 本方法适用于各类土壤中阳离子交换量的测定。 3 主要仪器设备 3.1 电动离心机:转速3000 r/min~5000r/min; 3.2 离心管:100mL; 3.3 定氮仪; 3.4 消化管(与定氮仪配套)。 4 试剂 4.1 0.005 mol·L-1EDTA与1 mol·L-1乙酸铵混合液:称取77.09g乙酸铵及1.461g乙二胺四乙酸,加水溶解后稀释至900mL左右,以1:1氨水和稀乙酸调至pH至7.0(用于酸性和中性土壤的提取)或pH8.5(用于石灰性土壤的提取),转移至1000mL容量瓶中,定容; 4.2 95%乙醇(须无铵离子); 4.3 硼酸溶液[ρ(H3BO3)=20g·L-1]:称取20.00g硼酸,溶于近1L水中。用稀盐酸或稀氢氧化钠调节pH至4.5,转移至1000mL容量瓶中,定容。 4.4 氧化镁:将氧化镁在高温电炉中经600℃灼烧0.5h,冷却后贮存于密闭的玻璃瓶中; 4.5 盐酸标准溶液[c(HCl)=0.05 mol·L-1]:吸取浓盐酸4.17mL稀释至1L,充分摇匀后参照附录3用无水碳酸钠进行标定; 4.6 pH10缓冲溶液:称取氯化铵33.75g溶于无CO2水中,加新开瓶的浓氨水(密度0.90)285mL,用水稀释至500mL; 4.7 钙镁混合指示剂:称取0.5g酸性铬蓝K与1.0g萘酚绿B,加100g氯化钠,在玛瑙研

交换性钙、镁的测定

交换性钙、镁的测定(原子吸收分光光度法) 试剂和溶液 乙酸铵溶液:称取77.08g乙酸铵溶于近950mL水中,用1:1氨水和稀乙酸调节PH至7.0,转移入1000mL容量瓶中,定容。 氯化锶溶液[p(SrCl2·6H 2O )=30g/L]:称取氯化锶(SrCl2·6H 2 O)30g溶于水,定 溶至1L。 盐酸溶液(1:1) 钙标准贮备液[p(Ca ) =1000ug/mL]:称取经110℃烘4h的碳酸钙(CaCO 3 ,优级纯)2.4972g于250mL高型烧杯中,加少许水,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL溶解,待反应完全后,用水洗净表面皿,小心煮沸赶去二氧化碳,将溶液无损移入1L容量瓶中,定容。 钙标准溶液[p(Ca ) =100ug/mL]:吸取10.00mL钙标准贮备液于100mL容量瓶中,定容。 镁标准贮备液[p(Mg) =500ug/mL]:称取金属镁(光谱纯)0.5000g于250mL 高型烧杯中,盖上表面皿,小心从杯嘴处加入(1:1)盐酸溶液100mL溶解,用水洗净表面皿,将溶液无损移入1L容量瓶中,定容。 镁标准溶液[p(Mg) =50ug/mL]:吸取10.00mL镁标准贮备液于100mL容量瓶中,定容。 结果计算 交换性钙(Ca ),mg/kg=[ p(Ca )·V·D/m·103] ·1000 交换性钙(Mg ),mg/kg=[ p(Mg )·V·D/m·103]·1000 式中: p(Ca )或p(Mg )――查校准曲线或求回归方程而得测定液中Ca或Mg的质量浓度,ug/mL V――测定液体积,50mL D――分取倍数,浸出液总体积/吸取浸出液体积=250/20 m――风干试样质量,g 103和1000――分别将ug换算成mg和将g换算为kg 平行测定结果用算术平均值表示,保留小数点后一位 精密度平行测定结果允许相差:≤10%

钙和镁离子的测定

制盐工业通用试验方法钙和镁离子的测定 1.适用范围 本方法适用于制盐工业中工业盐、食用盐(海盐、湖盐、矿盐、精制盐)、氯化钾、工业氯化镁试样中钙、镁离子含量的测定。 2.容量法 2.1.镁离子含量的测定 2.1.1.原理概要 样品溶液调至碱性(pH≈10),用EDTA标准溶液滴定,测定钙离子和镁离子的总量,然后从总量中减去钙离子量即为镁离子量。 2.1.2.主要试剂和仪器 2.1.2.1.试剂 氨-氯化铵缓冲溶液(pH≈10) 称取20g氯化铵,以无二氧化碳水溶解,加入100mL25%氨水,用水稀释至1L。 铬黑T:0.2%溶液 称取0.2g铬黑T和2g盐酸羟胺,溶于无水乙醇中,用无水乙醇稀释至100mL,贮于棕色瓶内; 三乙醇胺:10%溶液; 氧化锌:标准溶液 称取0.8139g于800±2℃灼烧恒重的氧化锌,置于150mL烧杯中,用少量水润湿,滴加盐酸(1∶2)至全部溶解,移入500mL容量瓶,加水稀释至刻度,摇匀; 乙二胺四乙酸二钠(EDTA):0.02mol/L标准溶液 配制:称取40g二水合乙二胺四乙酸二钠,溶于不含二氧化碳水中,稀释至5L,混匀,贮于棕色瓶中备用; 标定:吸取20.00mL氧化锌标准溶液,置于150mL烧杯中,加入5mL氨性缓冲溶液,4滴铬黑T指示剂,然后用0.02mol/L EDTA标准溶液滴定至溶液由酒红色变为亮蓝色为止。 计算:EDTA标准溶液对镁离子的滴定度按式(1)计算。 T EDTA/Mg2+= W×20/500 ×0.2987 (1) V 式中:T EDTA/Mg2+——EDTA标准溶液对镁离子的滴定度,g/mL; V——EDTA标准溶液的用量,mL; W——称取氧化锌的质量,g; 0.2987——氧化锌换算为镁离子的系数。 2.1.2.2.仪器 一般实验室仪器。 2.1. 3.过程简述 吸取一定量样品溶液〔见附录A(补充件)〕,置于150mL烧杯中,试验程序同2.1.2.1.标定,EDTA标准溶液用量为测定钙离子及镁离子的总用量。 2.1.4.结果计算 镁离子含量按式(2)计算。

钙镁硫及微量元素肥料学习指导

钙镁硫及微量元素肥料 一、学习指导 (一)本章教学要求 1、掌握本章涉及的概念。 2、重点掌握钙、镁、硫的营养功能及其缺乏症状。 3、了解石灰和石膏的作用及施用技术。 4、重点掌握微量元素的营养功能及其缺乏症状。 5、了解微量元素肥料的施用技术。 (二)本章重点、难点内容: 1、钙的营养功能 细胞壁的结构成分,对细胞膜起稳定作用,是某些酶的活化剂,能调节介质的生理平衡,可传递信息,能消除某些离子的毒害作用, 2、作物缺钙的症状 首先在根尖、侧芽和顶芽等部位表现出来,表现为植株矮小,节间较短,组织软弱,幼叶卷曲畸形,叶缘变黄并逐渐坏死,根尖的分生组织腐烂、死亡。 3、石灰的性质和有效施用 石灰是最主要的钙肥。主要包括三种:生石灰,又称烧石灰,主要成分为CaO, 含量约为55∽85%,另外还含有10∽40%的MgO,所以生石灰兼有镁肥的功效;熟石灰,又称消石灰,主要成分为Ca(OH)2,含CaO量约为70%左右;碳酸石灰,又称石灰石粉,主要成分为CaCO3,含CaO量约为55%左右。石灰能中和酸性物质,消除毒害;改善土壤物理结构;消灭病菌。 石灰的施用量的确定:一般根据土壤交换性酸度、阳离子交换量和盐基饱和度等因子来确定,但也应考虑作物种类、土壤质地和施用方法等因素。施用方法:一般用作基肥,水田也可作追肥,施于旱田时通常用作基肥,避免种子与石灰直接接触。石灰施用过量或施用不当,会造成加速有机质的分解,消耗土壤氮素等养分,土壤碱性过强,降低磷、硼、锌、锰等营养元素的有效性。 3、镁的营养功能 叶绿素的构成元素;很多酶的活化剂;参与蛋白质的合成。 4、作物缺镁的症状

首先出现在下部老叶上,叶脉间失绿,叶片基部出现暗绿色斑点,叶片由淡绿色转变为黄色或白色,并出现褐色或紫红色斑点或条纹。5、镁肥的性质和有效施用常用的镁肥有硫酸镁、氯化镁、碳酸镁、硝酸镁等,都是水溶性肥料。牧草、大豆、花生、蔬菜、水稻、小麦、黑麦、马铃薯、葡萄、烟草、甘蔗、甜菜、柑桔等作物对镁肥反应较好。镁肥可作基肥或追肥,一般情况下每亩施用硫酸镁13∽15公斤。根外追肥(叶面喷施)时用1∽2%硫酸镁溶液,在作物生育初期效果最佳。 6、硫的营养功能 氨基酸的组成成分;许多酶的成分;参与作物体内的氧化还原过程;是许多物质的组成成分。 7、作物缺硫的症状 与缺氮相似,但一般首先出现在植株的顶端及幼芽上,表现为植株矮小,整株黄化,叶脉或茎等变红。8、石膏的性质和施用 石膏是最常用的硫肥,有生石膏、熟石膏和含磷石膏三种。生石膏含硫18%,含CaO23%,微溶于水。熟石膏含硫量约22%,容易磨细,颜色纯白,吸湿性强,吸水后又变成生石膏。含磷石膏含硫约11%,P2O5约2%左右。石膏还可作为碱土的改良材料,且可改善了土壤的通透性。 石膏作基肥、追肥和种肥均可。在旱田施用石膏时可先将石膏粉碎,撒施于土壤表面,再耕翻入土,也可以穴施或者沟施,也可以结合播种作种肥。 9、微量元素肥料 微量元素肥料是指哪些含有硼、锰、锌、铜、钼或铁等微量元素,并作为肥料来使用的物质,简称微肥。 10、硼肥 硼的营养功能包括:参与作物体内糖的合成和运输;促进作物生殖器官的正常发育;参与半纤维素及有关细胞壁物质的合成,促进细胞伸长和细胞分裂;调节酚代谢和木质化作用;促进核酸和蛋白质的合成及生长素的运输,能提高作物的抗旱、抗寒和抗病能力。 作物缺硼症状:根系短粗兼有褐色,老叶变厚、变脆、畸形,枝条节间短,出现木质化现象;花发育不全,果实小、畸形、结实率低。 常用的硼肥有4种:硼砂、硼酸、硼泥、含硼过磷酸钙等。水溶性硼肥可作基肥、追肥、种肥。 11、锰肥

阳离子交换量

土壤的阳离子交换性能是由土壤胶体表面性质所决定,由有机质的交换基与无机质的交换基所构成,前者主要是腐殖质酸,后者主要是粘土矿物。它们在土壤中互相结合着,形成了复杂的有机无机胶质复合体,所能吸收的阳离子总量包括交换性盐基(K+、Na+、Ca++、Mg++)和水解性酸,两者的总和即为阳离子交换量。其交换过程是土壤固相阳离子与溶液中阳离子起等量交换作用。 阳离子交换量的大小,可以作为评价土壤保水保肥能力的指标,是改良土壤和合理施肥的重要依据之一。 测量土壤阳离子交换量的方法有若干种,这里只介绍一种不仅适用于中性、酸性土壤,并且适用于石灰性土壤阳离子交换量测定的EDTA—铵盐快速法。 方法原理采用0.005mol/LEDTA与1mol/L的醋酸铵混合液作为交换剂,在适宜的pH条件下(酸性土壤pH7.0,石灰性土壤pH8.5),这种交换络合剂可以与二价钙离子、镁离子和三价铁离子、铝离子进行交换,并在瞬间即形成为电离度极小而稳定性较大的络合物,不会破坏土壤胶体,加快了二价以上金属离子的交换速度。同时由于醋酸缓冲剂的存在,对于交换性氢和一价金属离子也能交换完全,形成铵质土,再用95%酒精洗去过剩的铵盐,用蒸馏法测定交换量。对于酸性土壤的交换液,同时可以用作为交换性盐基组成的待测液用。主要仪器架盘天平(500g)、定氮装置、开氏瓶(150ml)、电动离心机(转速3000—4000转/分);离心管(100ml);带橡头玻璃棒、电子天平(1/100)。 试剂(1)0.005mol/LEDTA与1mol/L醋酸铵混合液:称取化学纯醋酸铵77.09克及EDTA1.461克,加水溶解后一起冼入1000ml容量瓶中,再加蒸溜水至900ml左右,以1:1氢氧化铵和稀醋酸调至pH至7.0或pH8.5,然后再定容到刻度,即用同样方法分别配成两种不同酸度的混合液,备用。其中pH7.0的混合液用于中性和酸性土壤的提取,pH8.5的混合液仅适用于石灰性土壤的提取用。 (2)95%酒精。工业用,应无铵离子反应。 (3)2%硼酸溶液:称取20g硼酸,用热蒸馏水(60℃)溶解,冷却后稀释至1000ml,最后用稀盐酸或稀氢氧化钠调节pH至4.5(定氮混合指示剂显酒红色)。 (4)定氮混合指示剂:分别称取0.1克甲基红和0.5克溴甲酚绿指示剂,放于玛瑙研钵中,并用100ml95%酒精研磨溶解。此液应用稀盐酸或氢氧化钠调节pH至4.5。 (5)纳氏试剂(定性检查用):称氢氧化钠134克溶于460ml蒸馏水中;称取碘化钾20克溶于50ml蒸馏水中,加碘化汞使溶液至饱和状态(大约32克左右)。然后将以上两种溶液混合即可。 (6)0.05mol/L盐酸标准溶液:取浓盐酸4.17ml,用水稀释至1000ml,用硼酸标准溶液标定。 (7)氧化镁(固体):在高温电炉中经500—600℃灼烧半小时,使氧化镁中可能存在的碳酸镁转化为氧化镁,提高其利用率,同时防止蒸馏时大量气泡发生。 (8)液态或固态石蜡 操作步骤称取通过60目筛的风干土样1.××克(精确到0.01g),有机质含量少的土样可称2—5克,将其小心放入100ml离心管中。沿管壁加入少量EDTA—醋酸铵混合液,用带橡皮头玻璃棒充分搅拌,使样品与交换剂混合,直到整个样品呈均匀的泥浆状态。再加交换剂使总体积达80ml左右,再搅拌1—2分钟,然后洗净带橡皮头的玻璃棒。 将离心管在粗天平上成对平衡,对称放入离心机中离心3—5分钟,转速3000转/分左右,弃去离心管中的清液。然后将载土的离心管管口向下用自来水冲洗外部,用不含铵离子的95%酒精如前搅拌样品,洗去过剩的铵盐,洗至无铵离子反应为止。 最后用自来水冲洗管外壁后,在管内放入少量自来水,用带橡皮头玻璃棒搅成糊状,并洗入150ml开氏瓶中,洗入体积控制在80—100ml 左右,其中加2ml液状石蜡(或取2克固体石蜡)、1克左右氧化镁。然后在定氮仪进行蒸馏,同时进行空白试验。 结果计算 阳离子交换量(cmol/kg土)=M×(V-V0)/样品重 式中:V—滴定待测液所消耗盐酸毫升数。 V0—滴定空白所消耗盐酸毫升数。 M—盐酸的摩尔浓度 样品重—烘干土样质量。

实验四 土壤的阳离子交换量

实验五土壤的阳离子交换量 一.实验目的 通过测定表层和深层土的阳离子交换量,了解不同土阳离子交换量的差别。 二.实验原理 本实验采用的是快速法来测定阳离子交换量。土壤中存在的各种阳离子可被某些中性盐(BaCl2)水溶液中的阳离子(Ba2+)等价交换。由于在反应中存在交换平衡,交换反应实际上不能进行完全。当增大溶液中交换剂的浓度、增加交换次数时,可使交换反应趋于完全。交换离子的本性,土壤的物理状态等对交换反应的进行程度也有影响。 再用强电解质(硫酸溶液)把交换到土壤中的Ba2+交换下来,这由于生成了硫酸钡沉淀,而且氢离子的交换吸附能力很强,使交换反应基本趋于完全。这样通过测定交换反应前后硫酸含量的变化,可以计算出消耗硫酸的量,进而计算出阳离子交换量。 三.仪器试剂 1.离心机、离心管 2.锥形瓶:100 mL 3.量筒:50 mL 4.移液管:10 mL 、25 mL 5.碱式滴定管:25 mL 6.试管 7.0.1N 氢氧化钠标准溶液 8. 1N氯化钡溶液 9. 酚酞指示剂1% 10. 0.2 N硫酸溶液 11.土壤样品,风干后磨碎过200目筛 四.实验步骤 1.取 4个洗净烘干且重量相近的50mL离心管,贴好标签。在天平上分别称出其重量(W 克)(准确至0.005 g,以下同)。在其中2个各加入1 g左右表层风干土壤样品,其余2个加入1 g深层风干土壤样品,并做好相应标记。 2.向各管中加入20 mL氯化钡溶液,用玻棒搅拌4 min后,以3000r/min转速离心10min 至上层溶液澄清,下层土样紧实为止。倒尽上清液,然后再加20 mL氯化钡溶液,重复上述操作一次,离心完后保留管内土层。 3. 在各离心管内加20 mL蒸馏水,用玻棒搅拌1 min后,再离心一次,倒尽上层清液。称出离心管连同土样的重量(G克). 4.移取25.00 mL 0.2 mol/L硫酸溶液至各离心管中,搅拌10 min后,放置20 min,离心沉降,将上清液分别倒入4个锥形瓶中。再从中分别移取10.00 mL上清液至另外4个100 mL 锥形瓶中。同时,分别移取10.00 mL 0.2 mol/L硫酸溶液至第五,六个锥形瓶中。在这6个锥形瓶中各加入10 mL蒸馏水和1滴指示剂。用标准氢氧化钠溶液滴定,溶液转为红色并

土壤交换性酸测定方法

土壤交换性酸(氢、铝)的测定 ———氯化钾交换——中和滴定法方法原理: 在酸性土壤中,土壤永久电荷引起的酸度(交换性H+和Al3+)用1mol/LKCL淋洗时被K+交换而进入溶液,当用氢氧化钠标准溶液直接滴定淋洗时,同时滴定了交换性H+和Al3+水解产生的H+,所得结果为全量,即交换性酸总量。另取一份浸出液,加入足量的氟化钠溶液,是Al3+络合成[AlF6]3-,从而防止了Al3+的水解,再用标准氢氧化钠溶液滴定,所得结果为交换性H+。两者之差为交换性Al3+。 仪器:250ml容量瓶、25ml碱式滴定管或微量滴定管 试剂: 氯化钾溶液(1mol/L):74.55g KCL(化学纯)溶于水中,定容至1L,溶液pH应在5.5~6之间(用稀氢氧化钾或稀盐酸调节) 酚酞指示剂:1g酚酞溶于100ml 95%乙醇中。 氟化钠溶液:3.5g氟化钠(化学纯)溶于80ml无CO2水中,以酚酞作指示剂,用稀NaOH或稀HCl调节至为红色(pH 8.3),最后稀释到100ml,贮于塑料瓶中。 NaOH标准溶液(0.02mol/L):0.8gNaOH(分析纯)溶于1000ml无CO2水中,用邻苯二甲酸氢钾标定其浓度。 操作步骤: 1. 称取10.00g风干土样(2mm),放在铺好滤纸的布氏漏斗中,用氯化钾溶液少量多次地淋洗土壤样品,滤液承接在250ml容量瓶中,近刻度时,用氯化钾溶液定容。

2. 吸取100ml滤液于250ml锥形瓶中,低温煮沸5min,赶出CO2,以酚酞作指示剂,趁热用NaOH标准溶液滴定至微红色,记下NaOH用量(V1)。 3. 另取一份100ml滤液于250ml锥形瓶中,低温煮沸5min,赶出CO2,趁热加入过量NaF溶液1ml,冷却后以酚酞作指示剂,用NaOH标准溶液滴定至微红色,记下NaOH用量(V2)。 并作空白试验,且记下NaOH用量(V0和V0’)。 计算结果: 交换性氢:cmol·kg-1(H+)=( V2-V0’)×c×ts×10-1×1000/m 交换性铝:cmol·kg-1(1/3Al3+)=[(V1-V0)-(V2-V0’)]×c×ts×10-1×1000/m 式中: V1——交换性酸总量滴定氢氧化钠标准溶液体积,ml; V0——交换性酸总量空白滴定氢氧化钠标准溶液体积,ml; V2——交换性氢滴定氢氧化钠标准溶液体积,ml; V0’——交换性氢空白滴定氢氧化钠标准溶液体积,ml; C——氢氧化钠标准溶液浓度,mol·L-1 ts——分取倍数; 10-1——由mmol换成cmol的系数; m——土样质量,g; 1000——换算成每千克含量。 注意事项: 250ml淋洗液已可把交换性H+和Al3+基本洗出,若淋洗液体积过大或淋洗时间过长,有可能把部分水解酸洗出。

粘土阳离子交换容量的测定

粘土阳离子交换容量的测定 一、实验目的 掌握测定粘土阳离子交换容量的方法,熟悉鉴定粘土矿物组成的一种方法。 二、实验内容 1.原理 分散在水溶液中的粘土胶粒带有电荷,不仅可以吸附反电荷离子,而且可以在不破坏粘土本身结构的情况下,同溶液中的其它离子进行交换。粘土进行离子交换的能力(即交换容 所以,测得离子交换容量,可以作为鉴定粘土矿物组成的辅助方法。 测定离子交换容量的方法很多,本实验采用钡粘土法。首先,以BaCl2溶液冲洗粘土使粘土变成钡—土,再用已知浓度的稀H2SO4置换出被粘土吸附的Ba2+,生成BaSO4沉淀,最后用已知浓度的NaOH溶液滴定过剩的稀硫酸,以 NaOH消耗量计算粘土的交换容量。 2. 试剂与仪器 (1) 粘土矿物试样 (2) BaCl2溶液(1N) (3) H2SO4溶液(0.05N) (4) NaOH溶液(0.05N) (5) 酚酞溶液 (6) 离心试管 (7) 离心分离机 (8) 滴定管 (9) 锥形瓶 (10) 烧杯 (11) 分析天平 (12) 移液管 3.实验步骤 (1) 准确称取粘土矿物试样(0.5~0.3克)三份(作三个平行试验,分别置于已知重量的干燥离心试管中,加10ml BaCl2溶液充分搅动(约1分钟),然后离心分离,并吸出上面澄清溶液,如此,重复操作两次,加蒸馏水洗涤二次。 (2) 小心地吸净上层清液,然后将离心管与湿土样在分析天平中称量,算出湿度校正项。 (3) 在称量后之土样中准确地加人14ml(分两次加H2SO4溶液充分搅拌,放置数分钟,然后离心 离心后将上层酸液合并入一干烧坏中,用移液管准确吸出10ml置于锥形瓶中,滴加酚酞指示剂三滴,用NaOH溶液进行滴定,滴定至摇动30秒钟红色不退为止。记下NaOH溶液得用量。 (4) 吸取10ml未经交换得H2SO4溶液,用相同的NaOH溶液进行滴定,记下所消耗的NaOH溶液毫升数。 4. 实验结果与处理 按下式计算粘土的交换容量,并判断属于哪类粘土。 W=[m V N L V N ? ? ? + - ? ? 10) 14 ( 14 1 1 ]′ 100 式中:W—粘土的交换容量(毫克当量/100克) N—NaOH溶液当量浓度 V1—滴定10ml未经交换的H2SO4溶液所需的NaOH溶液毫升数 V2—滴定10ml交换后的H2SO4溶液所需的NaOH溶液毫升数 m—土样重量(克) L—湿度校正项(L=g1-g2)

改性凹凸棒土对钾_钙_镁离子交换作用的研究

第17卷第1期 2008年1月 中 国 矿 业 C HINA MINING MA GAZINE V o l.17,N o.1Januar y 2008 改性凹凸棒土对钾、钙、镁离子交换作用的研究 王 丽,袁建军 (天津科技大学,天津300457) 摘 要:以江苏盱眙凹凸棒土为原料,分别采用煅烧、酸洗、碱洗、氯铵洗和碳铵洗的方法对其进行改性,考察改性凹凸棒土分别对钾、钙、镁三种离子的离子交换效果。在低浓度水溶液(0105mo l/L )中,以铵盐溶液处理过的凹凸棒土对钾、钙、镁三种离子的交换吸附顺序为K +>Ca 2+>M g 2+。实验结果表明,改性凹凸棒土对钾、钙、镁离子的交换吸附能力,应用于海水中提取钾盐应具有较好的前景。 关键词:凹凸棒土;钾离子;钙离子;镁离子;离子交换 中图分类号:T Q425/O 647131+6 文献标识码:B 文章编号:1004-4051(2008)01-0084-05 Study on the Ion exchange of potassiu m, calcium and magnesium by alter -attapulgite W A N G L i,Y U AN Jian -jun (T ianjin U niversit y of Science and T echno log y,T ianjin 300457,China) Abstract:A ttaplg ite fro m jiang su pro vince w as used as r ow mater ial and treated by calcine,acid,alka -li,ammo nium chlo ride and ammonium carbonate cleaning r espectiv ely to obtain a lter -at tapulg te 1T hen the ion exchang e of potassium 、calcium and mag nesium by alter -att apulg ite was investig ated 1In lo w solut ion concent ratio n (0105mol/L ),iro n ex change o rder of those io ns by ammonium -alter -attapulgite was K +>Ca 2+>M g 2+1T he r esult sug gested alter -att apulg ite can be used to extr act po tassium fr om seawat er 1 Key words:attapulg ite;po tassium;ca lcium;mag nesium;ion exchange 收稿日期:2007-10-16 凹凸棒土是一种具有特殊结构、形态、物化性质的含水富镁硅酸盐粘土矿物,具有优异的吸附性能和一定的离子交换能力。活化后的凹凸棒土对敌 百虫、敌敌畏等有机磷农药有吸附净化作用,可以部分取代活性炭,提高净化度和重复利用率,降低吸附成本[1] 。利用凹凸棒土的离子交换能力,处理含铅[2]、铜、锌[3]、铬[4]、镍[5]等重金属离子废水及含氟废水[6],使之达到排放标准。虽然自19世纪发现凹凸棒土以来,各国学者对凹凸棒土从不同角度,进行了不同程度的研究,但凹凸棒土的应用仍然十分局限。 海水是化学资源的宝库,作为水资源和化学矿物资源而言,具有取之不尽的强大优势。本文选用江苏省盱眙县凹凸棒土作为原料,分别采用煅烧、酸洗、碱洗、氯铵洗和碳铵洗的方法对其进行改 性,考察凹凸棒土对钾、钙、镁三种常见离子的离子交换能力。希望能为海水中有用元素的提取提供一条新的工艺路线,并扩大凹凸棒土离子交换吸附能力的应用。1 实验方法及药剂111 药剂 凹凸棒土:江苏省盱眙县,青灰色,pH 值6~7;氯化钾、氯化钙、氯化镁、硫酸、氢氧化钠、氯化铵、碳酸铵等均为分析纯试剂。112 凹凸棒土的预处理 将凹凸棒土研磨筛分,于200e 煅烧4h,用去离子水浸泡24h 后洗涤数遍至洗涤水澄清。烘干后干燥器内密封保存。113 凹凸棒土改性 凹凸棒土的煅烧改性:称取一定量经预处理后的凹凸棒土,于设定温度和保温时间下在马弗炉中煅烧,再次洗涤并烘干,密封保存。

土壤阳离子交换量的测定

实验四土壤的阳离子交换量的测定 一、实验目的 1.了解土壤的阳离子交换量的内涵 2. 掌握土壤的阳离子交换量的测定原理和方法 二、实验原理 土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力又和土壤的组成、结构等有关,因此对土壤性能的测定,有助于了解土壤对污染物质的净化及对污染负荷的允许程度。 土壤中主要存在三种基本成分,一是无机物,二是有机物,三是微生物。在无机物中,粘土矿物是其主要部分。粘土矿物的晶格结构中存在许多层状的硅铝酸盐,其结构单元是硅氧四面体和铝氧八面体。四面体硅层中的Si4-常被Al3+离子部分取代;八面体铝氧层中的Al3+可部分地被Fe2+、Mg2+等离子取代,取代的结果便在晶格中产生负电荷。这些电荷分布在硅铝酸盐的层面上,并以静电引力吸附层间存在的阳离子,以保持电中性。这些阳离子主要是Ca、Mg、Al、Na、K、H等,它们往往被吸附于矿物胶体表面上,决定着粘土矿物的阳离子交换行为。 土壤中存在的这些阳离子可被某些中性盐水溶液中的阳离子交换。当溶液中交换剂浓度大、交换次数增加时,交换反应可趋于完全。同时,交换离子的本性,土壤的物理状态等对交换完全也有影响。若用过量的强电解质,如硫酸溶液,把交换到土壤中去的钡离子交换下来,这时由于生成了硫酸钡沉淀,且由于氧离子的交换吸附能力很强,交换基本完全。这样,通过测定交换反应前后硫酸含量变化,可算出消耗的酸量,进而算出阳离子交换量。这种交换量是土壤的阳离子交换总量,通常用每1000克干土中的厘摩尔数表示。 三、实验用品 电动离心机,离心管,锥形瓶,量筒,移液管,滴定管,试管 1N氯化钡溶液, 酚酞指示剂1%(W/V),硫酸溶液0.2N,土壤 四、实验操作 4.1 0.1N氢氧化钠标准溶液的标定:称2克分析纯氢氧化钠,溶解在500ml煮沸后冷却的蒸馏水中。称取0.5克(分析天平上称)于105C烘箱中烘干后的邻苯二甲酸氢钾两份,分别放入250毫升锥形瓶中,加100毫升煮沸冷的蒸馏水,

镁的习题

镁的习题(Magnesium) 唐荣德 一、选择题 1. 暂时硬水煮沸后的水垢主要是(MCE93.2) ( D ) A. Ca(HCO3)2 B. Ca(OH)2 C. MgCO3 D. Mg(OH)2和CaCO3 2. 用石灰软化含Mg(HCO3)2的硬水时,产生的沉淀是( D ) A. CaCO3 B. MgCO3 C. CaCO3和MgCO3 D. CaCO3和Mg(OH)2 3. 实验用水,若水中含有少量的Ca2+、Mg2+,欲除去这些离子,常采用的方法是 ( D ) A. 过滤 B. 分液 C. 加石灰和纯碱 D. 蒸馏 4. 把含有某一种氯化物杂质的氯化镁粉末95 mg溶于水后,与足量的硝酸银溶液反应,生成氯化银沉淀300 mg,则该氯化镁中的杂质可能是(MCE94.23) ( B ) A. 氯化钠 B. 氯化铝 C. 氯化钾 D. 氯化钙 5. 五支烧杯中都盛有同浓度、同体积的稀硫酸,分别加入足量的下列各物质,充分 反应后所得硫酸镁溶液浓度相等的是(假设溶液体积不变) ( AC ) ①镁粉②氧化镁③氢氧化镁④碳酸镁⑤硫化镁 A. ①和⑤ B. ①和② C. ②和④ D. ③和④ 6. 镁带在空气中燃烧生成的固体产物主要是氧化镁和氮化镁。将燃烧后的固体产物溶解在60 mL浓度为2.0 mol/L的盐酸溶液中,(氮化镁和盐酸反应的化学方程式为:Mg3N2+8HCl =3MgCl2+2NH4Cl)以20 mL 0.5 mol/L的氢氧化钠溶液中和多余的盐酸,然后在此溶液中加入过量的碱,把氨全部蒸发出来,用稀盐酸吸收,稀盐酸增重0.17 g。镁带的质量为( B ) A. 0.6 g B. 1.2 g C. 2.4 g D. 3.6 g 7. 为了除去MgCl2酸性溶液中的Fe3+,可在加热搅拌的条件下加入一种试剂,过滤后再加入适量盐酸。这种试剂是(MCE91.8) ( B ) A. NH3·H2O B. NaOH C. Na2CO3 D. MgCO3 8. 为了除去粗盐中的Ca2+、Mg2+、SO42-及泥沙,可将粗盐溶于水,然后进行下列五项 操作:①过滤,②加过量NaOH溶液,③加适量盐酸,④加过量Na2CO3溶液,⑤加过量BaCl2溶液。正确的操作顺序是(MCE91.23) ( CD ) A. ①④②⑤③ B. ④①②⑤③ C. ②⑤④①③ D. ⑤②④①③ 9.由H2SO4、Al2O3、NaOH、Mg、Cl2两两之间进行反应,可制得的正盐有( C ) A. 5种 B. 6种 C. 7种 D. 8种 10.将分别盛有熔融的氯化钾、氯化镁、氯化铝的三个电解槽串联,在一定条件下通电一段时间后,析出钾、镁、铝的物质的量之比为( D ) A. 1∶2∶3 B. 3∶2∶1 C. 6∶3∶1 D. 6∶3∶2 11.某无色溶液能与铝作用生成氢气,则溶液中可能大量共存的离子组是( AD ) A. H+、Ba2+、Mg2+、Cl- B. Cl-、CO32-、Cu2+、Mg2+

实验九 土壤的阳离子交换量

实验题目:土壤的阳离子交换量 实验原理: 土壤是环境中污染物迁移转化的重要场所,土壤的吸附和离子交换能力又和土壤的组成、结构等有关,因此对土壤性能的测定,有助于了解土壤对污染物质的净化及对污染负荷的允许程度。 土壤中主要存在三种基本成分,一是无机物,二是有机物,三是微生物。在无机物中,粘土矿物是其主要部分。粘土矿物的晶格结构中存在许多层状的硅铝酸盐,其结构单元是硅氧四面体和铝氧八面体。四面体硅层中的Si4-常被Al3+离子部分取代;八面体铝氧层中的Al3+可部分地被Fe2+、Mg2+等离子取代,取代的结果便在晶格中产生负电荷。这些电荷分布在硅铝酸盐的层面上,并以静电引力吸附层间存在的阳离子,以保持电中性。这些阳离子主要是Ca、Mg、Al、Na、K、H等,它们往往被吸附于矿物胶体表面上,决定着粘土矿物的阳离子交换行为。 土壤中存在的这些阳离子可被某些中性盐水溶液中的阳离子交换。当溶液中交换剂浓度大、交换次数增加时,交换反应可趋于完全。同时,交换离子的本性,土壤的物理状态等对交换完全也有影响。若用过量的强电解质,如硫酸溶液,把交换到土壤中去的钡离子交换下来,这时由于生成了硫酸钡沉淀,且由于氧离子的交换吸附能力很强,交换基本完全。这样,通过测定交换反应前后硫酸含量变化,可算出消耗的酸量,进而算出阳离子交换量。这种交换量是土壤的阳离子交换总量,通常用每1000克干土中的厘摩尔数表示。 实验目的: 1.测定污灌区表层和深层土的阳离子交换总量。 2.了解污灌对阳离子交换量的影响。 仪器与试剂: 电动离心机离心管锥形瓶量筒移液管滴定管试管 1N氯化钡溶液酚酞指示剂1%(W/V)硫酸溶液0.2N 土壤实验过程: 1.0.1N氢氧化钠标准溶液的标定:称2克分析纯氢氧化钠,溶解

土壤—交换性酸度的测定—氯化钾交换法

FHZDZTR0039 土壤 交换性酸度的测定 氯化钾交换法 F-HZ-DZ-TR-0039 土壤—交换性酸度的测定—氯化钾交换法 1 范围 本方法适用于酸性土壤交换性酸度的测定。 2 原理 在土壤酸碱度测定中,还需测定土壤交换性酸度,交换性酸度是对农作物最有害的一种土壤酸度形态,它的存在表明土壤中交换性盐基十分贫乏,而代替其位置的是交换性氢和铝离子,是改良酸性土壤时确定石灰施用量的重要指标。通常采用氯化钾交换法测定土壤交换性酸度,用氯化钾溶液淋洗酸性土壤时,土壤永久负电荷引起的酸度(交换性H +和Al 3+)被钾离子交换而进入溶液,当用氢氧化钠标准溶液滴定时,不但滴定了土壤原有的交换性H +,也滴定了交换性Al 3+水解产生的H +,为交换性H +和Al 3+的总和,称为交换性酸总量。另取一份浸出液,加入氟化钠溶液与Al 3+络合而防止水解,再用氢氧化钠标准溶液滴定而测得交换性H +。两者之差为交换性Al 3+。 3 试剂 3.1 氯化钾溶液:1mol/L ,称取7 4.55g 氯化钾,溶于水,加水稀释至1000mL 。溶液pH 应为 5.5~ 6.0,如不在此范围,可用稀氢氧化钾溶液或稀盐酸溶液调节。 3.2 氢氧化钠标准溶液:0.02mol/L ,称取0.8g 氢氧化钠,用无二氧化碳的水(煮沸后刚冷却的水)溶解,并稀释至1000mL 。 标定:称取1.0211g 于110℃烘干的邻苯二甲酸氢钾(KHC 8H 4O 4),精确至0.0001g ,用少量水溶解,再加水稀释至250mL ,得0.0200mol/L 邻苯二甲酸氢钾标准溶液。吸取25.00mL 邻苯二甲酸氢钾标准溶液置于150mL 锥形瓶中,加1滴~2滴酚酞指示剂,用氢氧化钠标准溶液滴定至溶液由无色变为微红色,并在30s 内不褪色为止。同时做空白试验。氢氧化钠标准溶液的浓度按下式计算: C =0 211V V V C ?× 式中: C ——氢氧化钠标准溶液浓度,mol/L ; C 1——邻苯二甲酸氢钾标准溶液浓度,mol/L ; V 1——邻苯二甲酸氢钾标准溶液体积,mL ; V 2——氢氧化钠标准溶液用量,mL ; V 0——空白试验消耗氢氧化钠标准溶液体积,mL 。 3.3 酚酞指示剂:称取1g 酚酞,溶于20mL 乙醇中,再加入80mL 水。 3.4 氟化钠溶液:称取3.5g 氟化钠,溶于无二氧化碳的水中,以酚酞作指示剂,用稀氢氧化钠溶液或稀盐酸溶液调节至微红色(pH 8.3),再用无二氧化碳的水稀释至100mL ,贮于塑料瓶中。 4 仪器 4.1 锥形瓶,250mL 。 4.2 容量瓶,250mL 。 5 操作步骤 5.1 待测液的制备:称取通过2mm 筛孔的风干土样5.00g (精确至0.01g ),置于已铺有慢速

不同类型紫色土交换性钙镁含量及对烟叶钙镁分布的影响

不同类型紫色土交换性钙镁含量及对烟叶钙镁分布的影响 唐先干1,2,苏金平1,2,何宽信3,韩延4,李祖章1,2*,谢邦金4,杨启冰4 (1.江西省农业科学院土壤肥料与资源环境研究所,南昌330200;2.江西省农业科学院国家红壤改良工程技术研究中心,南昌330200;3.江西省烟草公司,南昌330045;4.江西省烟草公司抚州市公司,江西抚州344000) 摘要:为了探讨江西紫色土交换性钙、镁含量及对烟叶钙、镁含量分布的影响,于2009年在江西紫色土烟区点对点采集土壤样与烟叶样进行化验,得出结果如下:江西紫色土交换性钙含量丰富但变异较大,交换性镁含量偏低且交换性钙镁比值较大,导致烟叶含钙量变异较大且烟叶含镁量较低;烟叶含镁量为中性紫色土>酸性紫色土>碱性紫色土;中性紫色土烤烟不同叶位烟叶含钙、镁量差异不大,但碱性与酸性紫色土烤烟均为上部叶烟叶含钙、镁量高于中下部叶;土壤交换性钙、镁之间呈极显著正相关,交换性钙、镁与土壤pH、有机质和氮、磷、钾、硫之间具有一定的相关性,但交换性钙与微量元素呈极显著负相关。 关键词:紫色土;烤烟;养分分布;交换性钙;交换性镁 中图分类号:S572.06 文章编号: DOI: Exchangeable Ca and Mg Contents in Various Purple Soils and their Effects on Ca and Mg Contents in Flue-cured Tobacco TANG Xiangan1,2, SU Jinping1,2, HE Kuanxin3, HAN Yan4, LI Zuzhang1,2, XIE Bangjin4, YANG Qibing4 (1. Soil & Fertilizer and Environmental & Resources Research Institute, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; 2. National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang 330200, China; 3. Jiangxi Provincial Tobacco Company, Nanchang 330200, China; 4. Fuzhou Tobacco Company of Jiangxi Province, Fuzhou, Jiangxi 344000, China) Abstract:In order to understand the contents of exchangeable Ca and Mg in different types of purple soils of Jiangxi and their effects on nutrients (Ca, Mg) distribution of flue-cured tobacco, the soil and tobacco samples were collected by point to point approach (namely the location of soil sample was same to that of the tobacco sample) in purple soil area of Jiangxi and were then determined in 2009. The results showed that in Jiangxi’s purple soils, the exchangeable Ca was sufficient and greatly variable, while the exchangeable Mg was low and the ratio of exchangeable Ca to Mg was high, so the concentration of Ca in leaves was variable and the concentration of Mg was low; the concentration of Mg in tobacco leaves was neutral purple soil > acid purple soil > alkaline purple soil. In the neutral purple soil, the concentrations of Ca and Mg in difference position of leaves were not significant difference, but in the acidic and alkaline purple soils the concentrations of Ca and Mg in the upper leaf were higher than those in the middle and lower leaves. Soil exchangeable Ca was significantly positive correlation to Mg, and also was positively correlative to pH, organic matter, nutrients (N, P, K, S), and was extremely significant and negative correlated to soil trace elements. Keywords:purple soil; flue-cured tobacco; nutrient distribution; exchangeable Ca; exchangeable Mg 钙、镁是影响烤烟产量和品质的重要中量营养元素。钙是烤烟吸收量仅次于钾的矿质元素[1],是细胞代谢的总调节者,维持着烟株正常生长所需要的细胞pH值[2-4]。缺钙烟叶中氮含量明显减少,非蛋白态氮大量增加,烟草品质变劣[5-7]。镁是叶绿素的重要成分,适量的镁可促进烤烟的生长发育,有利于烟叶内在品质的提高[8-10],缺镁会导致光合产物的运输速率下降,严重时烟叶的蛋白质合成受阻,蛋白态氮减少,缺镁烟叶,烘烤后发暗,呈无光泽的挂灰装,质地似薄纸状,无弹性韧性[11]。

相关文档
最新文档