我国高炉喷煤技术的现状及发展趋势

我国高炉喷煤技术的现状及发展趋势
我国高炉喷煤技术的现状及发展趋势

邯钢1000m3高炉提高喷煤比的探索

刘伟,樊泽安,王飞,徐俊杰

(河北钢铁集团邯郸钢铁公司炼铁部,河北邯郸056015)

摘要:邯钢4#高炉(有效容积1000m3)经过不断探索,加强原燃料管理、高炉的操作和维护,使喷煤比逐月提高、焦比和综合焦比不断下降。喷煤比由2008年的130.6 kg/t提高到2009年6月的163.1 kg/t,焦比由361kg/t下降到了305kg/t,综合焦比由524kg/t下降到了500kg/t,取得了良好的经济效益。

关键词:高炉;喷煤比;探索

引言

邯钢4#高炉有效容积917m3,2007年、2008年虽然炉况长期稳定顺行,但由于燃料变化比较大,有时甚至一天就变换数次焦炭,各项指标未达到最好水平,平均日产2600t上下,一级品率70%,焦比361kg/t,煤比130kg/t,焦丁比16kg/t风温1100℃,平均[Si]0.61%。进入2009年以来,4#高炉以“低耗高产”举措应对当前市场挑战,进一步探索好的经济技术指标成效显著,通过监督改善原燃料质量、适时调整煤气流分布、降低入炉焦比、提高富氧、增加喷煤、高风温协调互补、适当提高炉渣碱度等措施,基本实现了全捣固焦冶炼的长期稳定顺行,并实施了低硅冶炼,取得了很好的经济技术指标。2009年4月以来,平均日产达到2700t以上,利用系数达到3.0,一级品率93.45%,焦比降到305kg/t,煤(全无烟煤)比达到160kg/t以上,中焦比达到18kg/t,焦丁比达到16kg/t,风温达到1135℃,平均[Si]达到0.43%以下。通过优化高炉操作技术经过不断实践和探索,在喷吹全无烟煤的情况下煤比达到160kg/t以上实属难得(见表1)。

表1 4高炉生产指标

利用系/t.

(m-2. d-1)

/kg.t-1

炉焦比

/kg.d-1

丁比

/kg.d-1

焦比

/kg.d-1

温/℃

R

2

[

Si]/%

20 08

2.88

6

1

30.6

361 14 20 1

107

1

.15

.61

20 09.4 3.0 1

51.7

327 16 18 1

132

1

.13

.44

20 3.001308 17 18 110

09.5

8

60.6

150

.15

.43

2009.6

3.016

163.1

305

16

18

1153

1.16

0.42

2. 提高煤比的研究与措施

提高煤比,从而减少焦炭的消耗量,获得较好的经济效益,已成为各大钢铁企业所认可,也成为钢铁企

业所努力的方向.如何能够获得合理的高煤比,已成为喷煤技术的发展趋势及努力方向.

2.1提高煤比的限制性因素

2.1.1 原燃料质量: 对于高炉而言,入炉矿石,焦炭的质量不仅影响到高炉的顺行,产品的质量,经济效益等等,同时也影响了煤比的提高.另外,煤粉本身的质量也是非常关键的因素,如煤粉的灰分 硫分 固定碳 灰熔点 可磨性 燃烧性反应性 等等.

2.1.2 风温

在大喷煤量时,由于煤粉的燃烧,会造成炉缸理论中心温度的降低,在一定程度上会影响高炉的顺行(要注意热滞后现象).根据首钢理论燃烧温度:

T=1530+0.763×Tf+4970×Q 。/(1.088×60×Qf)-3770×1000×Qm/(1.088×60×Qf)

式中:

Tf- ℃

Q 。-氧气量m 3/h Qf-风量m 3/min Qm-喷煤量t/h 2.1.3 富氧

第一点,富氧是弥补喷煤后风口温度下降的有效措施。从维持风口燃烧温度不变的角度,根据首钢经验富氧1%可提高煤比22kg/t.第二点,可以加快氧向煤粉表面的传递速度,从而促进煤粉燃烧,提高煤粉燃烧率。

2.1.4 配煤

以前我国在喷煤上通常采用单一煤种,全部为无烟煤或烟煤. 无烟煤是含碳量高,挥发分低。喷吹无烟煤安全问题容易解决。缺点是无烟煤一般煤质差,灰分高,不易燃烧,影响煤粉燃烧率,不仅置换比低,而且给冶炼增大了渣量。另外,煤质硬,制粉能耗高。喷吹烟煤的优点是烟煤易于燃烧,燃烧产生的氢量多,有利于炉内间接还原的发展;其煤质软,易粉碎,制粉能耗低。但其含碳量低,置换比受到影响,更重要的是要有严格的安全措施。4高炉由于设备原因,现在仍只能喷单一煤种,是煤比进一步提高的主要制约,现炼铁部正筹划改进。

2.2. 提高煤比的措施

在讨论了限制煤比提高的主要因素后,以及在实践中经验的不断摸索,我们可以通过

下面的几种措施来提高煤比:

2.2.1 抓好精料工作

(1)把好入炉原料关。入炉粉末过多会影响高炉料柱的透气性,减少入炉的风量,不利于高炉稳定顺行。通过采取降低给料器的振幅、多嘴给料、在不影响上料的前提下尽量降低筛上料层厚度,尽可能延长炉料的筛分时间,保证筛分速率(烧结矿为2300kg/min,焦炭为1000kg/min),过后延长筛子空振时间等措施,筛分效果大大改善。

(2)提高原燃料质量。近几年来,邯钢在精料方面做了很多工作。进入2007年,邯钢淘汰了3座24m2烧结机,四高炉专吃90m2烧结机的料,强度、品位都明显提高,并要求工长先看料后入仓;2008年底,邯钢子公司石灰石矿焦化公司与4高炉配套的4.3m捣鼓焦炉投产,高炉的原燃料条件才相对好转,且趋于稳定对于保证焦炭的骨架作用,提高喷煤比至关重要。

2.2.2 提高风温

从上面的公式我们可以看出,在大喷煤的状态下,炉缸的理论温度是会下降的,为了保持高炉顺行同时也为了有进一步提高煤比的空间,尽可能的提高风温是必要的。从式中可看出,风温升高100℃时,理论燃烧温度约升高79·4℃。理论燃烧温度升高,既能增大煤粉表面的化学反应速度,也能增加氧气的扩散速度,提高煤粉燃烧率。4高炉通过全关混风大闸操作、配加焦炉煤气及预热助燃空气,风温得到显著提高,由2008年的1100℃左右达到1150℃以上,保持合理的理论燃料温度,改变以往用风温来调节炉温的操作习惯。。

2.2.3 富氧鼓风

富氧喷煤是高炉强化冶炼的重要手段之一,因为氧源的限制,4号高炉原来的富氧率仅在1%左右,还经常受炼钢影响有些波动,这对提高喷煤比、稳定高炉送风制度和热制度以及高炉的强化冶炼都非常不利。2006年以来,制氧厂能力的提高,在高炉顺行的前提下,逐步将富氧率提高到 2.5%。富氧率的提高,改善了煤粉在炉内的燃料环境,为提高喷煤比及节能降焦提供了可靠的保证。

2.2.4 优化喷吹工艺

总管加分配器方式总管加分配器方式适用于远距离直接喷吹,可在大的喷吹距离、范围内用1根直径相对粗的总管代替若干根直径较细的支管。总管可一

直引到靠近高炉处再通过1个分配器分配成若干根支管向各个风口喷吹煤粉,这

样可降低阻损和罐压,适应远距离的需要。

2.2.5 维护合理的操作炉型

合理的操作炉型是高炉稳定顺行的基础,如炉型不规整,高炉难以稳定顺行,更难以强化。我们始终把4号高炉操作炉型的控制放在非常显要的位置。高炉强化冶炼以后,中心煤

气流有明显的发展趋势,一方面通过布料矩阵的变化来调整气流,保证上部有两道合理的煤气流,同时通过下部调整风口布局保证周向煤气流的均匀稳定,将砖衬温度控制在600~800℃,5、6段冷却壁温度控制在80~120℃;另一方面,加强对冷却系统的检查和测量工作,对检查和测量结果及时做好记录、分析、调整。通过以上措施,4号高炉操作炉型得到控制,使高炉顺行得到保证,强化冶炼得以顺利进行,改善了煤气利用,使综合能耗大大降低。

2.2.6 抓好高炉操作

高炉要实现喷煤降焦的目标,保持适宜、稳定的煤气流分布是关键。随着喷煤比的提高,炉腹煤气量增加,鼓风动能也相应地提高,中心煤气流得到了保证。为了防止边缘煤气流自动加重,采用了适当发展边缘的布料度:O22334352C2232425263,矿批由24.2t调整到23.6t,料线1.0m。下部调节主要是监测炉缸工作状态,调整风口配置,控制初始煤气流圆周均匀分布,保证炉缸工作均匀活跃,渣铁物理热充沛,高煤量、高风量,使鼓风动能不断提高。为了维持合适的鼓风动能,邯钢4#高炉共有18个风口,前期,主要使用450mm/120mm风口,气流分布不理想,中心一直不起,炉况不稳定;到2007年底,全部换成500mm/120mm风口,中心稍好,中心时有时无,于2008年8月在四个方向分别装上一个550mm/120mm风口,中心气流基本稳定。实际风速由230m/s调整为250m/s,鼓风动能由78kJ/s调整为88kJ/s,保证初始煤气流分布合理。各项措施的制定相互制约、相互联系、相互促进,提高压差使风量增加,有利于活跃炉缸和炉身、炉墙的整洁,保持较好的操作炉型。富氧的增加有利于增大喷煤量,降低焦比。较好的气流分布,使得高炉可以抵御不利因素给高炉带来的波动。气流分布根据实际情况如下(表2图1):

3结语

(1)高炉生产并不是煤比越高越好,提高煤比是为了最终降低消耗及成本。当前,有些条件不易解决或短期内不能解决,根据生产条件应有一个合理的煤比水平,从而维持一个较合理的燃料消耗,取得最佳经济效益。可以通过对矿批、布料及其他基本调剂制度的改变缓解提高煤比与利用率之间的矛盾。

(2)高炉提高喷煤比、降低焦比要以精料为基础。喷吹煤的灰分低和适当提高挥发分含量可增加喷煤量;烧结矿强度及焦炭冷热强度的提高和热反应性的降低

减少了炉内粉末含量、改善了料柱透气性和透液性,有利于高炉实现大喷吹;高炉炉渣中Al2O3含量不超过17%,保证渣铁的流动性,为大喷吹创造条件。

(3)加强高炉操作,保证炉况顺行是实现大喷吹的必要条件。采用上下部调剂及中部调剂相结合,保持了边缘、中心两股煤气流的合理分布;在日常生产中控制适当的插枪深度、加强冷却壁的检查维护等措施,为高炉的正常生产和大煤量连续量喷吹打下良好基础。

(4)采取多项技术和管理措施,风温水平在1150℃以上,富氧量稳定在4000m/h、富氧率稳定在2.5%左右,加强风口、铁口的管理和维护,有力的改善了煤粉喷吹条件。

表2十字测温温度(单位℃)

十字测温温度 边

缘 2

3

4

5 中

心 5

4

3

2 边

缘 07\08年 150 1

10 95 140 350

650 360 130 100 110 160

2009年 250 1

50 90 200 350

550

350

190

100

160

2

30

图1 十字测温图

四 参考文献

[1] 徐俊杰 朱建勇 靳玮等.邯钢4#高炉高效生产实践.冶金能源.2009.6 [2] 徐万仁 朱仁良 张龙来等.高炉高煤比操作实践.钢铁.2005.9

[3] 单保进 文佳才 周歧建.武钢4号高炉提高喷煤比实践与探索. 2007年中国钢铁年会

钢铁厂高炉喷煤操作

高炉喷煤 一、喷吹煤粉已成为小高炉炼铁的当务之急 i.当前,钢铁冶金行业遭遇到全球性的原料价格上涨,焦炭、矿石的 价格涨幅惊人,冶炼成本普遍提高,这给小高炉炼铁业带来更大的 困难。因此,降低冶炼成本成了小高炉作业的重要目标。其中,降 低焦化,尤其重要。 b)从50年代起,人们就在努力向高炉内喷吹相对廉价的煤粉,以部分替代 价格相对昂贵的焦炭。经过半个世纪的努力,在喷煤技术方面取得了巨 大的成功,喷煤技术日趋成熟。但是,成功的喷煤作业绝大部分都是在 大高炉完成的,高炉喷煤技术还有待推广和完善。 二、高炉喷吹煤粉降低焦比的原理 i.焦炭在高炉内主要有三大作用:还原剂和料柱骨架。焦炭生产过程 相对复杂,对于原料有特殊要求,由于资源和设备投资方面的因素, 这些年来焦炭价格不断上涨,成为炼铁成本上升的主要原因。从高 炉风口向高炉的内喷吹煤粉,由于具有和焦炭同样的碳素,可以部 分替代焦炭低廉许多,从而可以在很大程度上降低生铁生产成本。 三、喷吹煤粉的技术效果 i.高炉喷煤后,除了焦比大幅度降低外,还给高炉操作增加了一个调 剂手段,高炉操作人员可以利用控制喷煤量来控制高炉的热状态; 喷煤后,由于煤比焦炭具有更多的挥发分,从而增加了煤气中氢的 含量,煤气还原能力增强,有利于发展间接还原,这实际上也是降 低焦比的原因之一。 四、高炉喷煤的特点

高炉喷煤之后,高炉压差并没有显著增加,也就是说,对于高炉透气性的影响不如大高炉那样明显。高炉由于整体能耗水平较高,喷煤后 效果比较明显,置换比好于大高炉,接近1.0。高炉采用球式热风炉,风 温相对较高,有利于喷煤。此外,小高炉喷煤的实践表明:喷煤后高炉 炉况进一步稳定,炉缸工作状态改善,普遍顺行。 五、重要意义 i.高炉喷煤对现代高炉炼铁技术来说是具有革命性的重大措施。它 是高炉炼铁能否与其他炼铁方法竞争,继续生存和发展的关键技 术,其意义具体表现为: b)以价格低廉的煤粉部分替代价格昂贵而日趋匮乏的冶金焦炭,使高炉 炼铁焦比降低,生铁成本下降; c)喷煤是调剂炉况热制度的有效手段; d)喷煤可改善高炉炉缸工作状态,使高炉稳定顺行; e)喷吹的煤粉在风口前气化燃烧会降低理论燃烧温度,为维持高炉冶炼 所必需的动力,需要补偿,这就为高炉使用高风温和富氧鼓风创造了 条件; f)喷吹煤粉气化过程中放出比焦炭多的氢气,提高了煤气的还原能力和 穿透扩散能力,有利于矿石还原和高炉操作指标的改善; g)喷吹煤粉替代部分冶金焦炭,既缓和了焦煤的需求,也减少了炼焦设 施,可节约基建投资,尤其是部分运转时间已达30年需要大修的焦 炉,由于以煤粉替代焦炭而减少焦炭需求量,需大修的焦炉可停产而 废弃; h)喷煤粉代替焦炭,减少焦炉炉座数和生产的焦炭量,从而可降低炼焦 生产对环境的污染。 六、工艺组成 高炉喷煤工艺系统主要由原煤贮运、煤粉制备、煤粉输送、煤粉喷吹、干燥气体制备和供气动力系统组成。 七、工艺模式 从煤粉制备和喷吹设施的配置上来分,高炉喷煤工艺有两种模式,即间接喷吹模式和直接喷吹模式。制粉系统和喷吹系统结合在一起直接向高炉喷吹的工艺叫直接喷吹工艺;制粉系统和喷吹系统分开,通过罐车或气动输送管道将煤粉从制粉车间送到靠近高炉的喷吹站,再向高炉喷吹煤粉的工艺

高炉喷煤基本知识

高炉喷煤基本知识 一、喷吹煤粉对高炉的影响: 1、炉缸煤气量增加,鼓风动能增加,燃烧带扩大。煤粉含碳氢化合 物高,在风口前气化后产生大量H2,使炉缸煤气量增加,煤气中的H/C比值越高,增加的幅度越大,无疑也将增大燃烧带; H2的粘度和密度均小,穿透能力大于CO,部分煤粉在风管和风口内就开始脱气分解和燃烧,所形成的高温混合气流其流速和动能远大于全焦冶炼时的风速和动能,故喷吹煤粉后,风口面积应适当扩大,以保持适宜的煤气流分布。 2、理论燃烧温度下降,而炉缸中心温度均匀并略有上升。理论燃烧 温度下降的原因:①喷入煤粉量冷态进入燃烧带;②煤粉中碳氢化合物在高温作用下先分解再燃烧,分解反应吸收热量;③燃烧生成的煤气量增加。 炉缸中心温度上升的原因:①煤气及动能增加炉缸径向温度梯度缩小;②上部还原得到改善,热支出减少;③高炉热交换改善。 3、料柱阻损增加,压差升高。①喷吹后煤气量增加流速加快;②料 柱中的矿/焦比值越大。 4、间接还原发展。①煤气中还原成份(CO+H2)浓度增加;②H2 的数量和浓度显著提高,炉内温度场变化。 二、喷吹燃料“热补偿” 喷吹燃料以常温态进入高炉要消耗部分热量需进行热补偿,经验

表明:喷煤量增加,50kg/t ·Fe 需补偿风温均80℃。 三、 热滞后: 煤粉在炉缸分解吸热增加,初期使炉缸温度降低直到新增加喷吹量带来的煤气量和还原气体浓度(尤其是H 2量)的改变而改善了矿石的加热和还原下到炉缸后,开始提高炉缸温度比过程所经历的时间为“热滞后”时间,即炉料从H 2代替C 参加还原的区域(炉身温度1100~1200℃处)下降到炉缸所经过的时间,一般滞后时间在2—4h 。 估算热滞后时间 ·V 13 V 2—每批料的体积m 3 N —下料批数 批/h 四、 煤粉喷入高炉后的去向: 风口前燃烧 煤粉 未燃煤粉 随煤气逸出炉外 五、 置换比煤粉的置换比常为0.7—0.9,一般取0.8。 六、 喷煤高炉操作 1、 应固定风温调剂煤量,用调节喷吹量来保持料速的基本稳定。 2、 喷煤纠正炉温波动的效能,随喷煤量的增加而减弱。

喷煤技术简介

中冶京诚工程技术有限公司 (原北京钢铁设计研究总院)高炉喷煤技术简介 中冶京诚-高炉富氧大喷煤技术开拓者与引领者! 二00四年十二月

一、CERIS喷煤技术开发概况: 我院是国内最早开发研究高炉喷吹煤粉技术的单位。1965年,我院和首钢(原石景山钢铁厂)成功的开发设计我国第一套高炉喷吹煤粉装置,经国家科技委鉴定认为此项技术达到世界先进水平。这套装置从1966年至1978年在首钢高炉上一直连续安全生产,并在全国30多座高炉上推广使用。1978年获北京市表彰奖和全国科学大会奖,1979年获国家发明二等奖,而后我院又对安全喷吹烟煤和计量调节手段进行了攻关和研究,取得很大的成效。从1990年6月开始,我院和有关单位参加了包头特殊矿高炉富氧喷煤技术的试验研究,改进和完善了喷吹系统,提高了喷煤技术和装备水平,开发了高炉富氧喷煤单支管流量测量及控制技术和喷吹罐连续计量的先进技术,实现了低富氧率高煤比的喷吹,使高炉冶炼各项技术指标有了重大突破。这是我国炼铁事业的一项重要技术成果,1993年获冶金部科技进步一等奖,1995年获国家科技进步二等奖。 为彻底改变传统炼铁工艺创造新途径,我院和鞍钢、北京科技大学、鞍山钢铁学院等单位开发设计高炉氧煤强化炼铁新工艺,1992年11月1日至1993年3月31日在鞍钢2号高炉进行了150天试验,首次完成了100%喷吹烟煤,平均喷煤比161kg/tHM,鼓风含氧量24.71%,高炉利用系数为 2.21/m3d,入炉焦比407kg/tHM,煤焦置换比0.88。该试验成果获冶金部科技进步二等奖。在此基础上,从1995年8月21日至11月20日又在鞍钢3号高炉上进行提高喷煤量试验,连续三个月平均喷吹混合煤203kg/tHM,成为当时世界上高喷煤量连续操作时间最长的高炉之一,高炉入炉焦比307kg/tHM,高炉利用系数2.185t/m3.d,富氧只有3.42%。这标志着我国高炉氧煤强化炼铁技术的总体水平己跃居世界前列。1996年获国家“八五”科技攻关重大成果和“国民经济贡献巨大的十大攻关成果”之一。 此外,我院研制的高炉喷煤用的可调煤粉给料器,在济钢、宝钢、天铁、包钢、唐钢、酒钢、攀钢、首钢等厂使用多年,该装置结构新颖,体积小巧、灵活准确、效果很好。1993年获国家发明专利权。该设备与电容流量计配合,能进一步提高喷煤均匀度,改善煤粉燃烧效果,为实现喷煤工艺全自动化奠定了基础。1993年获冶金部科技进步二等奖。 我院的高炉喷煤技术和设计成果不仅已在国内各地开花结果,而且引起国际上的关注,1987年我院高炉喷煤技术转让给印度MECON公司。

喷煤工艺流程图及概述

炼铁一厂喷煤系统工艺流程图及概述 山西中阳钢铁有限公司一体系升级改造项目高炉工程制粉喷吹系统,制粉、收粉系统全部利旧;干燥系统除热风炉废气管道需改造外,其她设施利旧;对喷吹系统进行局部改造。 制粉喷吹系统主要工艺现状:制粉喷吹站厂房为混凝土结构,全封闭。煤粉制备系统采用单系列全负压制粉工艺,喷吹系统采用1个煤粉仓、下部六罐并列(每三罐分别对应405m3高炉)。整个系统即1套干燥气发生炉系统、1套磨煤机制粉系统、1套煤粉收集系统、2套喷吹系统(一个煤粉仓,下部六罐并列)。 新建1780m3高炉投产后,2座405m3高炉拟全部拆除,现有制粉喷吹站只为新1780m3高炉供给煤粉。新建1780m3高炉主管及分配器设置方案为:2根喷吹主管(一个主管对应一个分配器)及2个炉前分配器(1#分配器对应奇数风口,2#分配器对应偶数风口)的直接喷吹工艺。 喷吹系统与原系统的交接界面为:喷吹罐输煤阀后的喷吹主管起点。喷吹煤粉主管及分配器平台为本工程设计范围。 1、工艺条件及要求 1) 原煤条件 单一煤种与混合煤均可喷吹,通常使用三种煤组成混合煤,安全措施上按强爆炸性烟煤设计。原煤的理化指标见表2、10-1。 表1 原煤的理化指标表 2) 煤粉条件

煤粉质量要求见表2、10-2。 表2 煤粉质量要求表 3) 制粉喷吹能力 按高炉正常日产铁水量4005吨,正常喷吹能力为160kg/t铁计,高炉正常喷吹所需煤粉量为26、7t/h;按高炉正常日产铁水量4005吨,喷吹能力为200kg/t铁计,高炉最大喷吹所需煤粉量为33、4t/h。 2、主要工艺参数 制粉喷吹系统主要工艺参数见表2、10-3。 表3 喷吹系统工艺参数

国外钢铁企业的高炉喷煤技术

2 国外钢铁企业的高炉喷煤技术 2.1浦项光阳厂和阿塞勒Gijon厂 近年来,浦项公司和阿塞勒公司的高炉生产者一直计划改进现有的喷煤装置,并对其静力分配器系统提出两种改进方案。改进现有喷煤装置的主要原因如下:1)焦炭的价格提高,质量较差,改进喷煤系统后,可以减少焦炭的使用量;2)寻求一种更经济、更稳定的高炉操作方式;3)高炉中修后,铁水生产能力提高;4)多年来的喷煤实践证明,喷吹煤粉可以实现高炉工艺最佳化,高煤比操作是可行的;5)原有喷煤装置的计量精度无法满足更高煤比的要求,即高煤比时不能保证稳定喷吹。 要想对原有的喷煤装置进行改进,有两个问题必须解决:首先,提高喷煤装置喷吹能力,应额外增加1台喷吹罐或优化喷吹罐的倒罐循环次序;其次,须检测煤粉总流量和流量精度。 对于单管流量控制系统或采用分配器的喷吹系统以及流量均衡喷嘴的系统,在安装测量和控制设备后,一般能够达到所要求精度,为了达到今后所必需的高精度,须改进喷煤装置。 2.1.1 单管流量控制 计划用一台喷吹罐取代静力分配器。喷吹罐后序的喷吹管线将安装煤粉流量的测量装置和煤粉流量控制阀,以对高炉各个风口煤粉喷吹过程实现闭环控制。喷吹罐前序的输送罐将用于向喷吹罐送煤。输送煤的载气一部分用于维持喷吹罐内的压力,另一部分通过布袋收粉器释放掉。布袋收粉器出口处的压力控制阀用于控制喷吹罐内的压力。这套方案具有单管流量控制装置的所有优点,如在喷吹管路中,煤粉流量精度的偏差小于1%、总流量控制偏差小于0.5%以及带入高炉的氮气量少等。实际上,由于喷吹罐的位置靠近高炉,因此喷吹罐内的喷吹压力较低,可实现高浓相输送。 此外,由于输送系统(输送罐到喷吹罐)与喷吹系统是分开的,所以总流量的波动不会影响喷吹流量。对简单分配器进行的第一套改进方案已在韩国浦项公司光阳厂的1号高炉成功实施,其原理见图1-1所示。

我国高炉喷煤技术的现状及发展趋势

邯钢1000m3高炉提高喷煤比的探索 刘伟,樊泽安,王飞,徐俊杰 (河北钢铁集团邯郸钢铁公司炼铁部,河北邯郸056015) 摘要:邯钢4#高炉(有效容积1000m3)经过不断探索,加强原燃料管理、高炉的操作和维护,使喷煤比逐月提高、焦比和综合焦比不断下降。喷煤比由2008年的130.6 kg/t提高到2009年6月的163.1 kg/t,焦比由361kg/t下降到了305kg/t,综合焦比由524kg/t下降到了500kg/t,取得了良好的经济效益。 关键词:高炉;喷煤比;探索 引言 邯钢4#高炉有效容积917m3,2007年、2008年虽然炉况长期稳定顺行,但由于燃料变化比较大,有时甚至一天就变换数次焦炭,各项指标未达到最好水平,平均日产2600t上下,一级品率70%,焦比361kg/t,煤比130kg/t,焦丁比16kg/t风温1100℃,平均[Si]0.61%。进入2009年以来,4#高炉以“低耗高产”举措应对当前市场挑战,进一步探索好的经济技术指标成效显著,通过监督改善原燃料质量、适时调整煤气流分布、降低入炉焦比、提高富氧、增加喷煤、高风温协调互补、适当提高炉渣碱度等措施,基本实现了全捣固焦冶炼的长期稳定顺行,并实施了低硅冶炼,取得了很好的经济技术指标。2009年4月以来,平均日产达到2700t以上,利用系数达到3.0,一级品率93.45%,焦比降到305kg/t,煤(全无烟煤)比达到160kg/t以上,中焦比达到18kg/t,焦丁比达到16kg/t,风温达到1135℃,平均[Si]达到0.43%以下。通过优化高炉操作技术经过不断实践和探索,在喷吹全无烟煤的情况下煤比达到160kg/t以上实属难得(见表1)。 表1 4高炉生产指标 利用系/t. (m-2. d-1) 煤 比 /kg.t-1 入 炉焦比 /kg.d-1 焦 丁比 /kg.d-1 中 焦比 /kg.d-1 风 温/℃ R 2 [ Si]/% 20 08 2.88 6 1 30.6 361 14 20 1 107 1 .15 .61 20 09.4 3.0 1 51.7 327 16 18 1 132 1 .13 .44 20 3.001308 17 18 110

高炉喷煤制粉控制方案(王宏伟)

高炉喷煤控制系统 技术方案 辽宁中新自动控制有限公司 2003-2-17

目录 一、概述 二、高炉喷煤工艺流程及主要部分自动化控制说明 三、自动化系统硬件组成 四、控制策略 五、控制系统的监控与操作

一、概述 近年来,我国的高炉喷煤取得了巨大的成绩,已经形成了具有特色的、成熟配套的喷煤技术和工艺流程。在高炉炼铁过程中采用富氧大喷煤可以节省大量焦炭,能够较大幅度地降低炼铁成本。例如采用先进的配煤技术,能够把不同性能的煤种进行混合,以提高其燃烧率;采用中速磨进行煤粉制备,大幅度降低电耗和噪音污染;采用热风炉烟气做载气和干燥气,既节约了能耗又起到了防爆作用;采用布袋一次收粉,取消了一级、二级旋风收粉装置;采用一级风机,实现全负压操作;采用直接喷吹工艺,喷吹系统和制粉系统设在同一厂房内;喷吹罐可采用串联或并联方式,采用流化罐上出料及浓相输送技术,可以使出煤均匀,防止脉动和减少对输煤管道的磨损;采用总管加分配器工艺将煤粉送至高炉的各个风口;采用电容流量计进行总管及支管煤粉计量,配合其它设备可以形成闭环煤量自动控制;采用氧煤枪进行局部富氧以提高煤粉燃烧率;采用供氧及安全控制系统以防止氧气泄露。因此,如何在保证控制安全可靠的前提下,实现低成本自动化,是喷煤自动控制设计者主要考虑的问题。 二、高炉喷煤工艺流程及主要部分自动化控制说明 从工艺角度来讲,整个系统可分为制粉和喷吹两个子系统,制粉工艺系统又分为原料控制系统、干燥系统、磨煤系统,喷吹工艺系统又分为布袋除尘、喷吹系统、动力系统。如下面高炉喷煤主工艺图。其工艺流程见图

高炉喷煤工艺主流程图 1:排烟风机入口调节阀,2:布袋除尘事故充氮阀,3:布袋反吹阀,4:中速磨事故充氮阀,5:煤粉仓事故充氮阀,6:均压阀,7:煤粉仓流化阀,8、9:喷吹罐放散阀,10、11:蝶阀,12、13:球阀,14、15:充压阀,16、25:补压阀,17、18:喷吹罐流化阀,19、22:补气调节阀,20、23:出煤阀,24、快切阀,26:氮气空气切换阀,27:安全用氮减压阀,28:氮气总管调节阀电气控制主要设备: a、制粉系统: 圆盘给料机、胶带机、检铁器、犁式卸料器、定量给料机、热风炉废气引风机,助燃风机,中速磨(密封电机、液压电机、慢传电机、加热器、润滑泵)、排煤风机。 各种阀:热风炉废气放散阀,冷风阀、干燥剂放散阀,中速磨事故充氮阀,快切阀,输煤阀等。 b、喷吹系统: 主排烟风机、布袋叶轮给煤机 各种阀:排烟风机入口调节阀,布袋除尘事故充氮阀,布袋反吹阀,煤粉仓脉冲阀、停风阀、煤粉仓事故充氮阀,煤粉仓流化阀,均压阀,喷吹罐放散阀,蝶阀,球阀,充压阀,补压阀,喷吹罐流化阀,补气调节阀,出煤阀,快切阀,氮气空气切换阀,安全用氮减压阀,

浅谈高炉经济喷煤比

浅谈高炉经济喷煤比 王立杰尹焕岭赵杨 (唐钢不锈钢) 摘要:高炉喷煤是降低铁水成本,增加利润的重要手段;同时,直接喷吹煤粉,不经过焦化工艺,减少了环境污染。提高喷煤比应具备的条件是:稳定的原燃料质量、合适的理论燃烧温度、精细的操作和合理煤气分布。高炉提高喷煤比是冶炼技术发展的必然趋势,然而各单位能满足的条件不同,因此各单位的经济煤比也应根据自身条件确定。 关键词:高炉经济喷煤比理论燃烧温度未燃煤粉置换比 0 前言 高炉喷吹煤粉则是部分替代焦炭的“提供热量”及“还原剂和渗碳剂”,即以价格低廉的煤粉部分替代价格日趋昂贵的冶金焦炭,以缓解因炼焦用主焦煤匮乏所造成的冶金焦炭产量渐显不足的矛盾,最终降低高炉炼铁焦比和生铁成本。当前高炉生产的一些习惯性认识和操作,直接影响到高炉喷煤的科学性,且给高炉喷煤效益乃至生铁成本带来不良影响,因此选择合理的喷煤比就是实现企业效益最大化的重要一项。 1 经济喷煤比的概念 所谓经济喷煤比,是在一定的生产条件下(产量、原燃料质量、炉料结构、煤和焦炭的市场价格等),喷煤比最高且稳定、焦比和燃料比最低的操作煤比。可见,经济喷煤比的大小取决于喷煤量水平、煤交置换比和能量消耗利用程度,最终有总燃料消耗、工序成本来确定。喷煤对高炉工序降低值的影响可按下式计算:△J=PCR(P k×R—P m)/1000(1) 式中△J——高炉工序成本降低值,元/t; PCR——喷煤比,kg/t; R——未校正煤焦置换比; P k——焦炭价格,元/t; P m——煤粉工序成本,元/t。 从图1曲线可见,喷煤生产操作中存在经济喷煤比。由于原燃料质量、炉况参数在一定范围内波动,因此经济喷煤比是一个操作范围。 2 提高喷煤比的关键技术 2.1稳定原燃料条件 2.1.1提高焦炭质量,特别是焦炭的热性能,保证高炉必要炉料柱透气性。

高炉喷煤技术方案 2

1 概述 上世纪60年代初,我国高炉喷煤试验获得成功后,高炉喷煤技术在我国逐渐推广应用。进入90年代,特别是经过“八五”“氧煤强化炼铁”项目攻关后,我国高炉喷煤技术发展跃上了一个新的台阶,已经赶上了世界先进水平,吨铁喷煤量和覆盖率大幅度增加。2002年全国54家重点(原重点和地方骨干)联合钢铁企业吨铁喷煤量已达到125kg/t,企业喷煤覆盖率达到85%以上。高炉喷吹煤粉及提高喷煤量已经成为现代高炉炼铁技术的发展方向,同时也是降低生产成本最直接和最有效的手段之一。当前我国炼铁生产规模正在迅速扩大,生产效率也在不断提高,对焦炭的需求量日益增加,导致冶金焦价格高,资源紧缺,高炉大量喷煤是解决这一矛盾的最佳措施。 贵公司现有两座高炉450立方米的高炉。年产生铁约126万吨。如两座高炉采用全焦冶炼,每年需要焦炭约70万吨。高炉生产成本较高,采用高炉喷煤技术,不但在很大程度上可以缓解焦炭的供需矛盾,减轻焦炭质量波动对高炉操作的影响,而且也会进一步降低炼铁生产成本,同时也为高炉操作增加了下部调节手段,有利于改善高炉生产的技术经济指标。 鉴于上述情况,以及着眼于贵公司长期的发展战略目标,拟建设高炉喷煤工程,工程建设指标为喷煤工艺及设备能力正常XX kg/t,最大达到XXX kg/t喷煤比能力,喷吹煤种为无烟煤浓相输送设计。置换比按X计算,可以代替约X万吨焦炭。

2.喷煤设计工艺要求 2.1 喷煤量 根据贵公司对喷煤工程的要求,和参照国内外喷煤技术的发展…。 2.2 设计条件 喷吹用煤…。 2.3工艺流程 设计采用…方案,以节省投资和占地面积。…本喷煤工程包括…高炉。目前高炉喷煤系统有关的工艺参数如表1所示。 表1 喷吹系统有关的基本参数 2.4 喷吹站 喷吹站采用并罐浓相喷吹工艺。 喷吹站的操作全部自动联锁,整个系统各设备既可自动也可手动。 2.5 原煤理化指标

浅谈“经济富氧”

浅谈“经济富氧” 臧向阳黄后芳 摘要:富氧喷煤是高炉强化冶炼的重要手段,选择适宜的富氧率、喷吹比,实现高炉经济炼铁。本文结合实际生产中提高富氧量,提高煤比,取得较好效益的情况,建立经济富氧量的简单数学模型。 关键词:经济富氧 1 引言 高炉富氧鼓风的历史发展 早在1876年贝塞麦就提出采用富氧鼓风来强化高炉冶炼,1913年比利时乌格尔厂第一次进行了高炉富氧鼓风试验,鼓风含氧增加到23%,产量提高12%,焦比降低2.5%~3.o%。以后德国、前苏联也相继进行了试验。但是富氧鼓风作为一项实际应用技术,是从50年代开始的,1951年美国国家钢铁公司威尔顿厂建立一台氧气纯度达95%的制氧机用于高炉富氧,鼓风含氧量达到22.5%~25.O%,并取得富氧1%增产4%~5%的效果。进入60年代由于大功率低能耗高炉专用制氧机的诞生和高炉喷吹燃料技术的开发和广泛应用,高炉富氧鼓风在欧、美、日本及前苏联等国得到迅速推广。1976~1981年苏联新利比茨克2000m3高炉,先后进行富氧35%和40%的试验,创造高炉富氧最高水平,喷吹天然气156m3/t,高炉增产9.4%,利用系数达到2.5t/(m3?d),焦比398kg /t,获得了较好的经济效益。 60年代以来,随着高炉喷吹燃料技术的发展,首钢、鞍山钢铁公司(鞍钢)、马鞍山钢铁公司、上海钢铁一厂等先后在高炉上采用富氧鼓风。1966年首钢1号高炉鼓风富氧量达24%~25%,喷吹煤粉量最多达到270kg/t,效果是鼓风增氧1%即增产4%~5%。1986~1987年鞍钢2号高炉进行高富氧大喷吹工业试验,鼓风含氧达到28.59%,喷煤量170.02kg/t,效果十分明显,鼓风增氧1%增产2.5%~3%,同时可增加喷煤12~13kg/t。1985年宝钢1号高炉4063m3大型高炉上采用鼓风机前富氧,最大富氧率4%。高炉喷煤的历史发展 高炉喷吹煤粉始于1840年班克(S.Banks)喷吹焦炭和无烟煤的设想,在1881年获得专利。1961年,在北美汉纳公司的2号高炉完成第一次大规模的工业高炉喷煤试验,1972年阿姆科钢铁公司的阿曼达高炉成为第一座完全将喷吹煤粉应用于工业规模的高炉。 日本于1981年开始采用高炉喷煤技术,法国于1982年首次采用高炉喷煤技术,英国于1983年首次采用高炉喷煤技术,德国于1985年首次采用高炉喷煤技术。1988年克利夫兰炼铁厂进行了富氧喷煤试验。

高炉富氧喷煤

高炉富氧喷煤 摘要:提高煤比是今后我国炼铁的重要任务。富氧对提高煤比的作用在理论和实践中都得到证实。3%一5%的富氧是实现200kg/t以上煤比的必要条件。当今的价格体系使富氧在经济上已可行,变压吸附制氧为高炉用氧提供了新的选择。必须建立完善的高富氧大喷煤技术保障措施,尤其重视风口监测、鼓风湿分的监控以及喷煤系统的完善。 关键词:高炉富氧鼓风喷煤 Blast furnace oxygen-enriched coal spray Abstract :High coal ratio is a target of ironmaking in future and the role of oxygen enrichment in high coal ratio has been proved in theory and practice.3%~5%oxygen enrichment is essential for realizing the coal ratio higher than 200 kg/t.The current price system makes the oxygen enrichment feasible economically and oxygen generation by absorption at variable pressure provides new routine of oxygen supply for blast furnace.It is very important to set up a complete technical system of pulverized coal injection with high oxygen enrichment,monitoring of tuyere status and water content in blasting air. Key words: blast furnace air blasting with oxygen enrichment pulverized coal injection 1.概述 高炉是生产率和热效率都很高的炼铁设备,其主要目的是用燃料和铁矿石及溶剂,经济而高效率地得到温度和成分合乎要求的液态生铁。目前,炼铁系统正受到投资、资源、成本、能源、环境和运输等方面金融风暴的巨大影响,面临着严重的挑战。而利用技术进步减轻这些压力是高炉炼铁系统继续生存和发展的关键。高炉富氧喷煤技术可以使高炉大幅度降低焦碳消耗,缓解各方面的压力,提高高炉的竞争力。高炉富氧喷煤技术是炼铁系统结构优化的中心环节。 2 高炉富氧鼓风 2.1何谓高炉富氧鼓风 富氧鼓风是指往高炉鼓风加入工业氧(一般含氧99.5%),使鼓风含氧超过大气含氧量,其目的是提高冶炼强度以增加高炉产量和强化喷吹燃料在风口前燃烧。 2.2富氧鼓风的方法 富氧鼓风的方法主要有两种:一种是从鼓风机吸入口加入低压氧气,其优点是氧气不用专门氧压机加压,可节约投资与电耗,高炉操作方便;其缺点是需设高炉专用制氧机,氧漏损较多,该方法在前苏联普遍采用;另一种是采用高压供氧即工业氧通过加压后直接加入高炉管道内,其优点是可与炼钢用氧联网,保持制氧机全负荷运行,比较经济,但需增设氧压机加压,投资多,电耗高。最近一些国家正在研究发展高炉氧煤燃烧器,即将工业氧通过氧煤燃烧器送入,与喷吹煤粉有效混合,实现充分燃烧和大量喷吹煤粉。 2.3 高炉富氧鼓风对冶炼的影响 (1)提高冶炼强度: (2)提高理论燃烧温度;

高炉喷煤量精确控制

高炉喷煤量精确控制 1、前言 随着钢铁工业的发展,焦炭需求量也随之增加。我国煤炭资源虽然丰富,但炼焦煤资源有限,仅占煤炭资源的27%左右;而其中强粘结性焦煤仅占炼焦煤的19%,粘结性肥煤仅占13%左右,而且炼焦煤资源分布也极不均匀,因此,高炉炼铁节焦和喷煤就是钢铁工业持续发展的重要课题之一。 高煤比冶炼技术既是世界性的热点技术同时也是高难度的系列集成技术。尽管世界上部分高炉的喷煤比曾经达到过200Kg/吨铁以上,但是,由于高炉原燃料条件的不一、风温、富氧等条件等的差异、资源条件的不同,以及许多技术壁垒,致使高炉喷煤仍然没有达到理想水平。 2.问题的提出 提高煤比是降低焦比、降低炼铁生产成本的重要措施,而实现喷煤量的精确控制、减少煤粉脉动瞬时波动,是影响高炉提高喷煤比的重要因素。 济钢1#1750m3高炉于2003年9月份投产,投产后,喷煤量一直不高,前期主要受设备故障多,加上炉况不正常影响,充分暴露出喷煤量控制及喷吹系统设计上没有考虑喷吹量自动精确控制的问题,主要表现在:(1)计量误差大(500Kg左右),计量信号因为罐压波动造成失真。 (2)高炉操作室内不能显示喷煤量瞬时值,操作工只能依据罐压靠人工计算求出瞬时煤量,再通过手动调节,如此落后的调节,非常不利于喷煤量的提高以及高喷煤量下炉况的稳定。 (3)由于影响煤量的参数较多,诸如罐压、阀门开度、补气量大小,冲压及卸压过程的波动等等,实际生产中这些参数并非不变的,单靠人工调节,往往顾此失彼,很难及时到位。 为保证高炉的高效、顺行,喷煤系统需要提供精确、均匀的喷煤量,而喷煤量受氮气压力、补气流量、煤粉质量等诸多因素的影响而变化,为了保证喷煤量精确均匀,操作工需不断调节罐内压和补气流量阀,这有一定的操作难度和工作强度,而且也无法保证长期性、连续性。 3、研究的思路及技术开发主要内容 喷煤控制系统的软件平台采用施耐德的MP7工控软件,MP7具有开放性好,但复杂的特点,以MP7软件为平台,把研究总结出的数学模型输入其中,既达到精确控制目的,而又不影响其原有的控制软件的使用及性能。 3.1 将模糊数学、神经自适应有效结合 模糊逻辑是一种处理不确定性、非线性问题的有力工具。它比较适合于表达那些模糊或定性的知识,其推理方式比较类似于人的思维方式,这都是模糊逻辑的优点。但它缺乏有效的自学习和自适应能力。 神经网络具有并行计算、分布式信息存储、容错能力强以及具备自适应学习能力等一系列优点。但一般来说,神经网络不适于表达基于规则的知

高炉制粉喷煤技术的研究与应用

高炉制粉喷煤技术的研究与应用 作者:王维乔 1. 技术研发历程 高炉喷吹煤粉可以降低焦炭消耗,减少炼焦污染,调节炉况,促进高炉稳定顺行,强化高炉冶炼。首钢作为我国高炉喷煤技术的开创者和先行者,早在196 3年,就进行了系统的研究与试验,并于1964年在国内率先将其在高炉上进行工业化试验。1966年,首钢在全公司的高炉上进行推广应用,当时的年平均喷煤量达159kg/tHM,最高月平均喷煤量达到279kg/tHM,创造了当时的世界纪录。 1994年,在首钢1726-2536m3四座高炉上应用,采用集中制粉,间接喷吹,串联罐多管路喷煤。2000年,首钢进行重大技术改进,采用中速磨煤机制粉,布袋一级收粉,双系列串联罐直接喷吹,在首钢两座(1780m3、2536m3)高炉上应用,达到国际先进水平。 2004年,首钢国际工程公司设计的湘钢1800m3高炉,采用中速磨制粉,并列罐间接喷吹。2007年,首钢国际工程公司设计的迁钢2号2650m3高炉,采用并列罐直接喷吹,并实现全自动喷煤操作。2009年,首钢国际工程公司设计的京唐1号5500m3高炉,采用并列罐直接喷吹,全自动喷煤操作,并实现浓相输送。2010年,首钢国际工程公司设计的迁钢3号4000m3高炉,采用并列罐直接喷吹,全自动喷煤。2010年,首钢国际工程公司设计的京唐2号5500m3高炉,采用并列罐直接喷吹,浓相输送,全自动喷煤。 经过几十年的发展,首钢国际工程公司不断完善和优化设计,掌握了从原煤料场到煤粉制备和喷吹的全套高炉喷煤工艺设计。近年来,首钢国际工程公司还参与编制了国家标准GB 50607-2010《高炉喷吹煤粉工程设计规范》。 2. 高炉喷吹煤粉技术的主要技术特点 2.1 长距离直接喷吹,紧凑型布局 由首钢国际工程公司设计的首钢2号、3号高炉喷煤工程,完全采用国产化技术和设备,采用紧凑型短流程工艺,实现了煤粉长距离直接喷吹。2号高炉喷煤总管长度达到452m,已被列入第九批《中国企业新记录》。该项工程经有关专家鉴定,达到国际先进水平。 2.2 浓相输送 煤粉喷吹一般按输送浓度可分为稀相输送和浓相输送。稀相输送工艺相对简单,运行比较稳定;而随着煤粉输送浓度的提高,虽然增加了运行不稳定的可能性,但其可以节约大量输送气体的消耗,并且减少了管道磨损,因此其降低了维

高炉喷煤自动控制系统

高炉喷煤自动控制系统 姚瑞英 喷煤控制系统由烟气炉、原煤储运、制粉、喷吹四部分组成,主要实现了生产工艺设备的自动/手动控制及保护、工艺数据的自动采集和处理、PID回路的自动调节、工艺画面动态显示、历史和实时趋势显示纪录、紧急停喷报警等功能。 系统介绍 1 硬件配置 系统采用Modicon TSX Quantum系列可编程控制器,烟气炉有一套单独的PLC系统,原煤储运、制粉、喷吹公用一套PLC系统,并采用远程I/O网络结构,原煤储运为主站,通过同轴电缆连接制粉、喷吹两个远程站。两套PLC均通过以太网进行通讯。 2 软件配置 运用Concept2.5软件对PLC系统组态编程,画面监控软件选用IFIX软件。 3 网络结构 喷煤PLC系统包括烟气炉PLC系统和高炉喷煤PLC系统,如图1所示。每个控制系统通过以太网进行数据传输和现场设备的控制。共设两个控制室,5台上位机,其中烟气炉、制粉、喷吹以及主引风机高压变频监控站在一个控制室,原煤储运单独在一个控制室,各上位机之间通过交换机互联,其中由于原煤储运控制室距另外的控制室较远,为确保数据传输的准确性,两台交换机通过光纤介质互联,其他上位机及PLC之间通过双绞线互联。高压变频监控站通过MB+网控制变频器的频率。

图1 喷煤系统网络拓扑该网络结构有两种方式可以为将来与高炉联网做准备,一是交换机预留光纤口,通过光纤与高炉进行数据通讯;二是通过CPU的MB+口进行数据通讯,实现数据的透明化。 工艺控制 1 原煤储运系统 该系统包括8条皮带机、1#~4#圆盘给料机,1#、2#电磁分离器、犁式卸料器,主要负责向1#、2#原煤仓上煤。根据现场设备情况,可以选择4个圆盘给料机中任何一个或两个圆盘给料机同时给1#或2#煤仓供料,这样共有12个料流可以选择,被选中的皮带则根据料流的方向逆启顺停。 操作人员根据原煤仓需煤量的大小选择相应的料流。当某一料流运转时,从画面将程序打在“联动”位,若该料流的任一设备出现故障,则系统联停,设备停止顺序与启动顺序相反。 2 烟气炉系统 该系统为制粉系统提供干燥原煤和输送煤粉的干燥气。干燥气是热风炉废气与烟气炉烟气的混合气体,主要采用热风炉废气,不足热量由烟气炉烟气补充。为了保证磨煤系统所需的一定温度及流量的一次混合干燥气,必须实现干燥气流量和温度的动态调节,使出口温度处于规定值内,并通过磨煤机出口温度变化情况进一步控制和调节磨煤机入口的热风炉废气调节阀的开度。当高炉煤气压力高于高定值或低于低定值时,系统自动关闭高炉煤气切断阀。冷空气调节系统由操作人员根据中速磨所需热风的温度的高低,通过计算机手动调节阀门开度来混兑冷空气。 3 制粉系统 制粉系统主要包括给煤机、磨煤机、稀油站、布袋收尘器、主引风机和螺旋输送机等。其中给煤机可以从上位机控制,也可由设备带来的PC控制。 (1)入磨一次风量调节:可分为自动/手动两种方式,自动方式时,预先设定原煤水分、入口干燥气温度、给煤机给煤量等可变量的值,计算机进行计算后得出循环废气和烟气需要量,并调节废气和烟气调节阀开度,达到调节入磨风量的目的。手动方式时,由操作人员根据实际观察的结果,手动调节相应阀的开度。 (2)开车顺序:开主引风机→开布袋收尘器→开密封风机→开磨煤机(操作回路动作)→开给煤机。停车顺序与开车顺序相反。

高炉喷煤方案及概算

1、概述 1.1现状 高炉喷煤是冶金企业节焦降耗行之有效的重要途径。我厂目前有750m3高炉两座,120m3高炉四座,均已有喷煤设施。750m3高炉目前平均喷煤量160㎏/t铁,120m3高炉平均喷煤量70㎏/t铁。喷煤车间现有ZGM95型中速磨煤机一台,制粉铭牌出力为36t/h,刚好满足上述高炉喷煤。 2#750m3高炉易地大修投产后,一台ZGM95型中速磨煤机的生产能力已不能满足所有高炉的喷煤要求,须新上制粉设备。喷吹系统也不能满足新高炉的喷煤需要。同时,煤场实际贮煤量只有3640t,当喷吹量都为最大时,煤场贮煤量只能满足2.8 d生产,若都按目前正常喷吹量,则煤场贮煤量能满足3.5 d生产。显然煤场太小,需要扩建。烟气炉的能力也需进一步加大。 1.2设计依据 莱芜钢铁股份有限公司规划部[2001]96号文《关于下达2#750m3高炉大修设计任务计划的通知》。 1.3设计原则 (1)优化设计,做到先进、适用、经济、顺行、高效。 (2)设计中做到总体考虑,合理布局,兼顾将来的进一步发展;尽量不影响现有设施的生产;尽量减少占地、拆迁和工程量。 (3)按照喷吹烟煤设计,制粉系统设气氛保护。 (4)制粉系统采用短流程,用高浓度布袋收粉器作为一级收粉设备,不设旋风收粉器。为减少危险点,布袋与煤粉仓之间不设螺旋输 送机。 (5)喷吹采用浓相输送技术。 (6)考虑检修、备品备件方便,制粉采用ZGM95型中速磨煤机。

(6)严格执行国家有关环保、安全、工业卫生和消防等规定。 1.4设计范围 本工程设计范围包括:原煤场扩建及贮运,烟气系统,制粉系统,喷吹系统。 1.5主要经济技术指标 1.6设计特点及采用的新技术 ⑴按照喷吹烟煤设计,系统设惰性气体保护措施。 ⑵制粉采用以中速磨煤机为核心的短流程工艺,用一级高浓度袋式煤粉收集器收粉。 ⑶节能,每吨煤粉耗电28度。 ⑷煤场的煤仓及圆盘给料机可以适应喷吹烟煤、无烟煤、混合煤各煤种的

《当前国家重点鼓励发展的产业、产品和技术目录》

《当前国家重点鼓励发展的产业、产品和技术目 录》 《当前国家重点鼓励发展的产业、产品和技术目录(2000年修订)》已于2000年7月27日经国务院批准,现予以发布,并自2000年9月1日起执行,原《当前国家重点鼓励发展的产业、产品和技术目录(试行)》同时废止。2000年8月31日国家计委、国家经贸委联合发布《当前国家重点鼓励发展的产业、产品和技术目录》(2000年修订)为推进经济结构的战略性调整,促进产业升级,提高竞争力,特颁布《当前国家重点鼓励发展的产业、产品和技术目录(2000年修订)》。确定当前国家重点鼓励发展的产业、产品和技术的原则是:①当前和今后一个时期有较大的市场需求,发展前景广阔,有利于开拓国内市场;②有较高的技术含量,有利于促进企业设备更新和产业技术进步,提高竞争力;③国内存在从研究开发到实现产业化的技术基础,有利于技术创新,形成新的经济增长点;④符合可持续发展战略,有利于节约资源和改善生态环境; ⑤供给能力相对滞后,提高其供给能力,有利于促进经济结构的合理化,保持国民经济持续快速健康发展。本着上述原则,当前国家重点鼓励28个领域,共526种产品、技术及部分基础设施和服务的发展。 本目录是国家引导经济结构战略性调整,改善投资结构以及审批投资项目的主要依据之一。有关经济管理门,要依据本目录,采取相应的措施,保证经济结构战略调整的顺利进行。对符合本目录的国内投资项目,在投资总额内进口自用设备,除《国内投资项目不予免税的进口商品目(2000年修订)》所列商品外,免征关税和进口环节增值税。各地区要根据本地区的实际情况,认真分析国内外场需求和供给条件的变化,从实际出发,量力而行,选择录内有可能形成本地比较优势的领域发展,避免盲目重复建设。 一、农业 1.动植物优良品种繁育 2.重大病虫害防治 3.农作物、家畜遗传基因工程及基因库建设 4.种(苗)脱毒技术开发 5.蔬菜、花卉无土栽培 6.果、茶、桑等多年生经济作物良种繁育及优质产品开发 7.农作物种子(种苗)繁育、储藏、加工、检验 8.优质、高产、高效模式化栽培及养殖 9.先进农业技术开发及推广

高炉喷煤喷吹自动化控制系统毕业设计说明书

摘要 本次毕业设计主要阐述了高炉喷煤喷吹自动化控制系统,不包括制粉过程的控制,控制范围是从煤粉仓、中间罐、喷吹罐、喷吹总管、由炉前煤粉分配器到喷吹支管的自动控制过程。本次毕业设计只考虑了一个喷煤喷吹序列作为控制对象。 本次设计包含:课题本身的背景、由来、意义、主要工艺类型、国内外高炉喷煤喷吹技术的发展现状以及对未来发展的展望;阐述了所需传感器、阀、开关等硬件设备,主要进行了煤粉从煤粉仓到中间罐倒罐控制,煤粉从中间罐到喷吹罐倒罐控制,煤粉从喷吹罐喷到高炉风口中的控制,停喷控制,中间罐和喷吹罐的压力控制,煤粉仓、中间罐及喷吹罐温度、压力的安全连锁控制,喷吹风压力的自动测量等控制项目;本设计主要选用的PLC控制系统的选型、硬件配置选择、I/O表编写、硬件接线图的绘制的工作。 关键词:PLC;高炉喷煤;传感器

Abstract The graduation project focused on the automatic control of blast furnace coal injection system, does not include coal grinding process control. Cntrol the process of automation and control, includingo coal powder storage warehouse, the middle tank,the injection tank, injection Explorer,front-end from the blast furnace coal injection powder distribution device to the branch pipe. The graduation project, a PCI only consider as a controlled injection sequence. The design includes: That the issue of background, origin, meaning, the main type of technology, at home and abroad PCI jet technology development prospects and the future development of.On the need for the sensors, valves, switches and other hardware equipment.Mainly carried out coal powder from the coal powder position to control the middle of the tank,pulverized coal injection in the middle tank to tank can back control from the pulverized coal injection into blast furnace tuyere spray cans of control, stop the injection control, the middle tank and the injection pressure control tank, coal stores, intermediate and spray cans blow tank temperature and pressure control of the security chain, hair spray, such as automatic measurement of the pressure control projects; the design of the main selection of the PLC control system selection, hardware configuration options, I / O table prepared mapping hardware wiring work. KeyWords:PLC; blast furnace pulverized coal injection; sensor

相关文档
最新文档