抽象函数的解析式例题讲解

抽象函数的解析式例题讲解
抽象函数的解析式例题讲解

已知f(x)对任意实数x,y都有f(x+y)=f(x)+2y(x+y)且f(1)=1求f(x)的解

解法一:

令x=1,y=-1,代入:

f(0)=f(1)=1;

令y=1,代入原式:

f(x+1)=f(x)+2(x+1)(需要注意的是x=0时,这个式子不成立)

移项后:

f(x+1)-f(x)=2x+2

这个显然是个递推式,下面用n代替x进行演绎:

显然

f(2)-f(1)=2*1+2

f(3)-f(2)=2*2+2

…………………

f(n)-f(n-1)=2*(n-1)+2

以上等式分别相加起来

f(n)-f(1)=2*[(n-1)+(n-2)+……+1]+2*(n-1)

将f(1)=1代入,得:

f(n)=n^2+n-1

将n换成x,则得到分段函数:

f(x)=x^2+x-1(x>0)

f(0)=1(x=0)

解法二:

令x=1,

f(y+1)=f(1)+2y(y+1)=2y^2+2y+1

令x=y+1,y=x-1

f(x)=2(x-1)^2+2(x-1)+1

即f(x)=2x^2-2x+1

2009届高考数学快速提升成绩题型训练——抽象函数

2009届高考数学快速提升成绩题型训练——抽象函数 D

7. 已知定义在R 上的偶函数y=f(x)的一个递增区间为(2,6),试判断(4,8)是y=f(2-x)的递增区间还是递减区间? 8. 设f (x )是定义在R 上的奇函数,且对任意a ,b ,当a+b ≠0,都有b a b f a f ++)()(>0 (1).若a >b ,试比较f (a )与f (b )的大小; (2).若f (k )293()3--+?x x x f <0对x ∈[-1,1]恒成立,求实数k 的取值范围。 9.已知函数()f x 是定义在(-∞,3]上的减函数,已知 22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。 10.已知函数(),f x 当,x y R ∈时,恒有()()()f x y f x f y +=+. (1)求证: ()f x 是奇函数; (2)若(3),(24)f a a f -=试用表示. 11.已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:

()()()f a b af b bf a ?=+. (1)求(0),(1)f f 的值; (2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2) ()n n f u n N n -=∈,求数列{n u }的前n 项和n s . 12.已知定义域为R 的函数()f x 满足22(()))()f f x x x f x x x -+=-+. (1)若(2)3,(1);(0),();f f f a f a ==求又求 (2)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式. 13.已知函数()f x 的定义域为R,对任意实数,m n 都有1 ()()()2 f m n f m f n +=++, 且1()02f =,当1 2 x >时, ()f x >0. (1)求(1)f ; (2)求和(1)(2)(3)...()f f f f n ++++*()n N ∈; (3)判断函数()f x 的单调性,并证明. 14.函数()f x 的定义域为R,并满足以下条件:①对任意x R ∈,有()f x >0;②对任

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 整理:河南省郸厂城县才源高中 王保社 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

抽象函数习题精选精讲1

含有函数记号“ ()f x ”有关问题解法 由于函数概念比较抽象,学生对解有关函数记号 ()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地 掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出 ()f x ,这也是证某些公式或等式常用的方法,此法解培养学生 的灵活性及变形能力。 例1:已知 ( )211x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴ 2()1x f x x -= - 2.凑合法:在已知 (())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁, 还能进一步复习代换法。 例2:已知 33 11()f x x x x +=+,求 ()f x 解:∵ 22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11 ||||1|| x x x x +=+≥ ∴ 23()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设 ()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22 222()24ax bx a c x x +++=++比较系数得2()4 1321 ,1,2222 a c a a b c b +=??=?===??=? ∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵ ()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-, ∵ ()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴ lg(1),0 ()lg(1),0x x f x x x +≥?=? --

2020高考数学 抽象函数常见题型解法综述

抽象函数常见题型解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 例1. 已知函数的定义域是[1,2],求f(x)的定义域。 解:的定义域是[1,2],是指,所以中的满足 从而函数f(x)的定义域是[1,4] 评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知中x的取值范围为A,据此求的值域问题。 例2. 已知函数的定义域是,求函数的定义域。 解:的定义域是,意思是凡被f作用的对象都在中,由此可得 所以函数的定义域是 评析:这类问题的一般形式是:已知函数f(x)的定义域是A,求函数的定义域。正确理解函数符号及其定义域的含义是求解此类问题的关键。这类问题 实质上相当于已知的值域B,且,据此求x的取值范围。例2和例1形式上正相反。 二、求值问题 例3. 已知定义域为的函数f(x),同时满足下列条件:①; ②,求f(3),f(9)的值。 解:取,得 因为,所以 又取 得

评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已 知条件与欲求的f(3)沟通了起来。赋值法是解此类问题的常用技巧。 三、值域问题 例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。 解:令,得,即有或。 若,则,对任意均成立,这与存在实数,使得成立矛盾,故,必有。 由于对任意均成立,因此,对任意,有 下面来证明,对任意 设存在,使得,则 这与上面已证的矛盾,因此,对任意 所以 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题 例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。 解:在中以代换其中x,得: 再在(1)中以代换x,得 化简得:

抽象函数经典综合题33例(含详细解答)

抽象函数经典综合题33例(含详细解答) 抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。抽象函数问题既是教学中的难点,又是近几年来高考的热点。 本资料精选抽象函数经典综合问题33例(含详细解答) 1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1; (2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数; (4)若f(x)·f(2x-x 2 )>1,求x 的取值范围。 解 (1)令a=b=0,则f(0)=[f(0)]2 ∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴) (1 )(x f x f = - 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0) (1 )(>-= x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0 (3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴ 1)()()() () (121212>-=-?=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数 (4)f(x)·f(2x-x 2 )=f[x+(2x-x 2 )]=f(-x 2 +3x)又1=f(0), f(x)在R 上递增 ∴由f(3x-x 2 )>f(0)得:3x-x 2 >0 ∴ 0

【智博教育原创专题】抽象函数常见题型解法

冷世平之高考复习专题资料 第 1 页 共 7 页 抽象函数解题策略 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性 【题型1】定义域问题 --------多为简单函数与复合函数的定义域互求。 【例1】⑴若函数(21)f x -的定义域为{}|13x x ≤<,则函数()f x 的定义域为 ⑵若函数()f x 的定义域为{}|13x x ≤<,则函数(21)f x -的定义域为 【题型2】求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。怎样赋值?需要明确目标,细心研究,反复试验。紧扣已知条件进行迭代变换,经有限次迭代可直接求出结果,或者在迭代过程中发现函数具有周期性,利用周期性使问题巧妙获解。 【例2】已知()f x 的定义域为R +,且()()()f x y f x f y +=+对一切正实数,x y 都成立,若(8)4f =,则(2)_____f = 【分析】在条件()()()f x y f x f y +=+中,令4x y ==,得(8)(4)(4)2(4)4f f f f =+==,(4)2f ∴=,又令2x y ==,得(4)(2)(2)2,(2)1f f f f =+=∴=。 1.()f x 的定义域为(0,)+∞,对任意正实数,x y 都有()()()f xy f x f y =+且(4)2f =,则 _____ f =12 2.若()()()f x y f x f y +=且(1)2f =,则 (2)(4)(6)(2000) ______(1)(3)(5)(1999) f f f f f f f f ++++= 20002222(1)(2)(2)(4)(3)(6)(4)(8) ______(1)(3)(5)(7) f f f f f f f f f f f f +++++++=16【提示】()2n f n =

抽象函数常见题型及解法综述.doc

抽象函数常见题型及解法综述 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,函数性质则通过代数表述给出.抽象函数的相关题目往往是在相关知识点的交汇处设计的,高考对抽象函数这一考点主要考查的是函数的概念和知识的内涵及外延的掌 握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,现就抽象函数常见题型归纳如下.一、函数的基本概念 2.抽象函数的求值问题 3.抽象函数的值域问题 4.抽象函数的解析式问题二、寻觅特殊函数的模型 1.指数函数模型 2.对数函数模型 3.幂函数模型三、研究函数的性质 1.抽象函数的单调性问题2.抽象函数的奇偶性问题 3.抽象函数的周期性问题 4.抽象函数的对称性问题四、抽象函数的综合(祥见《高中生》杂志05年10期上半月刊学习辅导版) 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,函数性质则通过代数表述给出.

抽象函数的相关题目往往是在相关知识点的交汇处设计的,高考对抽象函数这一考点主要考查的是函数的概念和知识的内涵及外延的掌 握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,现就抽象函数常见题型归纳如下.一、函数的基本概念 2.抽象函数的求值问题 3.抽象函数的值域问题 4.抽象函数的解析式问题二、寻觅特殊函数的模型 1.指数函数模型 2.对数函数模型 3.幂函数模型三、研究函数的性质 1.抽象函数的单调性问题2.抽象函数的奇偶性问题 3.抽象函数的周期性问题 4.抽象函数的对称性问题四、抽象函数的综合(祥见《高中生》杂志05年10期上半月刊学习辅导版) 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一,其性质常常是隐而不漏,但一般情况下大多是以学过的常见函数为背景,函数性质则通过代数表述给出.抽象函数的相关题目往往是在相关知识点的交汇处设计的,高考对抽象函数这一考点主要考查的是函数的概念和知识的内涵及外延的掌 握情况、逻辑推理能力、抽象思维能力和数学后继学习的潜能.为了扩大读者的视野,现就抽象函数常见题型归纳如下.一、函数的基本概念 2.抽象函数的求值问题 3.抽象函数的值域问题 4.抽象函数的解析式问题二、寻觅特殊函数的模

抽象函数常见题型解法

高考数学总复习第十讲:抽象函数问题的题型综述 抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊关系式的函数,它是中学数学中的一个难点,因为抽象,学生解题时思维常常受阻,思路难以展开,教师对教材也难以处理,而高考中又出现过这一题型,有鉴于此,本文对这一问题进行了初步整理、归类,大概有以下几种题型: 一. 求某些特殊值 这类抽象函数一般给出定义域,某些性质及运算式而求特殊值。其解法常用“特殊值法”,即在其定义域内令变量取某特殊值而获解,关键是抽象问题具体化。 例1 定义在R 上的函数f x ()满足:f x f x ()()=-4且f x f x ()()220-+-=,求f ()2000的值。 解:由f x f x ()()220-+-=, 以t x =-2代入,有f t f t ()()-=, ∴f x ()为奇函数且有f ()00= 又由f x f x ()[()]+=--44 =-=-∴+=-+=f x f x f x f x f x () ()()()() 84 故f x ()是周期为8的周期函数, ∴==f f ()()200000 例2 已知函数f x ()对任意实数x y ,都有f x y f x f y ()()()+=+,且当x >0

时, f x f ()()>-=-012,,求f x ()在[]-21,上的值域。 解:设x x 12< 且x x R 12,∈, 则x x 210->, 由条件当x >0时,f x ()>0 ∴->f x x ()210 又f x f x x x ()[()]2211=-+ =-+>f x x f x f x ()()()2111 ∴f x ()为增函数, 令y x =-,则f f x f x ()()()0=+- 又令x y ==0 得f ()00= ∴-=-f x f x ()(), 故f x ()为奇函数, ∴=-=f f ()()112,f f ()()-=-=-2214 ∴-f x ()[]在,21上的值域为[]-42, 二. 求参数范围 这类参数隐含在抽象函数给出的运算式中,关键是利用函数的奇偶性和它在定义域内的增减性,去掉“f ”符号,转化为代数不等式组求解,但要特别注意函数定义域的作用。

抽象函数常见题型解法

抽象函数常见题型解法 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类 函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。常见的 目录:一、定义域问题 二、求值问题 三、值域问题 四、解析式问题 五、单调性问题 六、奇偶性问题 七、周期性与对称性问题 八、综合问题 一、定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。 评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ??-x f 3log 21 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。[]11log ,13 评析: 已知函数()()x f ?的定义域是A ,求函数f(x)的定义域。相当于求函数()x ?的值域。

二、求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。怎样赋值?需要明确目标,细心研究,反复试验; 练习: 1. f(x)的定义域为(0,)+∞,对任意正实数x,y 都有f(xy)=f(x)+f(y) 且f(4)=2 ,则f = ( 1 2 ) 2.的值是则 且如果) 2001(f ) 2000(f )5(f )6(f )3(f )4(f )1(f )2(f ,2)1(f ),y (f )x (f )y x (f ++++==+Λ 。2000 3、对任意整数y x ,函数)(x f y =满足:1)()()(+++=+xy y f x f y x f ,若1)1(=f ,则=-)8(f C A.-1 B.1 C. 19 D. 43 4、函数f(x)为R 上的偶函数,对x R ∈都有(6)()(3)f x f x f +=+成立,若(1)2f =,则(2005)f =( B ) A . 2005 B. 2 C.1 D.0 解析:先令3-=x 三、值域问题(单调性,奇偶性,周期性) 例1.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。 解:令x=y=0,有f(0)=0或f(0)=1。若 f(0)=0,则 f(x)=f(0+x)=f(x)f(0)=0恒成立,这与存在实数21x x ≠,使得)()(21x f x f ≠成立矛盾,故 f(0)≠0,必有 f(0)=1。 由于f(x+y)=f(x)f(y)对任意实数x 、y 均成立,因此,0)2()(2 ≥?? ? ??=x f x f ,又因为若f(x)=0, 则f(0)=f(x-x)=f(x)f(-x)=0与f(0)≠0矛盾,所以f(x)>0. 例2、定义在R +上的函数f(x)满足: ①对任意实数m,f(x m )=mf(x); ②f(2)=1. (1)求证:f(xy)=f(x)+f(y)对任意正数x,y 都成立; (2)证明f(x)是R +上的单调增函数; (3)若f(x)+f(x-3)≤2,求x 的取值围. 解:(1)令x=2m ,y=2n ,其中m,n 为实数,则f(xy)=f(2m+n )=(m+n)f(2)=m+n. 又f(x)+f(y)=f(2m )+f(2n )=mf(2)+nf(2)=m+n,所以f(xy)=f(x)+f(y) , 2x ,2x n m ,x x 0:)2(n 2m 121==<<<且使可令设证明0n m )2(f )n m ()2(f )x x ( f )x (f )x (f )1(n m 2 1 21<-=-===--得由 故f(x 1)

反函数典型例题

反函数求值 例1、设有反函数,且函数与 互为反函数,求的值. 分析:本题对概念要求较强,而且函数不具体,无法通过算出反函数求解,所以不妨试试“赋值法”,即给变量一些适当的值看看能得到什么后果. 解:设,则点在函数的图象上,从而点 在函数的图象上,即.由反函数定义有,这样即有,从而. 小结:利用反函数的概念,在不同式子间建立联系,此题考查对反函数概念的理解,符号间关系的理解. 两函数互为反函数,确定两函数的解析式 例2 若函数与函数互为反函数,求 的值. 分析:常规思路是根据已知条件布列关于的三元方程组,关键是如何 布列如果注意到g(x)的定义域、值域已知,又与g(x)互为反函数,其定义域与值域互换,有如下解法: 解:∵ g(x)的定义域为且,的值域为 . 又∵g(x) 的定义域就是的值域, ∴. ∵g(x) 的值域为 , 由条件可知的定义域是 , , ∴. ∴.

令, 则即点(3,1) 在的图象上. 又∵与g(x) 互为反函数, ∴ (3,1) 关于的对称点(1,3) 必在g(x)的图象上. ∴ 3=1+ , . 故 . 判断是否存在反函数 例3、给出下列函数: (1); (2); (3); (4); (5) . 其中不存在反函数的是__________________. 分析:判断一个函数是否有反函数,从概念上讲即看对函数值域内任意一个 ,依照这函数的对应法则,自变量总有唯一确定的值与之对应,由于这种判断难度较大,故通常对给出的函数的图象进行观察,断定是否具有反函数. 解: (1) ,(2)都没有问题,对于(3)当时,和 ,且 . 对于(4)时,和 .对于(5)当时,和 . 故(3),(4),(5)均不存在反函数. 小结:从图象上观察,只要看在相应的区间内是否单调即可. 求复合函数的反函数

高考数学经典常考题型之抽象函数 含详解

1. 已知函数y = f (x )(x ∈R ,x ≠0)对任意的非零实数1x ,2x ,恒有f (1x 2x )=f (1x )+f (2x ), 试判断f (x )的奇偶性。 2 已知定义在[-2,2]上的偶函数,f (x )在区间[0,2]上单调递减,若f (1-m )

抽象函数题型大全例题含答案

高考抽象函数技巧总结 由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。 例1:已知 ( )211 x f x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x -=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。 例2:已知331 1()f x x x x +=+,求()f x 解:∵2221 1111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23 ()(3)3f x x x x x =-=-,(|x |≥1) 3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。 例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x . 解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+ =22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a a b c b +=??=?===??=?∴213()22 f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x 解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。∵-x >0,∴ ()lg(1)lg(1)f x x x -=-+=-,

高一数学抽象函数常见题型解法综述

赵春祥 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。 由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见 题型及解法评析如下: 一、定义域问题 例1.已知函数f(x 2)的定义域是]1 , 2],求f (x )的定义域。 解: 2 2 2 2 f(x )的定义域是]1, 2],是指1 x 2,所以f(x )中的x 2满足1 x 2 4 从而函数f (x )的定义域是]1 , 4: 评析:一般地,已知函数f ( (x))的定义域是A ,求f( x )的定义域问题,相当于已知f((X )) 中x 的取值范围为A ,据此求(X )的值域问题。 例2.已知函数f (x)的定义域是[1, 2],求函数fllog,? x)]的定义域。 2 11 x)]的定义域是[1,] 4 评析:这类问题的一般形式是:已知函数 f f x )的定义域是 A ,求函数f( (x))的定义域。 正确理解函数符号及其定义域的含义是求解此类问题的关键。 这类问题实质上相当于已知 (X )的 值域B ,且B A ,据此求x 的取值范围。例 2和例1形式上正相反。 解:f (x)的定义域是[1, 2],意思是凡被 f 作用的对象都在 [1, 2]中,由此可得 1 log 1 (3 x) 2 2 (1)2 3 x (2)1

、求值问题 1 例3.已知定义域为R的函数f (x),同时满足下列条件:①f(2) 1, f(6)—;② 5 f(x y) f (x) f (y),求f( 3),f(9)的值。 解:取x 2,y 3,得f (6) f (2) f (3) 1 4 因为f(2) 1,f (6) ,所以f (3) 5 5 又取x y 3 8 得f(9) f(3) f (3) 5 评析:通过观察已知与未知的联系,巧妙地赋值,取x 2, y 3,这样便把已知条件 1 f(2) 1,f (6)-与欲求的f (3)沟通了起来。赋值法是解此类问题的常用技巧。 5 三、值域问题 例4.设函数f( x )定义于实数集上,对于任意实数x、y,f (x y) f(x)f (y)总成立, 且存在x1x2,使得f (x1) f (x2),求函数f (x)的值域。 解:令x y 0,得f(0) [ f (0)]2,即有f(0) 0 或f (0) 1。 若f(0) 0,则f (x) f (x 0) f (x) f(0) 0,对任意x R均成立,这与存在实数人X2,使得f(xj f(X2)成立矛盾,故f(0) 0,必有f(0) 1。 由于f(x y) f (x) f (y)对任意x、y R均成立,因此,对任意x R,有 F面来证明,对任意x R, f (x) 0

1、抽象函数解法综述+解题技巧

抽象函数与解题策略 (一)抽象函数的定义、特征和一般解题策略 (1)什么是抽象函数? 那些没有给出函数的具体解析式,只给出一些特殊条件或特征的函数称为抽象函数。 (2)抽象函数与一般函数的有什么联系? 抽象函数往往有它所对应的具体的函数模型。例如,)x (f )x (f )x x (f 2121+=+对应的是指数函数2121x x x x a a a ?=+;)x (f )x (f )x x (f 2121+=对应的是对数函数2a 1a 21a x log x log )x x (log +=等等。当然,也有的时候并没有我们比较熟悉的函数模型,而是新定义的一种函数。 抽象函数也可以与我们熟悉的函数,如指数函数、对数函数等一样,有自己的性质,如奇偶性、周期性、单调性等。有自己的特殊点,有自己的对称性,能画出大致图像。 (3)抽象函数的解题策略一般有哪些? 面对抽象函数数学题,我们的解题思路一般不外乎①合理赋值,化抽象为具体;②作恒等变形,找出该函数规律性、特征性特点;③分类讨论,归纳出抽象函数的实质问题。 (二)高考中的抽象函数 (1)抽象函数在高考中的地位 函数是高考数学中非常重要的一部分,根据上海卷命题的要求,每年函数部分的内容将占到整个卷面分值的三分之一左右,2005年高考上海卷中,函数相关的内容将近55分。而抽象函数是函数中考核要求较高,难度较大的内容。2000年开始,不论是全国卷还是上海卷都对学生提出了考查抽象函数的要求。03年上海卷一年中考了两道与抽象函数有关的题目,03、04、05年连续三年上海高考试卷中均有与抽象函数有关的题目。 (2)为什么抽象函数在高考中被如此重视 一般抽象函数数学题融函数单调性、周期性、奇偶性、定义域、值域、图像以及不等式、方程等知识于一体。通过赋值整体思考,找出一个具体函数原型等方法去探究该函数的性质,能运用相关性质去解决有关问题。在高考中加大对学生理性思维能力的考查以及主体创新能力的考查是新时期的一个重要特点。 (3)具体地来看,抽象函数在历届高考中在哪些题型中出现过?

函数的单调性知识点汇总典型例题(高一必备)

第二讲:函数的单调性 一、定义: 1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0) ()(0)]()()[(2 1212121>--?>--x x x f x f x f x f x x ; 难点突破:(1)所有函数都具有单调性吗? (2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个? 2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间. 注意:(1)减函数的等价式子:0) ()(0)]()()[(21212121<--? <--x x x f x f x f x f x x ; (2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明 例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有 .0) ()(2 121>--x x x f x f 则( ) A.)(x f 在这个区间上为增函数 B.)(x f 在这个区间上为减函数 C.)(x f 在这个区间上的增减性不变 D.)(x f 在这个区间上为常函数

抽象函数常见题型解法综述 人教版

抽象函数常见题型解法综述 赵春祥 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一。本文就抽象函数常见题型及解法评析如下: 一、定义域问题 例1. 已知函数的定义域是[1,2],求f(x)的定义域。 解:的定义域是[1,2],是指,所以中的满足 从而函数f(x)的定义域是[1,4] 评析:一般地,已知函数的定义域是A,求f(x)的定义域问题,相当于已知 中x的取值范围为A,据此求的值域问题。 例2. 已知函数的定义域是,求函数的定义域。 解:的定义域是,意思是凡被f作用的对象都在中,由此可得 所以函数的定义域是 评析:这类问题的一般形式是:已知函数f(x)的定义域是A,求函数的定义域。正确理解函数符号及其定义域的含义是求解此类问题的关键。这类问题实质上相当于已知 的值域B,且,据此求x的取值范围。例2和例1形式上正相反。 二、求值问题 例 3. 已知定义域为的函数f(x),同时满足下列条件:①;② ,求f(3),f(9)的值。 解:取,得 因为,所以

又取 得 评析:通过观察已知与未知的联系,巧妙地赋值,取,这样便把已知条件 与欲求的f(3)沟通了起来。赋值法是解此类问题的常用技巧。 三、值域问题 例4. 设函数f(x)定义于实数集上,对于任意实数x、y,总成立,且存在,使得,求函数的值域。 解:令,得,即有或。 若,则,对任意均成立,这与存在实数 ,使得成立矛盾,故,必有。 由于对任意均成立,因此,对任意,有 下面来证明,对任意 设存在,使得,则 这与上面已证的矛盾,因此,对任意 所以 评析:在处理抽象函数的问题时,往往需要对某些变量进行适当的赋值,这是一般向特殊转化的必要手段。 四、解析式问题 例5. 设对满足的所有实数x,函数满足,求f(x)的解析式。 解:在中以代换其中x,得:

抽象函数常见题型解法

如果您需要使用本文档,请点击下载按钮下载! 抽象函数常见题型解法 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类 函数。由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.抽象性较强,灵活性大,解抽象函数重要的一点要抓住函数中的某些性质,通过局部性质或图象的局部特征,利用常规数学思想方法(如化归法、数形结合法等),这样就能突破“抽象”带来的困难,做到胸有成竹.另外还要通过对题目的特征进行观察、分析、类比和联想,寻找具体的函数模型,再由具体函数模型的图象和性质来指导我们解决抽象函数问题的方法。常见的特殊模型: 特殊模型 抽象函数 正比例函数f(x)=kx (k ≠0) f(x+y)=f(x)+f(y) 幂函数 f(x)=x n f(xy)=f(x)f(y) [或) y (f )x (f )y x (f =] 指数函数 f(x)=a x (a>0且a ≠1) f(x+y)=f(x)f(y) [) y (f )x (f )y x (f = -或 对数函数 f(x)=log a x (a>0且a ≠1) f(xy)=f(x)+f(y) [)]y (f )x (f )y x (f -=或 正、余弦函数 f(x)=sinx f(x)=cosx f(x+T)=f(x) 正切函数 f(x)=tanx )y (f )x (f 1)y (f )x (f )y x (f -+= + 余切函数 f(x)=cotx ) y (f )x (f )y (f )x (f 1)y x (f +-= + 目录:一、定义域问题 二、求值问题 三、值域问题 四、解析式问题 五、单调性问题 六、奇偶性问题 七、周期性与对称性问题 八、综合问题 一、定义域问题 --------多为简单函数与复合函数的定义域互求。 例1.若函数y = f (x )的定义域是[-2,2],则函数y = f (x+1)+f (x -1)的定义域为 11≤≤-x 。 解:f(x)的定义域是[]2,2-,意思是凡被f 作用的对象都在[]2,2- 中。 评析:已知f(x)的定义域是A ,求()()x f ?的定义域问题,相当于解内函数()x ?的不等式问题。 练习:已知函数f(x)的定义域是[]2,1- ,求函数()? ?? ? ??-x f 3log 21 的定义域。 例2:已知函数()x f 3log 的定义域为[3,11],求函数f(x)的定义域 。[] 11log ,13

抽象函数题型汇编

抽象函数常见题型汇编 抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一类函数.由于抽象函数表现形式的抽象性,使得这类问题成为函数内容的难点之一.本文就抽象函数常见题型及解法评析如下: 一、定义域问题 (一)已知()f x 的定义域,求(())f g x 的定义域. 解法:若()f x 的定义域为[]a b ,,则(())f g x 中()a g x b ≤≤,从中解得x 的取值范围即为(())f g x 的定义域. 例1 设函数()f x 的定义域为[01],,则 (1)函数 2()f x 的定义域为 ;(2)函数2)f 的定义域为 . 解析:(1)由已知有201x ≤≤,解得11x -≤≤,故2()f x 的定义域为[11]-,; (2)由已知,得021≤,解得49x ≤≤,故2)f 的定义域为[49],. (二)已知(())f g x 的定义域,求()f x 的定义域. 解法:若(())f g x 的定义域为m x n ≤≤,则由m x n ≤≤确定()g x 的范围即为()f x 的定义域. 例2 函数[lg(1)]y f x =+的定义域为09x ≤≤,则()y f x =的定义域为 . 解析:由09x ≤≤,得1110x +≤≤,所以0lg(1)1x +≤≤,故填[01], (三)已知(())f g x 的定义域,求(())f h x 的定义域. 解法:先由(())f g x 定义域求()f x 定义域,再由()f x 定义域求得(())f h x 定义域. 例3 函数(1)y f x =+定义域是[23]-,,则(21)y f x =-的定义域是 . 解析:先求()f x 的定义域,∵(1)f x +的定义域是[23]-,,∴23x -≤≤ ∴114x +≤≤,即()f x 的定义域是[14]-, 再求[()]f h x 的定义域,∵1214x --≤≤,∴502x ≤≤ ∴(21)f x -的定义域是502?????? ,. (四)运算型的抽象函数 求由有限个抽象函数经四则运算得到的函数的定义域,解法是:先求出各个函数的定义域,再求交集. 例4 函数()f x 的定义域是(01],,求() 1()()()02g x f x a f x a a =+?--<≤的定义域. 解析:∵由已知,有0101x a x a <+??<-?≤,≤,即11a x a a x a -<-??<+? ≤, ≤, ∴函数的定义域由(1)(1]a a a a --+I ,,确定 ∵102 a -<≤

相关文档
最新文档