舵机精简讲解

舵机精简讲解
舵机精简讲解

舵机

------孟令军2014.8.13

-------更多请关注我的百度文库

》》什么是舵机?

【舵机定义】

舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。能够利用简单的输入信号比较精确的转动给定角度的电机系统。

它是一个可以调制偏转角度的电机,从而用于一些车、体机器人的方向调制。

伺服马达三条线中白色的线是控制线,接到控制芯片上。中间的是SERVO工作电源线(红色),一般工作电源是5V。第三条是地线。

》》如何选择舵机呢??

【参数】

⑴转速

转速由舵机无负载的情况下转过60°角所需时间来衡量,常见舵机的速度一般在

0.11/60°~0.21S/60°之间。

⑵转矩

舵机扭矩的单位是KG·CM,这是一个扭矩单位。可以理解为在舵盘上距舵机轴中心水平距离1CM 处,舵机能够带动的物体重量。

⑶电压

较高的电压可以提高电机的速度和扭矩,舵机推荐的电压一般都是4.8V或6V。

⑷尺寸、重量和材质

舵机的功率(速度×转矩)和舵机的尺寸比值可以理解为该舵机的功率密度,一般同样品牌的舵机,功率密度大的价格高。

塑料齿轮的舵机在超出极限负荷的条件下使用可能会崩齿,金属齿轮的舵机则可能会电机过热损毁或外壳变形。所以材质的选择并没有绝对的倾向,关键是将舵机使用在设计规格之内。

所以:选择舵机需要在计算自己所需扭矩和速度,并确定使用电压的条件下,选择有150%左右甚至更大扭矩富余的舵机。

》》舵机如何调控???

【模拟舵机及其控制原理】

工作原理是控制电路接收信号源的控制脉冲,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。

模拟舵机需要一个外部控制器(遥控器的接收机)产生脉宽调制信号(可以用pwm模块)来告诉舵机转动角度,脉冲宽度是舵机控制器所需的编码信息。舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。

具体电机内部是怎么运作的,笔者在此不多写了,因为我们是学怎么用他的,如果想深究,可以讨论。

【数字舵机及其控制原理】

1、防抖。(模拟舵机调制不稳定,比如我期望得到2.5V的电压位置,但第一次得到的是2.3V,经过1个调节周期后,电位器转过的位置已经是2.6V了,这样控制电路就会给电机一个方向脉冲调节,电机往回转,又转过头,然后有向前调节,以至于出现不停的震荡)

2、响应速度快。(数字舵机可以以很高的频率进行调节,这个周期和角度会变得非常小,也能用PID进行调节)

如果想用数字舵机的可以研究PID算法。

-------------------下期学习PID算法--------------

MG996R舵机控制说课讲解

M G996R舵机控制

MG996R舵机控制方法 红:+5v,棕:GND,黄:信号 基于单片机的舵机控制方法具有简单、精度高、成本低、体积小的特点,并可根据不同的舵机数量加以灵活应用。 在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。 图1舵机的控制要求

舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 单片机实现舵机转角控制 可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。 当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定

详细的舵机控制原理资料

目录 一.舵机PWM信号介绍 (1) 1.PWM信号的定义 (1) 2.PWM信号控制精度制定 (2) 二.单舵机拖动及调速算法 (3) 1.舵机为随动机构 (3) (1)HG14-M舵机的位置控制方法 (3) (2)HG14-M舵机的运动协议 (4) 2.目标规划系统的特征 (5) (1)舵机的追随特性 (5) (2)舵机ω值测定 (6) (3)舵机ω值计算 (6) (4)采用双摆试验验证 (6) 3.DA V的定义 (7) 4.DIV的定义 (7) 5.单舵机调速算法 (8) (1)舵机转动时的极限下降沿PWM脉宽 (8) 三.8舵机联动单周期PWM指令算法 (10) 1.控制要求 (10) 2.注意事项 (10) 3.8路PWM信号发生算法解析 (11) 4.N排序子程序RAM的制定 (12) 5.N差子程序解析 (13) 6.关于扫尾问题 (14) (1)提出扫尾的概念 (14) (2)扫尾值的计算 (14)

一.舵机PWM 信号介绍 1.PWM 信号的定义 PWM 信号为脉宽调制信号,其特点在于他的上升沿与下降沿之间的时间宽度。具体的时间宽窄协议参考下列讲述。我们目前使用的舵机主要依赖于模型行业的标准协议,随着机器人行业的渐渐独立,有些厂商已经推出全新的舵机协议,这些舵机只能应用于机器人行业,已经不能够应用于传统的模型上面了。 目前,北京汉库的HG14-M 舵机可能是这个过渡时期的产物,它采用传统的PWM 协议,优缺点一目了然。优点是已经产业化,成本低,旋转角度大(目前所生产的都可达到185度);缺点是控制比较复杂,毕竟采用PWM 格式。 但是它是一款数字型的舵机,其对PWM 信号的要求较低: (1) 不用随时接收指令,减少CPU 的疲劳程度; (2) 可以位置自锁、位置跟踪,这方面超越了普通的步进电机; 其PWM 格式注意的几个要点: (1 ) 上升沿最少为0.5mS ,为0.5mS---2.5mS 之间; (2) HG14-M 数字舵机下降沿时间没要求,目前采用0.5Ms 就行;也就是说PWM 波形 可以是一个周期1mS 的标准方波; (3) HG0680为塑料齿轮模拟舵机,其要求连续供给PWM 信号;它也可以输入一个周 期为1mS 的标准方波,这时表现出来的跟随性能很好、很紧密。

舵机工作原理

控制思想 该模块的程序框图如图4.5 所示。车模在行驶过程中不断采样赛道信息,并通过分析车模与赛道相对位置判断车模所处赛道路况,是弯道还是直道,弯道时是左转还是右转。直道时小车舵机状态保持不变,弯道时左转或右转,计算转弯半径。我们所用舵机的标准PWM 周期为20ms,转动角度最大为左右90度,PWM调制波如图7.2所示。

当给舵机输入脉宽为0.5ms,即占空比为0.5/20=2.5%的调制波时,舵机右转90度;当给舵机输入脉宽为1.5ms,即占空比为1.5/20=7.5%的调制波时,舵机静止不动;当给舵机输入脉宽为2.5ms,即占空比为2.5/20=12.5%的调制波时,舵机左转90度。可以推导出舵机转动角度与脉冲宽度的关系计算公式为: 注:其中t为正脉冲宽度(ms);θ为转动角度;当左转时取加法计算,右转时取减法计算结果。 当我们根据赛道弯度计算出转动角度以后便可以根据舵机的参数计算出脉冲宽度,控制舵机转动,舵机转角与PWM脉宽关系如表4-1所示。

在具体操作中PWM调制波的周期可以设置在20ms左右一定范围内,比如设置为10ms 或是30ms均可以使舵机正常转动,但是设置周期较长时,系统延迟时间较多,舵机转向会出现滞后,导致赛车冲出跑道;设置周期如果过短,系统输出PWM 调制波不稳定,舵机转动也会受影响,不能实现赛车的精确转向。经过反复测试,最终把输出PWM 调制波周期设定为13ms (用计数器实现)。 运行电机的转速以及舵机的转角,在软件上都是通过对PWM 波占空比进行设置来相应控制的。前面提到,舵机转角控制需要将两个

八位寄存器合成为一个十六位寄存器。程序中的舵机位置信号,当PWM调制波周期设为13ms时,因为总线频率为24MHz,用时钟SB,可计算得到16进制参数为9870H,舵机中间位置时占空比16进制参数为1680H,要分配给PWM6和7,分配时这2个端口的赋值必须是16进制,那么PWM模块初始化赋值为 PWMPER6= 0x98,PWMPER7= 0x70,PWMDTY6= 0x16,PWMDTY7= 0x80,因此这就牵涉到如何将1个十进制数分配为2个十六进制数问题。有2种方案,一种是除法取余,另一种是移位操作,前者编译生成的代码比后者要多,所以采用移位操作来实现,即取高位时与0xFF00先作“&”计算,然后将所得到的数向右移8位(>>8),即可取得高8位;同理,取低8位时只要与0x00FF作“&”计算即可(算法)。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。 工作原理:控制电路板接受来自信号线的控制信号(具体信号待会再讲),控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。

飞思卡尔--智能车舵机讲解

飞思卡尔--智能车舵机讲解

2.2 舵机的安装 完成了玩具车的拆卸之后要做的第二步就是安装舵机,现在市场上卖的玩具车虽然也具有转向 功能,但是前轮的转向多是依靠直流电机来驱动,无论向哪个方向转都是一下打到底,无法控制转 过固定的角度,因此根据我们的设计需求,需要将原有的转向部分替换成现有的舵机,以实现固定 转角的转向。舵机的实物图如图 2.1所示。 需要说明的是由于小车系玩具车改装,在安装舵机是需要合理的利用小车的结构,将舵机安装 牢固,同时还需注意合理利用购买舵机是附赠的齿轮,从而将舵机固定在合适的位置。舵机的安装 方式有俯式、卧式多种,不同的安装方法力臂长短、响应速度都有所不同,这一点请自己根据实际 情况合理选择,图 2.2 为舵机的安装图。 5

图 2.1 舵机实物图图 2.2 舵机安装图 舵机安装过程中有一点需要尤其注意,由于舵机不是360°可转的,因此必须保证车轮左右转 的极限在舵机的转角范围之内。 舵机安装完毕之后就可以对小车的转角进行控制了,但是由于玩具车的车体设计往往限制了小 车的转角,因此可以对小车进行局部的“破坏”来增大前轮的转角,要知道在比赛中追求速度的同 时一个大的转角对小车的可控性会有一个很大的提升,如图2.3 所示,就是对增加小车转角的一个 改造,这是我在去年小车比赛中的用法。将阻碍前轮转角的一部分用烙铁直接烫掉。 但是这种做法也有风险,由于你的改造会破坏小车的整体 7

结构,有可能会对小车的硬件结构造 成破坏,因此如果你的小车在改造之后显得过于脆弱的话那你就要对你的小车采取些加固措施了。 3.4 舵机转向模块设计 舵机是小车转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳定性高等特 点,无论是在硬件还是软件舵机设计是小车控制部分的重要组成部分,舵机的主要工作流程 为:控制信号→控制电路板→电机转动→齿轮组减速→舵盘转动→位置反馈电位计→控制电路板反馈。图 3.11 为舵机的实物图。 7

舵机原理

1、概述 舵机最早出现在航模运动中。在航空模型中,飞行机的飞行姿态是通过调节发动机和各个控制舵面来实现的。举个简单的四通飞机来说,飞机上有以下几个地方需要控制: 1) 发动机进气量,来控制发动机的拉力(或推力); 2) 副翼舵面(安装在飞机机翼后缘),用来控制飞机的横 滚运动; 3) 水平尾舵面,用来控制飞机的俯仰角; 4) 垂直尾舵面,用来控制飞机的偏航角; 不仅在航模飞机中,在其他的模型运动中都可以看到它的应用:船模上用来控制尾舵,车模中用来转向等等。由此可见,凡是需要操 作性动作时都可以用舵机来实现。 2、结构和控制 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计5k、直流电机、控制电路板等。

工作原理:控制电路板接受来自信号线的控制信号,控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进行反馈,然后控制电路板根据所在位置决定电机的转动方向和速度,从而达到目标停止。 舵机的基本结构是这样,但实现起来有很多种。例如电机就有有刷和无刷之分,齿轮有塑料和金属之分,输出轴有滑动和滚动之分,壳体有塑料和铝合金之分,速度有快速和慢速之分,体积有大中小三种之分等等,组合不同,价格也千差万别。例如,其中小舵机一般称作微舵,同种材料的条件下是中型的一倍多,金属齿轮是塑料齿轮的一倍多。需要根据需要选用不同类型。 舵机的输入线共有三条,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有两种规格,一是4.8V,一是6.0V,分别对应不同的转矩标准,即输出力矩不同,6.0V对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANWA的某些型号的舵机引线电源线在边上而

舵机控制程序

舵机控制程序 Final revision on November 26, 2020

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,

获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信

号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 图1 舵机的控制要求 单片机实现舵机转角控制 可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件 的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV 以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都

远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设计是产生20ms的周期信号;其次是脉宽的调整,即单片机模拟PWM信号的输出,并且调整占空比。当系统中只需要实现一个舵机的控制,采用的控制方式是改变单片机的一个定时器中断的初值,将20ms分为两次中断执行,一次短定时中断和一次长定时中断。这样既节省了硬件电路,也减少了软件开销,控制系统工作效率和控制精度都很高。 具体的设计过程: 例如想让舵机转向左极限的角度,它的正脉冲为2ms,则负脉冲为20ms- 2ms=18ms,所以开始时在控制口发送高电平,然后

航模舵机控制原理详解

在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置(角度)伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。目前在高档遥控玩具,如航模,包括飞机模型,潜艇模型;遥控机器人中已经使用得比较普遍。舵机是一种俗称,其实是一种伺服马达。 其工作原理是: 控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。当然我们可以不用去了解它的具体工作原理,知道它的控制原理就够了。就象我们使用晶体管一样,知道可以拿它来做开关管或放大管就行了,至于管内的电子具体怎么流动是可以完全不用去考虑的。 3. 舵机的控制: 舵机的控制一般需要一个20ms左右的时基脉冲,该脉冲的高电平部分一般为0.5ms~2.5ms 范围内的角度控制脉冲部分。以180度角度伺服为例,那么对应的控制关系是这样的: 0.5ms--------------0度; 1.0ms------------45度; 1.5ms------------90度; 2.0ms-----------135度; 2.5ms-----------180度; 这只是一种参考数值,具体的参数,请参见舵机的技术参数。 小型舵机的工作电压一般为4.8V或6V,转速也不是很快,一般为0.22/60度或0.18/60度,所以假如你更改角度控制脉冲的宽度太快时,舵机可能反应不过来。如果需要更快速的反应,就需要更高的转速了。 要精确的控制舵机,其实没有那么容易,很多舵机的位置等级有1024个,那么,如果舵机的有效角度范围为180度的话,其控制的角度精度是可以达到180/1024度约0.18度了,从时间上看其实要求的脉宽控制精度为2000/1024us约2us。如果你拿了个舵机,连控制精度为1度都达不到的话,而且还看到舵机在发抖。在这种情况下,只要舵机的电压没有抖动,那抖动的就是你的控制脉冲了。而这个脉冲为什么会抖动呢?当然和你选用的脉冲发生器有

舵机控制

舵机控制实验 舵机是一种位置伺服的驱动器,主要是由外壳、电路板、无核心马达、齿轮与位置检测器所构成。其工作原理是由接收机或者单片机发出信号给舵机,其内部有一个基准电路,产生周期为20ms,宽度为1.5ms 的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。经由电路板上的IC 判断转动方向,再驱动无核心马达开始转动,透过减速齿轮将动力传至摆臂,同时由位置检测器送回信号,判断是否已经到达定位。适用于那些需要角度不断变化并可以保持的控制系统。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。一般舵机旋转的角度范围是0 度到180 度。 舵机有很多规格,但所有的舵机都有外接三根线,分别用棕、红、橙三种颜色进行区分,由于舵机品牌不同,颜色也会有所差异,棕色为接地线,红色为电源正极线,橙色为信号线。

舵机的转动的角度是通过调节PWM(脉冲宽度调制)信号的占空比来实现的,标准PWM(脉冲宽度调制)信号的周期固定为20ms (50Hz),理论上脉宽分布应在1ms到2ms 之间,但是,事实上脉宽可由0.5ms 到2.5ms 之间,脉宽和舵机的转角0°~180°相对应。有一点值得注意的地方,由于舵机牌子不同,对于同一信号,不同牌子的舵机旋转的角度也会有所不同。 了解了基础知识以后我们就可以来学习控制一个舵机了,本实验所需要的元器件很少只需要舵机一个、跳线一扎就可以了。 RB—412 舵机*1 面包板跳线*1 扎 用Arduino 控制舵机的方法有两种,一种是通过Arduino 的普通数字传感器接口产生占空比不同的方波,模拟产生PWM 信号进行舵机定位,第二种是直接利用Arduino 自带的Servo 函数进行舵机的控制,

舵机的工作原理

基于AT89C2051单片机的多路舵机控制器设计 摘要舵机是机器人、机电系统和航模的重要执行机构。舵机控制器为舵机提供必要的能源和控制信号。本文提出一种以外部中断计数为基础的PWM波形实现方法。该方法具有简单方便,成本低,可实现多路独立PWM输出的优点。 关键词A T89C205l 舵机控制器外部中断PWM 舵机是一种位置伺服的驱动器。它接收一定的控制信号,输出一定的角度,适用于那些需要角度不断变化并可以保持的控制系统。在微机电系统和航模中,它是一个基本的输出执行机构。 1 舵机的工作原理 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA66881。的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送人电机驱动集成电路BA6686,以驱动电机正反转。当电机转速一定时,通过级联减速齿轮带动电位器R。,旋转,直到电压差为O,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。 2 舵机的控制方法 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。 3 舵机控制器的设计 (1)舵机控制器硬件电路设计 从上述舵机转角的控制方法可看出,舵机的控制信号实质是一个可嗣宽度的方波信号(PWM)。该方波信号可由FPGA、模拟电路或单片机来产生。采用FPGA成本较高,用模拟电路来实现则电路较复杂,不适合作多路输出。一般采用单片机作舵机的控制器。目前采用单片机做舵机控制器的方案比较多,可以利用单片机的定时器中断实现PWM。该方案将20ms的周期信号分为两次定时中断来完成:一次定时实现高电平定时Th;一次定时实现低电平定时T1。Th、T1的时间值随脉冲宽度的变换而变化,但,Th+T1=20ms。该方法的优点是,PWM信号完全由单片机内部定时器的中断来实现,不需要添加外围硬件。缺点是一个周期中的PWM信号要分两次中断来完成,两次中断的定时值计算较麻烦;为了满足20ms 的周期,单片机晶振的频率要降低;不能实现多路输出。也可以采用单片机+8253计数器的实现方案。该方案由单片机产生计数脉冲(或外部电路产生计数脉冲)提供给8253进行计数,由单片机给出8253的计数比较值来改变输出脉宽。该方案的优点是可以实现多路输出,软件设计较简单;缺点是要添加l片8253计数器,增加了硬件成本。本文在综合上述两个单片机舵机控制方案基础上,提出了一个新的设计方案,如图4所示。 该方案的舵机控制器以A T89C2051单片机为核心,555构成的振荡器作为定时基准,单片机通过对555振荡器产生的脉冲信号进行计数来产生PWM信号。该控制器中单片机可以产生8个通道的PWM信号,分别由AT89C2051的P1.0~Pl.7(12~19引脚)端口输出。输出的8路PWM信号通过光耦隔离传送到下一级电路中。因为信号通过光耦传送过程中进行了反相,因此从光耦出来的信号必须再经过反相器进行反相。方波信号经过光耦传输后,前沿和后沿会发生畸变,因此反相器采用CD40106施密特反相器对光耦传输过来的信号进行整形,产生标准的PWM方波信号。笔者在实验过程中发现,舵机在运行过程中要从电源

51控制舵机程序大全

#include void InitTimer0(void) { TMOD = 0x01; TH0 = 0x0B1; TL0 = 0x0E0; EA = 1; ET0 = 1; TR0 = 1; }void delay(1)(void) { unsigned char a,b,c; for(c=1;c>0;c--) for(b=142;b>0;b--) for(a=2;a>0;a--); } void main(void) { InitTimer0(); P1_2=0; while(1); } void Timer0Interrupt(void) interrupt 1 { //20ms中断 TH0 = 0x0B1; TL0 = 0x0E0; P1_2=1; delay(1); P1_2=0; }

#include #include #include #define uchar unsigned char #define uint unsigned int sbit IN1=P0^0; sbit IN2=P0^1; sbit EA1=P0^5; sbitdj=P0^7; //舵机口 uint t=0;//中断次数 ucharzk;//高电平中断次数uchar p=0;//定义pwm占空比void delay(uint z) { uinti,j; for(i=0;i>8;//100us一次中断TL0=-100%256; if(t==0)zk=p; if(t=zk) dj=0; t++; if(t>=200) t=0;//20mspwm周期 } void turn_left() { IN1=1;IN2=0;EA1=1;//电机工作p=5;//0.5ms delay(600); } void turn_right() { IN1=1;IN2=0;EA1=1;//电机工作p=25;//2.5ms delay(600);

舵机精简讲解

舵机 ------孟令军2014.8.13 -------更多请关注我的百度文库 》》什么是舵机? 【舵机定义】 舵机简单的说就是集成了直流电机、电机控制器和减速器等,并封装在一个便于安装的外壳里的伺服单元。能够利用简单的输入信号比较精确的转动给定角度的电机系统。 它是一个可以调制偏转角度的电机,从而用于一些车、体机器人的方向调制。 伺服马达三条线中白色的线是控制线,接到控制芯片上。中间的是SERVO工作电源线(红色),一般工作电源是5V。第三条是地线。 》》如何选择舵机呢?? 【参数】 ⑴转速 转速由舵机无负载的情况下转过60°角所需时间来衡量,常见舵机的速度一般在 0.11/60°~0.21S/60°之间。 ⑵转矩 舵机扭矩的单位是KG·CM,这是一个扭矩单位。可以理解为在舵盘上距舵机轴中心水平距离1CM 处,舵机能够带动的物体重量。 ⑶电压 较高的电压可以提高电机的速度和扭矩,舵机推荐的电压一般都是4.8V或6V。 ⑷尺寸、重量和材质 舵机的功率(速度×转矩)和舵机的尺寸比值可以理解为该舵机的功率密度,一般同样品牌的舵机,功率密度大的价格高。 塑料齿轮的舵机在超出极限负荷的条件下使用可能会崩齿,金属齿轮的舵机则可能会电机过热损毁或外壳变形。所以材质的选择并没有绝对的倾向,关键是将舵机使用在设计规格之内。 所以:选择舵机需要在计算自己所需扭矩和速度,并确定使用电压的条件下,选择有150%左右甚至更大扭矩富余的舵机。 》》舵机如何调控???

【模拟舵机及其控制原理】 工作原理是控制电路接收信号源的控制脉冲,并驱动电机转动;齿轮组将电机的速度成大倍数缩小,并将电机的输出扭矩放大响应倍数,然后输出;电位器和齿轮组的末级一起转动,测量舵机轴转动角度;电路板检测并根据电位器判断舵机转动角度,然后控制舵机转动到目标角度或保持在目标角度。 模拟舵机需要一个外部控制器(遥控器的接收机)产生脉宽调制信号(可以用pwm模块)来告诉舵机转动角度,脉冲宽度是舵机控制器所需的编码信息。舵机的控制脉冲周期20ms,脉宽从0.5ms-2.5ms,分别对应-90度到+90度的位置。 具体电机内部是怎么运作的,笔者在此不多写了,因为我们是学怎么用他的,如果想深究,可以讨论。 【数字舵机及其控制原理】 1、防抖。(模拟舵机调制不稳定,比如我期望得到2.5V的电压位置,但第一次得到的是2.3V,经过1个调节周期后,电位器转过的位置已经是2.6V了,这样控制电路就会给电机一个方向脉冲调节,电机往回转,又转过头,然后有向前调节,以至于出现不停的震荡) 2、响应速度快。(数字舵机可以以很高的频率进行调节,这个周期和角度会变得非常小,也能用PID进行调节) 如果想用数字舵机的可以研究PID算法。 -------------------下期学习PID算法--------------

舵机控制C程序

舵机控制C程序 #include #defineucharunsignedchar #defineuintunsignedint /* 变量定义 */ ucharkey_stime_counter,hight_votage=15,timeT_counter; bitkey_stime_ok; /* 引脚定义 */ sbitcontrol_signal=P0^0; sbitturn_left=P3^4; sbitturn_right=P3^5; /***************************************************************** 名称:定时器0初始化 功能:20ms定时,11.0592M晶振 初值20ms 初值0.1ms *****************************************************************/ voidTimerInit() { control_signal=0; TMOD=0x01;//设置定时器0为工作方式1 EA=1;//开总中断 ET0=1;//定时器0中断允许 TH0=0xFF;//定时器装初值 TL0=0xA3; TR0=1;//启动定时器0 } /********************************************** 定时器0中断服务函数 ***********************************************/ voidtimer0(void)interrupt1using0 { TH0=0xFF; TL0=0xA3;//定时器0重新装入数值

舵机控制型机器人设计要点

课程设计项目说明书 舵机控制型机器人设计 学院机械工程学院 专业班级2013级机械创新班 姓名吴泽群王志波谢嘉恒袁土良指导教师王苗苗 提交日期 2016年4 月1日

华南理工大学广州学院 任务书 兹发给2013级机械创新班学生吴泽群王志波谢嘉恒袁土良 《产品设计项目》课程任务书,内容如下: 1. 题目:舵机控制型机器人设计 2.应完成的项目: 1.设计舵机机器人并实现运动 2.撰写机器人说明书 3.参考资料以及说明: [1] 孙桓.机械原理[M].北京.第六版;高等教育出版社,2001 [2] 张铁,李琳,李杞仪.创新思维与设计[M].国防工业出版社,2005 [3] 周蔼如.林伟健.C++程序设计基础[M].电子工业出版社.北京.2012.7 [4] 唐增宏.常建娥.机械设计课程设计[M].华中科技大学出版社.武汉.2006.4 [5] 李琳.李杞仪.机械原理[M].中国轻工业出版社.北京.2009.8 [6] 何庭蕙.黄小清.陆丽芳.工程力学[M].华南理工大学.广州.2007.1 4.本任务书于2016 年2 月27 日发出,应于2016 年4月2 日前完 成,然后提交给指导教师进行评定。 指导教师(导师组)签发2016年月日

评语: 总评成绩: 指导教师签字: 年月日

目录 摘要 (1) 第一章绪论 (2) 1.1机器人的定义及应用范围 (2) 1.2舵机对机器人的驱动控制 (2) 第二章舵机模块 (3) 2.1舵机 (3) 2.2舵机组成 (3) 2.3舵机工作原理 (4) 第三章总体方案设计与分析 (6) 3.1 机器人达到的目标动作 (6) 3.2 设计原则 (6) 3.3 智能机器人的体系结构 (6) 3.4 控制系统硬件设计 (6) 3.4.1中央控制模块 (7) 3.4.2舵机驱动模块 (7) 3.5机器人腿部整体结构 (8) 第四章程序设计 (9) 4.1程序流程图 (9) 4.2主要中断程序 (9) 4.3主程序 (11) 参考文献 (13) 附录 (14) 一.程序 (14) 二.硬件图 (17)

舵机原理及其使用详解

舵机的原理,以及数码舵机VS模拟舵机 一、舵机的原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。 3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。 有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的:

收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF 判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵 电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20ms(即频率为50Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用围3来表示。

PWM控制舵机 C程序

#include "reg52.h" sbit control_signal=P0^0; sbit turn_left=P3^0; sbit turn_right=P3^1; unsigned char PWM_ON=15 ;//定义高电平时间 /******************************************************************/ /* 延时函数 */ /******************************************************************/ void delay(unsigned int cnt) { while(--cnt); } void display() { if(PWM_ON>=5&&PWM_ON<=7) P1=0xFD; //1灯亮,舵机接近或到达右转极限位置if(PWM_ON>7&&PWM_ON<=10) P1=0xFB; //2灯亮 if(PWM_ON>10&&PWM_ON<=13) P1=0xF7; //3灯亮 if(PWM_ON>13&&PWM_ON<=16) P1=0xEF; //4灯亮,舵机到达中间位置 if(PWM_ON>16&&PWM_ON<=19) P1=0xDF; //5灯亮 if(PWM_ON>19&&PWM_ON<=22) P1=0xBF; //6灯亮 if(PWM_ON>22&&PWM_ON<=25) P1=0x7F; //7灯亮,舵机接近或到达左转极限位置} /******************************************************************/ /* 主函数 */ /******************************************************************/ void main() { //bit Flag; TMOD |=0x01; //定时器设置 0.1ms in 11.0592M crystal TH0=(65536-78)/256; TL0=(65536-78)%256; //定时0.1mS ET0=1;//定时器中断打开 EA=1;//总中断 //IE= 0x82; //打开中断 TR0=1; // PWM_ON=15 //的取值范围是6-25 while(1) { if(turn_left==0) { delay(1000); if(turn_left==0) { while(!turn_left){}

舵机及转向控制原理

舵机及转向控制原理 1、概述 2、舵机的组成 3、舵机工作原理 4、舵机选购 5、舵机使用中应注意的事项 6、辉盛S90舵机简介 7、如何利用程序实现转向 8、51单片机舵机测试程序 1、概述 舵机也叫伺服电机,最早用丁船舶上实现其转向功能,由丁可以通过程序连续控制其转角,因而被广泛应用智能小车以实现转向以及机器人各类关节运动中,如图1、图2所示。

舵机是小车转向的控制机构,具有体积小、力矩大、外部机械设计简单、稳定性高等特点,无论是在硬件设计还是软件设计,舵机设计是小车控制部分重要的组成部分,图3为舵机的外形图。 2、舵机的组成 一般来讲,舵机主要由以下几个部分组成,舵盘、减速齿轮组、位置反馈电位计、直流电机、控制电路等,如图4、图5所示。

变速齿轮组 诃调电位器小型宜流电机 fff 图4舵机的组成示意图 图5舵机组成 舵机的输入线共有三条,如图6所示,红色中间,是电源线,一边黑色的是地线,这辆根线给舵机提供最基本的能源保证,主要是电机的转动消耗。电源有 两种规格,一是4.8V, 一是6.0V,分别对应不同的转矩标准,即输出力矩不同, 6.0V 对应的要大一些,具体看应用条件;另外一根线是控制信号线,Futaba的一般为白色,JR的一般为桔黄色。另外要注意一点,SANW曲某些型号的舵机引线电源线在边上而不是中间,需要辨认。但记住红色为电源,黑色为地线,一般不会搞错。

输出转轴 电源线知 地线GND 控制线 图6舵机的输出线 3、舵机工作原理 控制电路板接受来自信号线的控制信号, 控制电机转动,电机带动一系列齿轮组,减速后传动至输出舵盘。舵机的输出轴和位置反馈电位计是相连的,舵盘 转动的同时,带动位置反馈电位计,电位计将输出一个电压信号到控制电路板,进 行反馈,然后控制电路板根据所在位置决定电机转动的方向和速度,从而达到 目标停止。其工作流程为:控制信号T控制电路板T电机转动T齿轮组减速T舵盘转动T位置反馈电位计T控制电路板反馈。流,才可发挥舵机应有的性能。 舵机的控制信号周期为20MS的脉宽调制(PWM信号,其中脉冲宽度从0.5-2.5MS,相对应的舵盘位置为0—180度,呈线性变化。也就是说,给他提供一定的脉宽,它的输出轴就会保持一定对应角度上,无论外界转矩怎么改变,直到给它提供一个另外宽度的脉冲信号,它才会改变输出角度到新的对应位置上如图7所求。舵机内部有一个基准电路,产生周期为20MS宽度1.5MS的基准信号,有一个比出较器,将外加信号与基准信号相比较,判断出方向和大小,从而生产电机的转动信号。由此可见,舵机是一种位置伺服驱动器,转动范围不能超过180度,适用丁那些需要不断变化并可以保持的驱动器中,比如说机器人的关 节、飞机的舵面等。

BEC详解

BEC详解 BEC 本文转自SZRCCLUB BEC详解 一、基础 BEC为英文Battery Eliminate Circuit的首字母简写,直接翻译为“电池消除电路”。在模型中一般用于动力电路以外的电子设备供电。因为电动模型需要动力电和设备电2种供电方式,设备供电一般供电为5-6V,所以使用专用的接收供电(一般为4节电池)。接线 示意图见图一。 动力供电一般比设备供电的电压高。为了减轻模型重量和体积,在动力供电设备(一般为电子调速器,简称电调)中集成了BEC电路。BEC就是为取消专用的接收供电电池,直接由动力电池供电而专设的简单电路。接线示意图见图二。

二、使用 一般电调厂家为降低成本和减轻重量,对电调内部整合的BEC电路都采用线性稳压电路。线性稳压电路的特性是在输入电流=输出电流的条件下,将电压降到设定的输出电压。如下 图三。 这里可以看出: BEC的输入功率=11V*2A=22W BEC的输出功率=5V*2A=10W 无用功率=22-10=12W,效率=10/22≈45.5% 这12W就完全变成了BEC的热量散发掉了。这也就是电调发热量比较大的重要原因之一。 而且,动力输入电压越高,效率越低。 为了解决发热量和效率问题,国外开始采用开关式BEC(也有的简称UBEC,),开关BEC 与线性BEC最大的不同是采用的功率转换电路,输出功率=效率系数*输入功率,这个公式中的效率系数一般可以达到85%以上,而且输入和输出的电压变化对效率系数的影响不大。 假设效率系数=80%,其他按上面的条件,可以算出: BEC的输出功率=5V*2A=10W BEC的输入功率=10/0.85=11.76W=11V*1.07A 无用功率=11.76-10=1.76W(只有线性BEC的15%左右)

舵机工作原理要点

舵机工作原理 标准的舵机有3条导线,分别是:电源线、地线、控制线,如图2所示。 以日本FUTABA-S3003型舵机为例,图1是FUFABA-S3003型舵机的内部电路。

3003舵机的工作原理是:PWM信号由接收通道进入信号解调电路BA6688的12脚进行解调,获得一个直流偏置电压。该直流偏置电压与电位器的电压比较,获得电压差由BA6688的3脚输出。该输出送入电机驱动集成电路BAL6686,以驱动电机正反转。当电机转动时,通过级联减速齿轮带动电位器Rw1旋转,直到电压差为O,电机停止转动。 舵机的控制信号是PWM信号,利用占空比的变化,改变舵机的位置。

有个很有趣的技术话题可以稍微提一下,就是BA6688是有EMF控制的,主要用途是控制在高速时候电机最大转速。 原理是这样的: 收到1个脉冲以后,BA6688内部也产生1个以5K电位器实际电压为基准的脉冲,2个脉冲比较以后展宽,输出给驱动使用。当输出足够时候,马达就开始加速,马达就能产生EMF,这个和转速成正比的。 因为取的是中心电压,所以正常不能检测到的,但是运行以后就电平发生倾斜,就能检测出来。超过EMF判断电压时候就减小展宽,甚至关闭,让马达减速或者停车。这样的好处是可以避免过冲现象(就是到了定位点还继续走,然后回头,再靠近) 一些国产便宜舵机用的便宜的芯片,就没有EMF控制,马达、齿轮的机械惯性就容易发生过冲现象,产生抖舵电源线和地线用于提供舵机内部的直流电机和控制线路所需的能源.电压通常介于4~6V,一般取5V。注意,给舵机供电电源应能

提供足够的功率。控制线的输入是一个宽度可调的周期性方波脉冲信号,方波脉冲信号的周期为20 ms(即频率为50 Hz)。当方波的脉冲宽度改变时,舵机转轴的角度发生改变,角度变化与脉冲宽度的变化成正比。某型舵机的输出轴转角与输入信号的脉冲宽度之间的关系可用图3来表示。 可变脉宽输出试验(舵机控制) 原创:xidongs 整理:armok / 2004-12-05 / https://www.360docs.net/doc/1511523429.html,

舵机控制

利用单片机PWM信号进行舵机控制(图) 基于单片机的舵机控制方法具有简单、精度高、成本低、体积小的特点,并可根据不同的舵机数量加以灵 活应用。 在机器人机电控制系统中,舵机控制效果是性能的重要影响因素。舵机可以在微机电系统和航模中作为基本的输出执行机构,其简单的控制和输出使得单片机系统非常容易与之接口。 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。 图1舵机的控制要求 舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图1所示。 单片机实现舵机转角控制 可以使用FPGA、模拟电路、单片机来产生舵机的控制信号,但FPGA成本高且电路复杂。对于脉宽调制信号的脉宽变换,常用的一种方法是采用调制信号获取有源滤波后的直流电压,但是需要50Hz(周期是20ms)的信号,这对运放器件的选择有较高要求,从电路体积和功耗考虑也不易采用。5mV以上的控制电压的变化就会引起舵机的抖动,对于机载的测控系统而言,电源和其他器件的信号噪声都远大于5mV,所以滤波电路的精度难以达到舵机的控制精度要求。 也可以用单片机作为舵机的控制单元,使PWM信号的脉冲宽度实现微秒级的变化,从而提高舵机的转角精度。单片机完成控制算法,再将计算结果转化为PWM信号输出到舵机,由于单片机系统是一个数字系统,其控制信号的变化完全依靠硬件计数,所以受外界干扰较小,整个系统工作可靠。 单片机系统实现对舵机输出转角的控制,必须首先完成两个任务:首先是产生基本的PWM周期信号,本设

相关文档
最新文档