绝对收敛与一致收敛

绝对收敛与一致收敛
绝对收敛与一致收敛

习题反常积分的收敛判别法

习 题 8.2 反常积分的收敛判别法 ⒈ ⑴ 证明比较判别法(定理8.2.2); ⑵ 举例说明,当比较判别法的极限形式中l =0或+∞时,?∞ +a dx x )(?和 ? ∞ +a dx x f )(的敛散性可以产生各种不同的的情况. 解 (1)定理8.2.2(比较判别法) 设在[,)a +∞上恒有)()(0x K x f ?≤≤,其中K 是正常数.则 当?∞ +a dx x )(?收敛时? ∞+a dx x f )(也收敛; 当? ∞ +a dx x f )(发散时?∞ +a dx x )(?也发散. 证 当?∞ +a dx x )(?收敛时,应用反常积分的Cauchy 收敛原理, 0>?ε ,a A ≥?0,0,A A A ≥'?:K dx x A A ε ?< ?' )(. 于是 ≤ ?' A A dx x f )(ε??ε,a A ≥?0,0,A A A ≥'?: εK dx x f A A ≥?' )(. 于是 ≥?'A A dx x )(?0)(1 ε≥?' A A dx x f K , 所以?∞ +a dx x )(?也发散. (2)设在[,)a +∞上有0)(,0)(≥≥x x f ?,且0) ()(lim =+∞→x x f x ?.则当?∞ +a dx x f )(发散 时,?∞ +a dx x )(?也发散;但当?∞ +a dx x f )(收敛时,?∞ +a dx x )(?可能收敛,也可能发散. 例如21)(x x f = ,)20(1 )(<<=p x x p ?,则0)()(lim =+∞→x x f x ?.显然有

数学分析的基本内容和方法

渤海大学数理学院 毕业论文 论文题目:简述数学分析中的基本内容和方法 系别:数学系 专业年级:数学与应用数学专业07级 姓名:王迪 学号:07020176 指导教师:王长忠 日期:2011年5月20日

目录 一、数学分析中的研究对象 (3) 二、数学分析的基本内容 (3) 三、数学分析中的基本概念和相互关系 (3) 1.极限概念 (4) 2.连续和一致连续的概念 (5) 3.收敛和一致收敛概念 (6) 4.导数概念 (6) 5.微分概念 (7) 6.原函数和不定积分 (7) 7.定积分 (8) 8.一元函数中极限、连续、导数、微分之间的关系 (8) 9.多元函数中,极限、连续、偏导数、方向导数和全微分之间的关系 (9) 10.连续与一致连续的关系 (9) 11.收敛和一致收敛的关系 (9) 12.连续、不定积分和定积分的关系 (10) 13.微分和积分的关系 (10) 四、数学分析的主要计算 (11) 1.极限的求法 (12) 2.微分学中的计算 (13) 3.积分学中的计算 (14) 4.无穷级数中的计算 (14) 五、数学分析的主要理论 (15) 1.实数的连续性和极限的存在性 (16) 2.连续函数的基本性质 (17) 3.微分学的基本定理和泰勒公式 (18) 4.积分中的理论 (19) 5.无穷级数和广义积分的敛散性 (20) 6.函数级数和广义参变量积分的一致收敛性 (21) 六、数学分析的基本方法 (21) 七、数学分析教学内容的初步实践与思考 (22)

简述数学分析中的基本内容和方法 王迪 (渤海大学数学系辽宁锦州121000中国) 摘要:数学分析的基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。应全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。 关键词:极限,微分,积分,近似。 Contents and methods of mathematical analysis Wang di (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:Mathematical analysis is based on the theory of real numbers. The real number system is the continuity of the most important feature, with the continuity of real numbers to discuss the limit, continuity, differentiation and integration. It is in discussing the function of the various limits of the legitimacy of the process of operation, it gradually established system of rigorous mathematical theory. Mathematical analysis should be fully grasp the basic theory of knowledge; develop logical thinking and rigorous reasoning ability; people with good computing power and skills; improve the mathematical model, and apply the tools of calculus to solve practical problems. Key word: Limits, differentiation, integration, and similar.

7.3 任意项级数的绝对收敛与条件收敛-习题

1.判别下列级数的敛散性,若收敛,是条件收敛还是绝对收敛? ⑴ 1 1 (1)n n ∞ -=-∑; 【解】级数 1 1 (1)n n ∞ -=-∑属于交错级数, 它满足关系1n n u u += >=(1,2,3,n =L )且lim 0n n n u →∞==, 即由莱布尼兹定理知,级数 1 1 (1)n n ∞ -=-∑收敛, 但 1 1 (1) n n ∞ -=- ∑1n ∞ ==是112p =<的P 级数,发散, 综上知,级数 1 (1)n n ∞ -=-∑条件收敛。 ⑵ 1 11 (1) 3 n n n n ∞ --=-∑; 【解】级数 1 1 1(1)3n n n n ∞ --=-∑属于交错级数, 由于 1 11 (1) 3n n n n ∞ --=-∑1 13n n n ∞ -==∑, 因为111113lim lim lim 1333 n n n n n n n n u n n u n +→∞→∞→∞-++==<, 由正项级数的比值判别法知,级数 11 3n n n ∞ -=∑收敛, 综上知,级数 1 1 1 (1)3n n n n ∞ --=-∑绝对收敛。 ⑶ 1 1 ln (1)n n n n ∞ -=-∑; 【解】级数 1 1 ln (1)n n n n ∞ -=-∑属于交错级数,

由于函数ln x y x =有2 1ln '0x y x -=>当x e >时恒成立, 知ln x y x = 当x e >时为增函数, 从而满足关系1n n u u +>(3,4,5,n =L )且1 ln lim lim lim 01 n n n n n n u n →∞→∞→∞===, 即由莱布尼兹定理知,级数 1 1 ln (1) n n n n ∞ -=-∑收敛, 但由于 1 1 ln (1) n n n n ∞ -=-∑1ln n n n ∞==∑11n n ∞=>∑,而11 n n ∞ =∑为调和级数,发散, 综上知级数 1 1 ln (1) n n n n ∞ -=-∑条件收敛。 ⑷ 1 1 1 (1)ln(1) n n n ∞ -=-+∑; 【解】级数 1 1 1 (1)ln(1) n n n ∞ -=-+∑属于交错级数, 它满足关系111 ln(1)ln(2) n n u u n n += >=++(1,2,3,n =L ) 且1 lim lim 0ln(1) n n n u n →∞ →∞==+, 即由莱布尼兹定理知,级数 1 1 1 (1)ln(1) n n n ∞ -=-+∑收敛, 但由于1lim n n n u u +→∞1 ln(1) lim 11n n n →∞+=+1lim ln(1)n n n →∞+=+1lim 1 1 n n →∞=+lim(1)n n →∞=+=∞, 且级数111n n ∞ =+∑21 n n ∞ ==∑为调和级数,发散, 即由比较判别法的极限形式知,级数 1 1 ln(1)n n ∞ =+∑发散, 综上知,级数 1 1 1 (1)ln(1) n n n ∞ -=-+∑条件收敛。

函数项级数一致收敛的判别

函数项级数一致收敛的判别 姓名: 学号: 指导老师: 摘要:函数项级数问题是数学分析中极其重要的部分,判别其一致收敛的方法有多种。本文探讨了对函数项级数一致收敛的判别方法,并对有关的注意事项进行了分析。 关键字:函数项级数 一致收敛 判别法 Judgment on Uniform Convergence for Function Series Name: Student Number: Advisor: Abstract: Issue of function series plays a very important role in Mathematical Analysis.There are various methods to judging the uniform convergence of function series .This paper gives several methods of juding the uniform convergence of function series. Apart from that, the paper also analysizes some relative points that need to be paid special attention. Key words: Function series Uniformly convergence Judgment 在数学分析中级数问题是一个特别重要的问题。级数内容主要分为两大块,即数 项级数与函数项级数。数项级数通常被认为是函数项级数的一个典型例子,而函数项级数,在某种意义上,是对数项级数的延伸。在研究内容和性质上,它们又有着许多类似的地方,例如使用第n 个部分和数列的敛散性来判断级数的敛散性,以及判别收敛性的方法等。对于函数项级数,研究它的性质和一致收敛的判别则是学习的重点,并且它还是研究级数问题最重要的工具,对进一步研究函数项级数的性质起着重要的作用。教材中判别一致收敛的方法有很多,下面给出一种最基本的方法,即根据一致收敛的定义来进行判别。 一 利用一致收敛的定义 定义1[1] : 设函数项级数()1n n u x ∞ =∑在D 上和函数为()S x ,称()( )n R x S x =-() n S x 为函数项级数()1 n n u x ∞ =∑的余项. 定义2[1] : 设函数项级数()1 n n u x ∞ =∑在区间I 上收敛于和函数()S x ,若任给 0,ε>N N n N x I +?∈?>?∈,,,有()()()n n S x S x R x ε-=<,则称函数项级数

1函数项级数的一致收敛性

函数列与函数项级数 §1. 函数项级数的一致收敛性 1. 讨论下列函数序列在所示区域的一致收敛性: ⑴ ()n f x = ,(,);x ∈-∞+∞ ⑵ ()sin ,n x f x n = i) (,),x l l ∈- ii) (,);x ∈-∞+∞ ⑶ (),1n nx f x nx =+ (0,1);x ∈ ⑷ 1(),1n f x nx = + i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑸ 2 233 (),1n n x f x n x = + i) [,),0,x a a ∈+∞> ii) (0,);x ∈+∞ ⑹ (),1n nx f x n x = ++ [0,1];x ∈ ⑺ (),1n n n x f x x = + i) [0,],1,x b b ∈< ii) [0,1];x ∈ iii) [,),1;x a a ∈+∞> ⑻ 2(),n n n f x x x =- [0,1];x ∈ ⑼ 1 (),n n n f x x x +=- [0,1];x ∈ ⑽ ()ln ,n x x f x n n = (0,1);x ∈ ⑾ 1()ln(1),nx n f x e n -= + (,);x ∈-∞+∞

⑿ 2 ()(),x n n f x e --= i) [,],x l l ∈- ii) (,)x ∈-∞+∞ . 2. 设()f x 定义于(,)a b ,令 [()] ()n nf x f x n = (1,2,)n =???. 求证:{()}n f x 在(,)a b 上一致收敛于()f x . 3. 参数α取什么值时, (),nx n f x n xe α -= 1,2,3,n =??? 在闭区间[0,1]收敛?在闭区间[0,1]一致收敛?使10 lim ()n n f x dx ->∞ ? 可在积分号下取极 限? 4. 证明序列2 ()nx n f x nxe -=(1,2,)n =???在闭区间[0,1]上收敛,但 1 100 lim ()lim ().n n n n f x dx f x dx ->∞ ->∞ ≠? ? 5. 设{()}n f x 是[,]a b 上的连续函数列,且{()}n f x 在[,]a b 一致收敛于()f x ;又 [,]n x a b ∈(1,2,)n =???,满足0lim n n x x ->∞ =,求证 0lim ()().n n n f x f x ->∞ = 6. 按定义讨论下列函数项级数的一致收敛性: ⑴ 0 (1), [0,1];n n x x x ∞ =-∈∑ ⑵ 12 2 1 (1) , (,)(1) n n n x x x -∞ =-∈-∞+∞+∑ . 7. 设()n f x (1,2,)n =???在[,]a b 上有界,并且{()}n f x 在[,]a b 上一致收敛,求证: ()n f x 在[,]a b 上一致有界. 8. 设()f x 在(,)a b 内有连续的导数()f x ',且 1()[()()],n f x n f x f x n =+ - 求证:在闭区间[,]αβ()a b αβ<<<上,{()}n f x 一致收敛于()f x '. 9. 设1()f x 在[,]a b 上黎曼可积,定义函数序列

数学分析中极限的化归转化思想方法

万方数据

万方数据

万方数据

试论数学分析中极限的化归转化思想方法 作者:杨丽星 作者单位:丽江师范高等专科学校数理系 刊名: 科技信息 英文刊名:SCIENCE & TECHNOLOGY INFORMATION 年,卷(期):2010,""(12) 被引用次数:0次 参考文献(18条) 1.华东师大教学系.《数学分析》.高等教育出版社,1991 2.复旦大学数学系.《数学分析》.高等教育出版社,1983 3.解思泽,赵树智.《数学思想方法纵横论》.科学出版社,1987 4.明清河.《教学分析的思想与方法》.山东大学出版社,2004 5.徐利治.《数学方法论选讲》.华中工学院,1988 6.张雄,李得虎.《数学方法论与解题研究》.高等教育出版社,2003 7.米山国藏.《教学的精神、思想和方法》.四川教育出版社,1986 8.史九一,朱梧槚.《化归与归论化联想》.江苏教育出版社,1989 9.解思泽,徐本顺.《数学思想方法》.山东教育出版社,1995 10.M.克莱因.《古今数学思想》.上海科技社,1981 11.王仲春,李元中.《数学思维与数学方法论》.高等教育出版社,1989 12.喻平.《数学问题化归理论与方法》.广西师大出版社,1999 13.钱吉林等.《数学分析题解精粹》.崇文书局,2003 14.杨永平.运用化归思想,探索解题途径,数学通报,1994(08) 15.凌瑞壁.浅谈数学分析中的化归思想.广西教育学报,1995(02) 16.陈向阳.浅谈数学分析中的化归思想和化归法.桂林教育学院学报,1996(03) 17.黄焕萍.倒析数学分析中的化归思想方法.广西师院学报,1997(01) 18.林远华.化归思想在数学分析解题中的应用.河池师专学报,2002(02) 本文链接:https://www.360docs.net/doc/1518373875.html,/Periodical_kjxx201012407.aspx 授权使用:中共汕尾市委党校(zgsw),授权号:7949722f-5a15-4b0c-928e-9dcf008e8a3f 下载时间:2010年8月11日

收敛与一致收敛 开题报告

《收敛与一致收敛》开题报告 综述本课题研究动态、选题目的及意义 收敛与一致收敛的应用非常广泛,涉及到数学的许多领域,在数学的代数分支中有很重要的地位,许多数学家对收敛与一致收敛都进行了仔细的研究,并且有很多成果,有些著名的收敛判别法运用非常广泛(如两边夹定理,柯西收敛准则,M判别法,狄利克雷判别法),它们在外表上结构美观,具有数学美。本课程在学习和研究已有文献资料的基础上,总结归纳关于数列,数值级数、函数级数、幂级数、泰勒级数、傅立叶级数以及无穷积分瑕积分收敛与一致收敛的性质和判别方法及其应用。 努力通过此毕业论文的设计工作,初步掌握科学研究的基本方法,而且通过老师指导、自学思考、文献查询等方式。通过对数列,数值级数、函数级数、幂级数、泰勒级数、傅立叶级数以及无穷积分瑕积分收敛与一致收敛的研究,认真总结和归纳研究的基本方法和怎样去解决一些关于收敛与一致收敛的问题在数学和生活中的应用。并形成相关的思路。掌握了科学研究的基本方法,养成动手查阅资料的好习惯。通过对这次毕业论文的研究培养思考问题并且有计划,有这样在以后的工作和学习中会起到事半功倍的作用。

研究基本内容、拟解决的主要问题 研究数列收敛与发散的概念,收敛数列的性质,四则运算以及判别方法;数值级数收敛与发散的概念,性质以及绝对收敛级数的性质;函数级数的一致收敛概念以及判别法;幂级数、泰勒级数傅、里叶级数的收敛性质。无穷积分以及瑕积分收敛与发散的概念,性质以及无穷积分和瑕积分的敛散性的判别法。 查询、阅读相关文献,在此基础上,重点阐述,解决数列,数值级数、函数级数幂级数、泰勒级数、傅立叶级数以及无穷积分与瑕积分收敛与一致收敛的问题。在此过程中学习研究的基本方法,学会资料的收集和整理,努力通过此项研究,初步掌握科学研究的基本方法。 研究方法、步骤及措施研究方法 通过查阅相关参考书等自学方式,找到正确高效的学习方法,保证足够的时间,遇到问题与同学讨论,共同发现问题,找到解决问题的途径,在关键时候向指导老师请教,走出误区,获得启示,继续研究。 研究步骤及措施: 1、明确相关概念。 2、收集相关资料。 3、归纳、发现其它性质,运用性质解决实际问题。

函数项级数一致收敛的判定开题报告

一、本课题研究现状及可行性分析 目前通用的数学分析教材(如华东师范大学,复旦大学,吉林大学,北京师范大学等)其介绍的主要内容如下:M 判别法,狄利克雷判别法,阿贝尔判别法,柯西收敛准则等,用来判别一些级数的一致收敛性问题,其他一些数学方面的工作者对某些特殊级数的收敛性进行了讨论。当前对级数的收敛性的讨论研究已经到达比较高级阶段,分枝也比较细,发展也相对较完善。但在许多实际解题过程中,往往不是特定的级数,用特殊的方法不能解决。故需对特殊级数情况要总结和发展。 函数项级数的一致收敛性的判定是数学分析中的一个重要知识点,函数项级数既可以被看作是对数项级数的推广,同时数项级数也可以看作是函数项级数的一个特例。它们在研究内容上有许多相似之处,如研究其收敛性及和等问题,并且它们很多问题都是借助数列和函数极限来解决,同时它们敛散性的判别方法也具有相似之处,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等。教材中给出了对于()n u x 一致收敛性的判别法,如Cauchy 判别法,阿贝尔判别法,狄利克雷判别法等,但在具体进行一致收敛的判别时,往往会有一定的困难,这就需要我们有效地运用函数项级数一致收敛的判别法。而此课题除了叙述以上判别法外,还对这些判别方法进行了一些推广,从而进一步丰富了判别函数项级数一致收敛的方法。 二、本课题研究的关键问题及解决问题的思路 关键问题:对函数项级数一致收敛性判别法总结和推广。 基本思路:首先从定义出发,让读者了解函数项级数及一致收敛的定义,对函数项级数一致收敛有一个大致的认识,并对其进行一定的说明,且将收敛与一致收敛做一个比较,使读者对其有一个更深刻的认识。随后给出一些常见的一致收敛的判别法,并附上例题加以说明。当熟悉了一般的判别法后,我将其加以推广,得到一些特殊的判别法,如比式判别法,根式判别法,对数判别法等。

关于一致收敛

关于一致收敛,我提出了一些自然应该产生的问题,主要看定义和提出的问题,希望可以看完定义和从这个定义出发的许多问题,这里大部分比较简单,尤其是根据定义验证性质的希望可以验证一下,根据定义便可以得出的,其他的了解一下,可以等寒假或者以后再想。尤其举反例部分不用着急想,比如weierstrass 函数的反例和最后的一段比较难,不用浪费精力去着急想,了解一下即可,但心里要装着这些问题,不要放弃。 1一致收敛的定义:关键是共同的N (与x 无关),任意号与存在号的选择与排序问题,比如有四个空,每个空填写任意与存在,一共有2^4种可能,另外还可以对这些做排序(4!),就有2^4*4!=384种不同的结果,但其中只有一种是可以描述一致收敛的定义,因而这样的话,定义的准确性就显得很是必要了,这里仅仅有一种正确刻画了一致收敛 0,,,. n Given any there exists a capital N such that f f whenever n N εε-><> 0ε?(任给,对任意固定的,对每个给定的)>,N ?(存在找得到)正整数, n N ?使得对一切的(当……时)(或者用符号)>, ,.(,)()()n x E s t such that f x f x ε?∈-对一切的()< (一致性体现在,有共同的N 不依赖于x ,试若把x E ?∈对一切的()放在,N ?(存在找得到)正整数前,则是逐点收敛的定义(N 依赖于x ),从逻辑上完全不是同一句话) 注:n x ε?(从“对一切的()”开始的部分等价于用上确界范数的描述<)2对定义的提问: 1 well-defined ?(是不是恰到好处的)比如对集合E 要有什么要求? 如果说函数列分别按照逐点收敛和按照一致所得的极限函数存在的话,这个极限函数唯一吗? 2如果是well-defined ,那么它的否定的正面描述是什么?并且举出一致收敛和不一致收敛的例子来体会定义(好例子的标准:1简洁(而并非去整自己去找很难的例子)2能反映一些重要性质体会到为什么一致收敛,为什么不一致收敛)既要有正面例子,又要有反面的例子 3一致收敛于逐点收敛的区别及其蕴含关系是什么? 4每一种收敛方式都对应于一个基本列的表述方式,对比于n 维实空间,连续函数空间也是一个距离空间,那么它的基本列是什么定义,基本列与收敛列之间的关系呢?即它完备吗? 注意到在考虑函数空间时候,我们考虑的是把函数作为一个“元素”放到整个函数空间中去看,因此我们在函数空间中引入了一致收敛的概念,注意力集中到函数作为一个元素上去,因而一致收敛的时候要求N 与x 要无关 5类似地可以问,连续函数空间中的子集有界是什么意思?也就有了一致有界的概念(感

正项数收敛判别方法

数学与统计学院应用数学系 综合课程设计成绩评定书设计题目:正项级数收敛的判别方法

摘要: 各项都由正数组成的级数称为正项级数,它是数项级数的特例。本文主要考虑正项级数的收敛问题,通过介绍比较原则、比式判别法、根式判别法以及积分判别法等常用的判别方法,并结合相关实例,判断所给级数的敛散性。 关键字:正项级数 收敛 比较原则 比式判别法 根式判别法 积分判别法 1基本概念 1.1 数项级数及其敛散性 在介绍正项级数之前先引入数项级数的相关概念及收敛级数的基本性质,下面介绍数项级数以及级数敛散的定义。 定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式 12n u u u ++++ (1) 称为数项级数或无穷级数(简称级数),其中n u 称为数项级数的通项。 数项级数(1)的前n 项之和,记为1 n n k k S u == ∑,称为(1)的前n 项部分和。 定义2:若(1)的部分和数列{}n S 收敛于S (即lim n n S S →∞ =),则称数项级数(1)收 敛,并称S 为(1)的和,记为1 n n S u ∞ == ∑,若{}n S 为发散数列,则称数列(1)发散。 根据级数(1)的收敛性,可以得到收敛级数的一些性质: (i) 收敛级数的柯西收敛准则 级数(1)收敛的充要条件是:0ε?>,0N ?>,n N ?>,p Z + ?>,有 12||.n n n p u u u ε++++++< (ii) 级数收敛的必要条件:若级数 1 n n u ∞ =∑收敛,则lim 0n n u →∞ =. (iii)去掉、改变或增加级数的有限项并不改变级数的敛散性。 (iv) 在收敛级数的项中任意加括号,既不改变级数的收敛性,也不改变它的和(正项级数也满足)。 (v) 运算性质: 若级数 1 n n u ∞ =∑与 1 n n v ∞ =∑都收敛,c d 是常数,则 1 ()n n n cu dv ∞ =+∑收敛,且满足

浅谈数学分析中的数学思想

浅谈数学分析中的数学思想 李静 赤峰学院 10级 数学与统计学院 数学与应用数学2班 10041100332 摘要: 在学习数学分析中,首先接触到的就是关于数学名词的概念问题,那么毫无疑问,深入了解概念是学习掌握数学分析的第一要务;在掌握了概念之后,接下来就是运算能力以及对数学符号的熟识程度;然后就是在学习过程中及做题中学习实践的做题技巧,这就逐渐形成了数学思想方法。 数学知识中蕴含的思想方法是极其丰富的,尤其是隐藏于数学知识背后的数学思想的价值不可忽视.本文对数学分析内容中的函数思想、极限思想、连续思想、数形结合思想、化归思想进行初步的分析. 关键词: 数学分析; 数学思想; 分析 一、函数思想 函数概念和函数思想的提出和运用,使得变量数学诞生了,常量数学发展到变量数学,函数思想起了决定性作用.函数是数学分析的研究对象.函数思想就是运用函数的观点,把常量视作变量、化静为动、化离散为连续,将待解决的问题转化为函数问题,运用函数的性质加以解决的一种思想方法.在数学分析中,我们通常用来解决不等式的证明、方程根的存在性与个数、级数问题、数列极限等. 例1 证明 当0x >时,()2 ln 12 x x x -<+. 分析 这是一个不等式证明问题,直接证明有一定难度,但是将此问题转化为函数问题的单调性,即可解决问题. 证明 构造辅助函数()f x =()2ln 12x x x +-+,则()f x '=111x x -++,可证当0x > 时,()0f x '>,因此单调递增.又因为()00f =,所以当0x >时, ()()00f x f >=,即原不等式成立. 例2 判断() ()1ln 111 n n n n ∞=+-+∑的敛散性. 分析 这是一个级数问题,该级数为交错级数.从函数的观点出发,化离散为连续,转化为函数问题,运用函数的性质,从而解决问题. 解 该级数为交错级数,由莱布尼兹判别法知,要判断其敛散性,只需判断通项的绝对值

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 定理11.1 无穷积分()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便 有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()221 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

函数项级数一致收敛性的判别法

函数项级数一致收敛性的判别法 摘 要 函数项级数是数学分析中的重点和难点,因此讨论和分析它的性质和判别方法显得尤为重要,本文给出了函数项级数的定义以及函数项级数一致收敛性的判别定理,并用之来解决函数项级数一致收敛性的一些问题比较容易. 关键词 函数项级数;一致收敛性;判别法. 中图分类号 O173.1 Function Seies Convergence Criterion Abstrac t :Function is a mathematical analysis of series of focus and difficult, so the discussion and analysis of its nature and it is particularly important to identify methods.In this paper, the definition of Function series and uniform convergence of Function series of discriminant theorem,and used to solve the series of uniform convergence of Function of some of the problems is easier. Key words :Function series; Uniform convergence of; Discriminance 1 引言及预备知识 如果函数项级数具有一致收敛性,函数项级数的和函数或余和易于求得,判别它的一致收敛性可应用一致收敛定义,如果很难求得它的和函数或余和,就根据函数自身的结构,找到判别一致收敛性的判别法. 定义1.1[1] 设()12(),,u x u x …()n u x ,…是一列定义在D 上的函数,把这些函数的各项用加号连接起来的表达式 ()()12u x u x ++…+()n u x +…或()1n n u x ∞ =∑, (1) 称为函数项级数.a D ?∈ 函数级数在a 对应一个数值级数 1 ()U n a ∞ =∑ =12()()u a u a ++...+()n u a +. (2) 它的敛散性可用数值级数敛散性的判别法判别,若级数(2)收敛,则称a 是函数级数(1)的收敛点;若级数(2)发散,则称a 是函数级数(1)的发散点. 定义 1.2[1] 函数项级数(1)的收敛点的集合,称为函数项级数(1)的收敛域,若收敛域是一个区间,则称此区间是函数项级数的收敛区间. 定义 1.3[1] 设数集E 为函数项级数()1 n n u x ∞ =∑的收敛域,则对每个x E ∈记S(x)= ()1 n n u x ∞=∑称S(x)为函数项级数()1 n n u x ∞ =∑的和函数.

含参量反常积分一致收敛性的判别法资料

含参量反常积分一致收敛的判别法 王 明 星 (德州学院数学科学学院,山东德州 253023) 摘 要: 含参量反常积分是研究和表达函数特别是非初等函数的有力工具.本文通过对含参量反常积分一致收敛性的分析和研究,总结出了判别含参量反常积分一致收敛的几种简单而有效的方法和定理(柯西准则,M 判别法,确界法,狄利克雷判别法等),从而方便了含参量反常积分一致收敛性的学习和掌握. 关键词: 含参量反常积分; 一致收敛; 判别法 含参量反常积分包括含参量无穷限反常积分和含参量无界函数反常积分,两种反常积分一致收敛性的判别法是相似的,所以我们下面仅仅讨论含参量无穷限反常积分一致收敛性的判别法. 1 含参量无穷限反常积分一致收敛的概念 1.1 含参量无穷限反常积分 设函数(,)f x y 定义在无界区域(){},,R x y a x b c y =|≤≤≤<+∞上,若对每一个固定的[],x a b ∈,反常积分 (,)c f x y dy +∞ ? 都收敛,则它的值是x 在[],a b 上取值的函数,当记这个函数为()I x 时,则有 ()(,)c I x f x y dy +∞=?,[],x a b ∈ 称(,)c f x y dy +∞? 为定义在[],a b 上的含参量无穷限反常积分. 1.2 含参量无穷限反常积分收敛 若含参量无穷限反常积分(,)c f x y dy +∞? 与函数()I x 对每一个固定的 [],x a b ∈,任给的正数ε,总存在某一实数N c >,使得M N >时,都有 (,)()M c f x y dy I x ε-

广义积分的收敛判别法

第二节 广义积分的收敛判别法 上一节我们讨论了广义积分的计算, 在实际应用中,我们将发现大量的积分是不能直接计算的,有的积分虽然可以直接计算,但因为过程太复杂,也不为计算工作者采用,对这类问题计算工作者常采用数值计算方法或Monte-Carlo 方法求其近似值. 对广义积分而言,求其近似值有一个先决条件 — 积分收敛,否则其结果毫无意义。 因此,判断一个广义积分收敛与发散是非常重要的. 定理9.1(Cauchy 收敛原理)f (x )在[a , +∞ )上的广义积分? +∞a dx x f )(收敛的充分必要条件是:0>?ε, 存在A>0, 使得b , b '>A 时,恒有 ε?ε , 0>?δ, 只要0<δηη<

一致收敛判别法总结

学年论文 题目:一致收敛判别法总结 学院:数学与统计学院 专业:数学与应用数学 学生姓名:张学玉 学号:201071010374 指导教师:陶菊春

一致收敛判别法总结 学生姓名:张学玉 指导教师:陶菊春 摘要: 函数项级数一致收敛性的证明是数学分析中的难点,为了开阔思路,更好的理解和掌握函数项级数一致收敛的方法,本文对函数项级数一致收敛的几种判别法进行了分析、归纳、总结。首先对用定义判断函数项级数一致收敛的方法进行了研究,介绍了函数项级数一致收敛的充要条件,近而提供了证明函数项级数一致收敛的一般方法。同时介绍了几个较为方便适用的关于函数序列一致收敛的判别法法。并通过例题的讨论说明这些判别法的可行性及特点。 Abstract :Function Series Uniform Convergence prove mathematical analysis of the difficulties, in order to broaden their thinking, to better understand and master the functions Seies Convergence approach, this paper uniformly convergent series of functions of several discriminant method were analyzed, summarized, summary. First, determine the definition of series of functions with uniform convergence methods were studied, introduced uniformly convergent series of functions necessary and sufficient conditions, while providing nearly proved uniformly convergent series of functions of the general method. Also introduced several relatively easy to apply uniform convergence on the discriminant function sequence Law Act. And through discussion of examples illustrate the feasibility of these discriminant method and characteristics. 关键词: 函数项级数;函数序列;一致收敛;判别法 Keywords: series of functions; function sequence; uniform convergence; Criterion 引言: 函数项级数一致收敛性的证明是初学者的一个难点,教材中给出了用定义法、定理及判别法来证明函数项级数的一致收敛性。初学者需用灵活的思维以便在使用时选出正确又快捷的证明方法和技巧。为了更好的培养我们这方面的能力,总结出了函数项级数一致收敛性的若干证明方法。 一、定义 设(){}x S n 是函数项级数()x u n ∑的部分和函数列.若(){}x S n 在数集D 上一致收敛于函数()x S ,则称函数项级数()x u n ∑在D 上一致收敛于函数()x S ,或称函数项级数 ()x u n ∑在D 上一致收敛. 定理:若对?n ,?n a >0使得()()n n a x S x S ≤-()D x ∈?,并且当∞→n 时有 0→n a .则当∞→n 时()x S n 一致收敛于()x S . 例1:若()x f n 在[]b a ,上可积, ,2,1=n ,且()x f 与()x g 在[]b a ,上都可积

无穷积分的性质与收敛判别法

§2 无穷积分的性质与收敛判别法 教学目的与要求: 掌握条件收敛与绝对收敛的概念,收敛的无穷积分具有的四个性质;掌握收敛的Cauchy 准则、比较判别法及其三个推论、阿贝耳判别法、狄利克雷判别法等。 教学重点,难点: 无穷积分的收敛性比较判别法、柯西判别法、狄利克雷判别法等。 教学内容: 本节介绍了无穷积分的三个性质和四种判别收敛的方法 一 无穷积分的性质 由定义知道,无穷积分 ()dx x f a ? +∞ 收敛与否,取决于函数F (u )=()dx x f u a ?在u →+∞时是否存在 极限。因此由函数极限的柯西准则导出无穷积分收敛的柯西准则。 & 定理 无穷积分 ()dx x f a ? +∞ 收敛的充要条件是:任给ε>0,存在G ≥a ,只要u 1、u 2>G ,便有 ()()()2 1 2 1 u u u a a u f x dx f x dx f x dx ε-= ?≥a ,只要u 1、u 2>G ,便有 ()()()2 2 1 1 21|()()|.u u u u a a f x dx f x dx f x dx F u F u ε=-=-

相关文档
最新文档