函数的基本性质解析

函数的基本性质解析
函数的基本性质解析

1

第二讲 函数的性质(一)

一、函数的单调性

1.单调函数的定义

增函数 减函数

定义

设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2

当x 1

当x 1f (x 2) ,那么就说函数f (x )在区间D 上是减函数

图象描述

自左向右看图象逐渐上升

自左向右看图象逐渐下降

2.单调区间的定义

若函数y =f (x )在区间D 上是 或,则称函数y =f (x )在这一区间上具有(严格的)单调性, 叫做y =f (x )的单调区间. 3、单调性的判定方法

(1)定义法: 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○

1 任取x 1,x 2∈D ,且x 1

2 作差f(x 1)-f(x 2); ○

3 变形(通常是因式分解和配方); ○

4 定号(即判断差f(x 1)-f(x 2)的正负);

○5 下结论(即指出函数f(x)在给定的区间D 上的单调性).

(2)图像法:从左往右,图像上升即为增函数,从左往右,图像下降即为减函数。 (3)复合函数的单调性的判断:

设)(x f y =,)(x g u =,],[b a x ∈,],[n m u ∈都是单调函数,则[()]y f g x =在],[b a 上也是单调函数。 ①若)(x f y =是[,]m n 上的增函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同 ②若)(x f y =是[,]m n 上的减函数,则[()]y f g x =与定义在],[b a 上的函数)(x g u =的单调性相同 即复合函数的单调性:当内外层函数的单调性相同时则复合函数为增函数;当内外层函数的 单调性相反时则复合函数为增减函数。也就是说:同增异减(类似于“负负得正”) 4、函数单调性应注意的问题:

①单调性是对定义域内某个区间而言的,离开了定义域和相应区间就谈不上单调性.

②对于某个具体函数的单调区间,可以是整个定义域(如一次函数),可以是定义域内某个区间(如二次函数),也可以根本不单调(如常函数).

③函数在定义域内的两个区间A ,B 上都是增(或减)函数,一般不能认为函数在上是增(或减)函数

二、函数的最值

前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足

条件

①对于任意x ∈I ,都有f (x )≤M ;

②存在x 0∈I ,使得f (x 0)=M

①对于任意x ∈I ,都有f (x )≥M ;

②存在x 0∈I ,使得f (x 0)=M

结论

M 为最大值 M 为最小值

利用函数单调性的判断函数的最大(小)值的方法 ○

1 利用二次函数的性质(配方法)求函数的最大(小)值 ○

2 利用图象求函数的最大(小)值 ○

3 利用函数单调性的判断函数的最大(小)值

如果函数y=f(x)在区间[a ,b]上单调递增,在区间[b ,c]上单调递减则函数y=f(x)在x=b 处有最大值f(b); 如果函数y=f(x)在区间[a ,b]上单调递减,在区间[b ,c]上单调递增则函数y=f(x)在x=b 处有最小值f(b); 强调 1.函数的单调性是局部性质

从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调.

2.函数的单调区间的求法

函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间.

[注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符

号“∪”联结,也不能用“或”联结.

三、例题讲解

例1、证明函数f (x )=2x -1

x

在(-∞,0)上是增函数.

练习1.判断函数g (x )=-2x

x -1在 (1,+∞)上的单调性.

练习2(图像法).函数f (x )=|x -2|x 的单调减区间是( ) A .[1,2]

B .[-1,0]

C .[0,2]

D .[2,+∞)

[例2] (1)若f (x )为R 上的增函数,则满足f (2-m )

)的实数m 的取值范围是________.

(2)若函数f (x )=|2x +a |的单调递增区间是[3,+∞),则a =________.

练习3.(1)函数f (x )=

1

x -1

在[2,3]上的最小值为________,最大值为________. (2)已知函数f (x )=1a -1x (a >0,x >0),若f (x )在??????12,2上的值域为????

??12,2,则a =__________.

四、随堂练习

1.下列函数中,在区间(0,+∞)上是增函数的( )

A .y =

B .y =3x 2

+1 C .y =2x

D .y =|x |

2.定义在R 上的函数f (x )满足f (-x )=-f (x +4), 当x >2时,f (x )单调递增,如果x 1+x 2<4,且 (x 1-2)(x 2-2)<0,则f (x 1)+f (x 2)的值( )

A .恒小于0

B .恒大于0

C .可能为0

D .可正可负

3.已知函数f (x )=?????

x 2

+4x ,x ≥0,

4x -x 2

,x <0.

若f (2-a 2

)>f (a ),则实数a 的取值范围是( )

A .(-∞,-1)∪(2,+∞)

B .(-1,2)

C .(-2,1)

D .(-∞,-2)∪(1,+∞) 4.如果函数2()3(,4]f x x ax =---∞在区间上单调递减,则实数a 满足的条件是 ( )

A .(8,+∞)

B .[8, +∞)

C .(∞,8)

D .(∞,8]

5.函数y =x 2

+2x -3的单调递减区间为( )

A .(-∞,-3]

B .(-∞,-1]

C .[1,+∞)

D .[-3,-1]

6.函数f (x )=2x 2-mx +3,当x ∈[2,+∞)时是增函数,当∈(-∞,2]时是减函数,则f (1)=________.

7.已知函数2

(1)21f x x x x +=+-,[1,2],则()f x 是 (填序号).

①[1,2]上的增函数; ②[1,2]上的减函数; ③[2,3]上的增函数; ④[2,3]上的减函数.

8.已知定义在区间[0,1]上的函数y =f (x )的图象如图所示,对于满足0

①f (x 2)-f (x 1)>x 2-x 1; ②x 2f (x 1)>x 1f (x 2); ③

f (x 1)+f (x 2)

2

??

??x 1+x 22.

其中正确结论的序号是________.(把所有正确结论的序号都填上) 9.已知函数f (x )=3-ax

a -1

(a ≠1).若a >0,则f (x )的定义域是________. 10.若函数f (x )=ax +1

x +2

在区间(-2,+∞)上递增,求实数a 的取值范围.

11.已知定义域为[0,1]的函数f (x )同时满足:①对于任意的x ∈[0,1],总有f (x )≥0;②f (1)=1;③若x 1≥0,

x 2≥0,x 1+x 2≤1,则有f (x 1+x 2)≥f (x 1)+f (x 2).

(1)求f (0)的值; (2)求f (x )的最大值.

12.定义在R 上的函数f (x )满足:对任意实数m ,n 总有f (m +n )=f (m )·f (n ),且当x >0时,0

(1)试求f (0)的值;

(2)判断f (x )的单调性并证明你的结论.

五、课后练习(一)

1.下列函数中,既是奇函数又是增函数的为( )

A .y =x +1

B .y =-x

3

C .y =1x

D .y =x |x |

2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( )

A .k >1

2

B .k <12

C .k >-12

D .k <-1

2

3.函数f (x )=

1

1-x 1-x 的最大值是( )

A.4

5

B.54

C.3

4

D.4

3

4.f (x )=x 2

-2x (x ∈[-2,4])的单调增区间为________;f (x )max =________.

5.已知函数f (x )为R 上的减函数,若m

????????1x

六、课后练习(二)

1.下列函数中,在区间(0,+∞)上为增函数的是( )

A .y =ln(x +2)

B .y =-x +1

C .y =? ??

??12x

D .y =x +1

x

2.若函数f (x )=4x 2

-mx +5在[-2,+∞)上递增,在(-∞,-2]上递减,则f (1)=( )

A .-7

B .1

C .17

D .25

3.(佛山月考)若函数y =ax 与y =-b x

在(0,+∞)上都是减函数,则y =ax 2

+bx 在(0,+∞)上是( )

A .增函数

B .减函数

C .先增后减

D .先减后增

4.已知奇函数f (x )对任意的正实数x 1,x 2(x 1≠x 2),恒有(x 1-x 2)(f (x 1)-f (x 2))>0,则一定正确的是( )

A .f (4)>f (-6)

B .f (-4)

C .f (-4)>f (-6)

D .f (4)

5.定义在R 上的函数f (x )满足f (x +y )=f (x )+f (y ),当x <0时,f (x )>0,则函数f (x )在[a ,b ]上有( )

A .最小值f (a )

B .最大值f (b )

C .最小值f (b )

D .最大值f ?

??

??a +b 2

6.函数y =-(x -3)|x |的递增区间是________.

7.若函数y =|2x

-1|,在(-∞,m ]上单调递减,则m 的取值范围是________. 8.若f (x )=

ax +1

x +2

在区间(-2,+∞)上是增函数,则a 的取值范围是________. 9.求下列函数的单调区间:y =-x 2

+2|x |+1;

10.已知函数f (x )=a ·2x

+b ·3x

,其中常数a ,b 满足ab ≠0.

(1)若ab >0,判断函数f (x )的单调性; (2)若ab <0,求f (x +1)>f (x )时x 的取值范围.

高一数学竞赛培训讲座之函数的基本性质

函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 提示:由已知,函数f(x)的图象有对称轴x = 23 于是这101个根的分布也关于该对称轴对称.

即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =2 3对称 利用中点坐标公式,这100个根的和等于 23×100=150 所有101个根的和为 23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x 再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b + c =6164 6. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

函数的基本性质解析

1 第二讲 函数的性质(一) 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2 当x 1f (x 2) ,那么就说函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是 或,则称函数y =f (x )在这一区间上具有(严格的)单调性, 叫做y =f (x )的单调区间. 3、单调性的判定方法 (1)定义法: 利用定义证明函数f(x)在给定的区间D 上的单调性的一般步骤: ○ 1 任取x 1,x 2∈D ,且x 1

函数教材分析解读

《函数》教材分析 1、哪儿发生变化,哪没变?从教材内容,(或添加、删减),内容 没变,但是呈现方式发生改变,体现的理念变化,为什么这么 变?实际上是要学有用的数学,身边的数学,应用数学,学是 为了用,设计思想,体现的理念。做数学,让学生参与。 2、新教材的重点和难点要分析出来,要将知识串起来。 3、变化的内容引起呈现方式的变化,技术所起的作用。技术的使用,引起学习方式的改变,怎么用?明确指出需要用技术的地方,形与数要结合。使用技术到非用不可,举例说明。重点! “函数是描述客观世界变化规律的重要数学模型。高中阶段用集合与对应的语言刻画函数,函数的思想方法将贯穿高中数学的始终。学生将学习指数函数、对数函数等具体的基本初等函数,结合实际问题,感受运用函数概念建立模型的过程与方法,体会函数在数学和其他学科中的重要性,初步运用函数思想理解和处理现实生活和社

会中的简单问题。” 二、内容安排: 函数这章教材共分个大节:第一大节是函数的概念及函数的一般性质;第二大节是指数与指数函数;第三大节是对数与对数函数;第四大节是函数的应用举例和实习作业。 1、函数是中学数学中最重要的基本概念之一。中学的函数教学大致为三个阶段,初中初步探讨函数的概念、函数关系的表示法、函数图象,并具体学习正比例、反比例、一次函数、二次函数等,使学生获得感性知识;本章及三角函数的学习是函数教学的第二阶段,是对函数概念的再认识阶段,用集合、映射的思想理解函数的一般定义,通过指数函数、对数函数以及后续的三角函数,使学生获得较为系统的函数知识,并初步培养函数的应用意识。第三阶段在选修部分,极限、导数与微分、积分是函数及其应用的深化与提高。 高中的函数知识是在初中的基础上学习的,主要讲函数的概念、函数关系的表示法、并学习函数的一般性质。从映射的概念看,函数是集合A到集合B的映射(A、B是非空数集),映射是特殊的对应,函数是特殊的映射,反函数也是映射。 2、学生在初中的基础上学习有理指数幂及其运算法则是不困难的。指数函数及其图象和性质是这一节的重点,要通过具体实例了解指数函数模型的实际背景,通过具体函数的图象来观察、归纳函数的性质,反之,函数性质又直观反映在图象上,指导准确作出函数图象。

《1.3 函数的基本性质》测试题

《1.3 函数的基本性质》测试题 一、选择题 1.下列函数中,是奇函数的为( ). A. B. C. D. 考查目的:考查函数奇偶性的定义. 答案:A. 解析:的定义域是,∴ ,∴,∴是奇函数. 2.已知函数在内单调递减,则的取值范围是( ). A. B. C. D. 考查目的:主要考查函数的单调性、二次函数、一次函数的图象和性质. 答案:C.

解析:函数在内单调递减,则须在上单调递减和在上单调递减,且,∴ ,∴. 3.已知奇函数在区间上的图像如图,则不等式的解集是( ). A. B. C. D. 考查目的:主要考查奇函数的图象特点,以及利用图象解题. 答案:B. 解析:奇函数的图象关于原点对称,画出函数的图象,由图得,选B. 二、填空题

4.设是定义在上的奇函数,当时,,则 . 考查目的:本题考查函数的奇偶性以及函数值的求法. 答案:-3. 解析:. 5.已知,则函数的单调增区间是. 考查目的:考查函数单调区间的概念及二次函数的单调性. 答案: 解析:抛物线的开口向下,对称轴为直线,故函数 在递增,在递减,所以函数的单调增区间是. 6.函数,当时,恒成立,则实数的取值范围是. 考查目的:考查利用函数的奇偶性和单调性解题. 答案:. 解析:∵函数在上是奇函数且为单调增函数,∴由 得,∴,∵,∴恒成立,∴.

三、解答题 7.函数对于任意的,都有,若时,,求证:是上的单调递减函数. 考查目的:主要考查利用函数的单调性定义证明函数的单调性. 解析:任取,则,由时,,得,根据,有,所以,即,所以是上的单调递减函数. 8.已知函数是定义在R上的偶函数,且当≤0时,. ⑴现已画出函数在轴左侧的图像,如图所示,请补出完整函数的图像,并根据图像写出函数的增区间; ⑵写出函数的解析式和值域. 考查目的:主要考查奇偶函数图象的画法,分段函数解析式,根据图象写函数的单调区间. 解析:⑴根据偶函数图像关于轴对称补出完整函数图像(如图).

函数的基本性质知识点归纳与题型总结

函数的基本性质知识点归纳与题型总结 一、知识归纳 1.函数的奇偶性 2.函数的周期性 (1)周期函数 对于函数f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=f(x),那么就称函数f(x)为周期函数,称T为这个函数的周期. (2)最小正周期 如果在周期函数f(x)的所有周期中存在一个最小的正数,那么这个最小正数就叫做f(x)的最小正周期. 解题提醒: ①判断函数的奇偶性,易忽视判断函数定义域是否关于原点对称.定义域关于原点对称是函数具有奇偶性的一个必要条件. ②判断函数f(x)的奇偶性时,必须对定义域内的每一个x,均有f(-x)

=-f (x )或f (-x )=f (x ),而不能说存在x 0使f (-x 0)=-f (x 0)或f (-x 0)=f (x 0). ③分段函数奇偶性判定时,误用函数在定义域某一区间上不是奇偶函数去否定函数在整个定义域上的奇偶性. 题型一 函数奇偶性的判断 典型例题:判断下列函数的奇偶性: (1)f (x )=(x +1) 1-x 1+x ; (2)f (x )=? ???? -x 2+2x +1,x >0, x 2+2x -1,x <0; (3)f (x )=4-x 2 x 2; (4)f (x )=log a (x +x 2+1)(a >0且a ≠1). 解:(1)因为f (x )有意义,则满足1-x 1+x ≥0, 所以-1<x ≤1, 所以f (x )的定义域不关于原点对称, 所以f (x )为非奇非偶函数. (2)法一:(定义法) 当x >0时,f (x )=-x 2+2x +1, -x <0,f (-x )=(-x )2+2(-x )-1=x 2-2x -1=-f (x ); 当x <0时,f (x )=x 2+2x -1, -x >0,f (-x )=-(-x )2+2(-x )+1=-x 2-2x +1=-f (x ).

对数性凸函数的性质及应用解读

对数性凸函数的性质及应用 王传坚 (楚雄师范学院数学系2003级1班) 指导老师郎开禄 摘要:在本文中,得到了对数性凸函数的四个性质,并讨论了对数性凸函数的性质的应用。 关键词:凸函数;.对数性凸函数; 基本性质; 应用. The research and application on some properties of logarithmatic convex function Wang Chuanjian (Department of Math, Chu Xiong Normal University, Chu Xiong,Yun Nan ,675000) Abstract: In this paper, the author gives some properties of logarithmatic convex function by studying the fundamental properties, and give some application about the properties of logarithmatic. Key Words:Convex Function; Logarithmatic Convex Function; Fundamental Property; Application. 导师评语: 凸函数是一类重要的函数,它有许多很好的性质,并有广泛的应用.在文[1]( [1] 刘芳园,田宏 根. 对数性凸函数的一些性质[J].《新疆师范大学学报》,2006,25(3):22-25.)中,刘芳园,田宏根 引入对数性凸函数的概念,研究获得了对数性凸函数的若干基本性质,并讨论了对数性凸函数基本性 质的一些应用. 受文[1]的启发,在文[1]的基础上,王传坚同学的毕业论文<<对数性凸函数的性性质及其应用>>进一步研究了对数性凸函数性质,获得了对数性凸函数的两个性质(推论1,推论2)和四个基本结果(定理3, 定理4, 定理5, 定理6),并讨论了对数性凸函数的性质及其应用. 王传坚同学的毕业论文<<对数性凸函数的性质及其应用>>选题具有理论与实 际意义,通过研究所获结果具有理论与实际意义.该论文的完成需要较好的数学分析基础,主要结果 的证明有一定的技巧,论文的完成有一定的难度,是一篇创新型的毕业论文.论文语言流畅,打印行文 规范.该同学在撰写论文过程中,悟性好,独立性强.

高中函数及其性质

高中函数及其性质 一、函数的基本性质: 1. 函数图像的对称性 (1) 奇函数与偶函数:奇函数图像关于坐标原点对称,对于任意x D ∈,都有()()f x f x -=-成立; 偶函数的图像关于y 轴对称,对于任意x D ∈,都有()()f x f x -=成立。 (2) 原函数与其反函数:原函数与其反函数的图像关于直线y x =对称。 若某一函数与其反函数表 示同一函数时,那么此函数的图像就关于直线y x =对称。 (3) 若函数满足()(2)f x f a x =-,则()f x 的图像就关于直线x a =对称;若函数满足 ()(2)f x f a x =--,则()f x 的图像就关于点(,0)a 对称。 (4) 互对称知识:函数()()y f x a y f a x =-=-与的图像关于直线x a =对称。 2.函数的单调性 函数的单调性是针对其定义域的某个子区间而言的。判断一个函数的单调性一般采用定义法、导 数法或借助其他函数结合单调性的性质(如复合函数的单调性) 特别提示:函数(0)a y x a x =+>的图像和单调区间。 3.函数的周期性 对于函数()y f x =,若存在一个非零常数T ,使得当x 为定义域中的每一个值时,都有 ()()f x T f x +=成立,则称()y f x =是周期函数,T 称为该函数的一个周期。若在所有的周期中 存在一个最小的正数,就称其为最小正周期。 (1) 若T 是()y f x =的周期,那么()nT n Z ∈也是它的周期。 (2) 若()y f x =是周期为T 的函数,则()(0)y f ax b a =+≠是周期为 T a 的周期函数。 (3) 若函数()y f x =的图像关于直线x a x b ==和对称,则()y f x =是周期为2()a b -的函数。 (4) 若函数()y f x =满足()()(0)f x a f x a +=-≠,则()y f x =是周期为2a 的函数。 4.函数的最值: 常规求法:配方法、判别式法、不等式法、换元法、构造法 5.Gauss(高斯)函数 对于任意实数x ,我们记不超过x 的最大整数为[]x ,通常称函数[]y x =为取整函数。又称高斯函数。又记{}[]x x x =-,则函数{}y x =称为小数部分函数,它表示的是x 的小数部分。 高斯函数的常用性质: (1) 对任意,1[][]1x R x x x x ∈-<≤<+均有 (2) 对任意x R ∈,函数{}y x =的值域为[0,1) (3) 高斯函数是一个不减函数,即对于任意121212,,,[][]x x R x x x x ∈≤≤若则 (4) 若,,[][],{}{}n Z x R x n n x n x x ∈∈+=++=则有,后一个式子表明{}y x =是周期为1的函数。 (5) 若,,[][][][][]1x y R x y x y x y ∈+≤+≤++则 (6) 若* ,,[][]n N x R nx n x ∈∈≥则 二、应用举例: 例1.已知)(x f 是一次函数,且10231024)(10+=x x f .求)(x f 的解析式.

求函数解析式的六种常用方法

求函数解析式的九种常用方法 一、换元法 已知复合函数f [g (x )]的解析式,求原函数f (x )的解析式, 把g (x )看成一个整体t ,进行换元,从而求出f (x )的方法。 例1 已知f (x x 1 +)= x x x 112 2++,求f (x )的解析式. 解: 设 x x 1+= t ,则 x= 1 1-t (t ≠1), ∴f (t )= 1 11)11(1 )11(22-+-+-t t t = 1+2)1(-t +(t -1)= t 2-t+1 故 f (x )=x 2 -x+1 (x ≠1). 评注: 实施换元后,应注意新变量的取值范围,即为函数的定义域. 二、配凑法 例2 已知f (x +1)= x+2x ,求f (x )的解析式. 解: f (x +1)= 2 )(x +2x +1-1=2)1(+x -1, ∴ f (x +1)= 2 )1(+x -1 (x +1≥1),将x +1视为自变量x ,则有 f (x )= x 2 -1 (x ≥1). 评注: 使用配凑法时,一定要注意函数的定义域的变化,否则容易出错. 三、待定系数法 已知函数解析式的类型,可设其解析式的形式,根据已知条件建立关于待定系数的方程,从而求出函数解析式的方法。 例3 已知二次函数f (x )满足f (0)=0,f (x+1)= f (x )+2x+8,求f (x )的解析式. 解:设二次函数f (x )= ax 2 +bx+c ,则 f (0)= c= 0 ①

f (x+1)= a 2)1(+x +b (x+1)= ax 2 +(2a+b )x+a+b ② 由f (x+1)= f (x )+2x+8 与①、② 得 ???=++=+822b a b b a 解得 ?? ?==. 7,1b a 故f (x )= x 2 +7x. 评注: 已知函数类型,常用待定系数法求函数解析式. 四、消去法(方程组法) 例4 设函数f (x )满足f (x )+2 f ( x 1 )= x (x ≠0),求f (x )函数解析式. 分析:欲求f (x ),必须消去已知中的f (x 1),若用x 1 去代替已知中x ,便可得到另一个方程,联立方 程组求解即可. 解:∵ f (x )+2 f ( x 1 )= x (x ≠0) ① 由x 1代入得 2f (x )+f (x 1)=x 1 (x ≠0) ② 解 ①② 构成的方程组,得 f (x )=x 32 -3 x (x ≠0). 评注:方程组法求解析式的关键是根据已知方程中式子的特点,构造另一个方程 练习:已知定义在R 上的函数满足 ,求 的解析式。 五、特殊值法 例5 设是定义在R 上的函数,且满足f (0)=1,并且对任意的实数x ,y ,有 f (x -y )= f (x )- y (2x -y+1),求f (x )函数解析式. 分析:要f (0)=1,x ,y 是任意的实数及f (x -y )= f (x )- y (2x -y+1),得到 f (x )函数解析式,只有令x = y. 解: 令x = y ,由f (x -y )= f (x )- y (2x -y+1) 得 f (0)= f (x )- x (2x -x+1),整理得 f (x )= x 2+x+1.

高中数学-函数的基本性质小结

函数的基本性质【教学目标】 【教学重点】

函数的基本性质及应用 【教学难点】 函数关系的建立、用函数的性质解决简单的实际问题与领悟数学思想方法。 【教学过程】: 一.知识整理 1.基本思想 (1)函数主要研究两个变量的相互联系,故涉及到两个变量的相互作用、相互影响的问题,大多可用函数的观点来解决。 (2)研究函数的主要途径是函数的图象和基本性质(以图象说明性质)。 2.主要问题: (1)函数图象的基本作法:a.分段 b.平移 c.对称 d.伸缩 (2)函数单调性的求法:a.图象 b.单调运算 c.复合函数 d.定义 (3)函数最值(或范围)的求法:a.图象 b.单调性 c.不等式 d.复合函数 e.换元 f.数形结合 (4)反函数求法:①解出x =φ(y),②调换x,y, ③写出反函数定义域 3.函数的基本性质 函数定义:在某个变化过程中有两个变量x,y,如果对于x在某个实数集合D内的每一个确定的值,按照某个对应法则f,y都有唯一确定的实数值与之对应,那么y就是x函数,记作y = f (x),x∈D,x叫做自变量,x的取值范围D叫做函数的定义域,和x 的值相对应的y的值叫做函数值,函数值的集合叫做函数的值域。 函数的相等:定义域相同,对应法则相同 函数图象:以自变量x的值为横坐标,与x的值对应的y的值为纵坐标所构成的点集,即{(x,y)|y = f (x), x∈D} a.定义域:自变量x的取值范围;亦为函数图象上点的横坐标的集合 b.值域:因变量y的取值范围;亦为函数图象上点的纵坐标的集合 c.奇偶性:如果对于函数f(x)的定义域D内的任意实数a,都有f(-a)= f(a),则称函数 f(x)为偶函数; 如果对于函数f(x)的定义域D内的任意实数a,都有f(-a)=-f(a),则称函数f(x) 为奇函数;

函数的基本性质(考点加经典例题分析)

函数的基本性质 函数的三个基本性质:单调性,奇偶性,周期性 一、单调性 1、定义:对于函数)(x f y =,对于定义域内的自变量的任意两个值21,x x ,当21x x <时,都有))()()(()(2121x f x f x f x f ><或,那么就说函数)(x f y =在这个区间上是增(或减)函数。 2、图像特点:在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的。(提示:判断函数单调性一般都使用图像法,尤其是分段函数的单调性。) 3.二次函数的单调性:对函数c bx ax x f ++=2 )()0(≠a , 当0>a 时函数)(x f 在对称轴a b x 2- =的左侧单调减小,右侧单调增加; 当0-x f x f x f x f 或; ⑸根据定义下结论。 例2、判断函数1 2)(-+= x x x f 在)0,(-∞上的单调性并加以证明.

5.复合函数的单调性:复合函数))((x g f y =在区间),(b a 具有单调性的规律见下表: 以上规律还可总结为:“同向得增,异向得减”或“同增异减”。 例3:函数322-+=x x y 的单调减区间是 ( ) A.]3,(--∞ B.),1[+∞- C.]1,(--∞ D.),1[+∞ 6.函数的单调性的应用: 判断函数)(x f y =的单调性;比较大小;解不等式;求最值(值域)。 例4:求函数1 2-= x y 在区间]6,2[上的最大值和最小值. 二、奇偶性 1.定义: 如果对于f(x)定义域内的任意一个x,都有)()(x f x f =-,那么函数f(x)就叫偶函数; (等价于:0)()()()(=--?=-x f x f x f x f ) 如果对于f(x)定义域内的任意一个x,都有)()(x f x f -=-,那么函数f(x)就叫奇函数。 (等价于:0)()()()(=+-?-=-x f x f x f x f ) 注意:当0)(≠x f 时,也可用1) ()(±=-x f x f 来判断。 2.奇、偶函数的必要条件:函数的定义域在数轴上所示的区间关于原点对称。 若函数)(x f 为奇函数,且在x=0处有定义,则0)0(=f ; 3.判断一个函数的奇偶性的步骤 ⑴先求定义域,看是否关于原点对称; ⑵再判断)()(x f x f -=-或)()(x f x f =- 是否恒成立。

课标版文数2018版《5年高考3年模拟》§2.2 函数的基本性质 考纲解读及考题解析

§2.2函数的基本性质 考纲解读 分析解读 1.考查函数的单调区间的求法及单调性的应用,如应用单调性求值域、比较大小或证明不等式,运用定义或导数判断或证明函数的单调性等. 2.借助数形结合的思想解题.函数的单调性、周期性、奇偶性的综合性问题是高考热点,应引起足够的重视. 3.本节内容在高考中分值为5分左右,属于中档题. 五年高考 考点一函数的单调性及最值 1.(2016北京,4,5分)下列函数中,在区间(-1,1)上为减函数的是( )

A.y=1 1- B.y=cos x C.y=ln(x+1) D.y=2-x 答案 D 2.(2015陕西,9,5分)设f(x)=x-sin x,则f(x)( ) A.既是奇函数又是减函数 B.既是奇函数又是增函数 C.是有零点的减函数 D.是没有零点的奇函数 答案 B 3.(2014湖南,4,5分)下列函数中,既是偶函数又在区间(-∞,0)上单调递增的是( ) A.f(x)=1 2 B.f(x)=x2+1 C.f(x)=x3 D.f(x)=2-x 答案 A 4.(2013辽宁,12,5分)已知函数f(x)=x2-2(a+2)x+a2,g(x)=-x2+2(a-2)x-a2+8.设 H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max{p,q}表示p,q中的较大值,min{p,q}表示p,q中的较小值).记H1(x)的最小值为A,H2(x)的最大值为B,则A-B=( ) A.a2-2a-16 B.a2+2a-16 C.-16 D.16 答案 C 5.(2016北京,10,5分)函数f(x)= -1 (x≥2)的最大值为. 答案 2 教师用书专用(6—8) 6.(2014北京,2,5分)下列函数中,定义域是R且为增函数的是( ) A.y=e-x B.y=x3 C.y=ln x D.y=|x| 答案 B 7.(2013北京,3,5分)下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是( ) A.y=1 B.y=e-x C.y=-x2+1 D.y=lg|x| 答案 C 8.(2014天津,12,5分)函数f(x)=lg x2的单调递减区间是. 答案(-∞,0) 考点二函数的奇偶性 1.(2017天津,6,5分)已知奇函数f(x)在R上是增函数.若a=-f 21 5 ,b=f(log24.1),c=f(20.8),则a,b,c的大小关系为 ( ) A.af(-),则a的取值范围是( ) A.-∞,1 2B.-∞,1 2 ∪ 2 ,∞ C.1 2, 2 D. 2 ,∞ 答案 C 3.(2015北京,3,5分)下列函数中为偶函数的是( ) A.y=x2sin x B.y=x2cos x C.y=|ln x| D.y=2-x 答案 B 4.(2015安徽,4,5分)下列函数中,既是偶函数又存在零点的是( ) A.y=ln x B.y=x2+1 C.y=sin x D.y=cos x 答案 D 5.(2014课标Ⅰ,5,5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论中正确的是( ) A.f(x)g(x)是偶函数 B.|f(x)|g(x)是奇函数

热点02 函数及其性质(解析版)

热点02 函数及其性质 ※※※※※命题趋势※※※※※ 纵观高中数学,函数贯穿于整个数学内容,是学生最头疼的内容,也会高考当中最能拉开分值的考点,占有的分数比重比较高.内容量比较大,近年以及之后的理科数学高考中,函数奇偶性,零点问题,恒成立问题,周期性问题以及单调性问题是高考函数中的核心.容易把具体函数与相应的性质相结合.通过列举了高考数学高频率考点,组合成了本专题,通过本函数及性质的专题的学习,让你对高中数学函数及其性质部分有充分的的理解,在以后遇到高考中的高频题型能够快速找到最佳解法. ※※※※※满分技巧※※※※※ 图像题是高考数学中函数及其性质高考必考题型,第一种解法三步走,第一步奇偶性判定,第二步单调性的判定,第三步特殊值的带入.第二种解法:也是三步走,第一步奇偶性判定,第二步特殊值带入.第三步特殊值带入. 零点问题是近几年高考常考题目,此类题目务必采用数形结合.将复杂函数分割化,从而求出对应函数的交点问题. 对于恒成立问题一般采用函数单调性的方法去做.M x f ≥)(恒成立则M 小于等于函数最小值,M x f ≤)(恒成立,则M 大于等于函数最大值,对于存在使的M x f ≤)(成立,则M 大于函数最小值.对于选择题则可以采用特殊值代入法以及图像法去简化运算. 恒成立问题另外注意问题是双变量问题,双变量问题一般是指的是两个未知数相互不影响,即若)()(21x ≥g x f 恒成立,只要满足)(x f 定义域范围内最小值大于)(x g 最大值即可. 分段函数单调性问题是简单题目也是最容易出错的问题,一般容易遗漏边界点.采用特殊值代入法时应采用多次带入方不会出错. 函数及其性质一般会放在选择题的最后四题左右,相对来说比较难,在常规方法的同时应注意特殊点代入,抽象函数具体化.,数形结合思想,化归思想. ※※※※※真题体验※※※※※ 1.(2020?海南)已知函数f (x )=lg (x 2﹣4x ﹣5)在(a ,+∞)上单调递增,则a 的取值范围是( ) A .(2,+∞) B .[2,+∞) C .(5,+∞) D .[5,+∞) 【答案】D 【解析】由x 2﹣4x ﹣5>0,得x <﹣1或x >5.令t =x 2﹣4x ﹣5,∵外层函数y =lgt 是其定义域内的增函数, ∴要使函数f (x )=lg (x 2﹣4x ﹣5)在(a ,+∞)上单调递增, 则需内层函数t =x 2﹣4x ﹣5在(a ,+∞)上单调递增且恒大于0, 则(a ,+∞)?(5,+∞),即a ≥5.∴a 的取值范围是[5,+∞).故选:D . 2.(2020?新课标Ⅰ)设a log 34=2,则4﹣ a =( ) A . 116 B .1 9 C .1 8 D .1 6 【答案】B

从解析式和图像看函数的性质高一数学总结练习含答案解析D

1.2.3 从图象看函数的性质 1.2.4 从解析式看函数的性质 1.单调函数的定义 函数值y随自变量x的①而增大的函数叫作②;函数值y随自变量x的增大而③的函数叫作④. 单调递增,单调递减通常称为递增或递减.递增函数和递减函数统称为单调函数. 2.奇偶函数的几何定义 若函数的图象绕原点旋转180°后和自己重合,则称这类函数是⑤.若函数的图象是以y轴为对称轴的轴对称图形,则称这类函数是⑥. 3.函数的最值 (1)上界与下界:设D为函数f(x)的定义域,如果有实数B使得f(x)⑦B对一切x∈D成立,则称B是函数的一个上界;如果有实数A使得f(x)⑧A对一切x∈D成立,则称A是f(x)的一个下界. (2)有上界又有下界的函数叫作有界函数,否则函数称为无界函数. (3)函数的最大(小)值的定义: 如果有a∈D,使得不等式f(x)≤f(a)对一切x∈D成立,就说f(x)在x=a处取得最大值M=f(a),称M 为f(x)的最大值,a为f(x)的最大值点.如果有a∈D,使得不等式f(x)≥f(a)对一切x∈D成立,就说f(x)在x=a处取得最小值M=f(a),称M为f(x)的最小值,a为f(x)的最小值点. 4.函数的单调性 (1)递增、递减函数 条件一般地,设函数f(x)的定义域为D:如果对于定义域D内某个区间I上的⑨两个自变量的值x 1 ,x 2 ,当x 1

论在区间I上是 函数 图 示 (2)单调区间 如果一个函数在某个区间上是递增函数或是递减函数,就说这个函数在这个区间上具有单调性,该区间称为这个函数的单调区间. (3)定义法证明函数的单调性 在函数单调性的定义中,记x=x 1,x+h=x 2 ,条件x 1 0,f(x 1 )0,f(x 1)>f(x 2 )可以写成f(x+h)-f(x)<0.差式f(x+h)-f(x)叫作函数在区间I上的 .如果不加说明,总认为h>0.这样,差分为正的函数就是递增函数,差分为负的函数就是递减函数. 一、函数单调性的判断与证明 1.(2011上海改编,★★☆)下列函数中,在区间(-∞,0)上单调递增,且在区间(0,+∞)上单调递减的函数为( ) A.y=1 x2B.y=1 x C.y=x2 D.y=x3 思路点拨对选项B,C中的函数,直接利用反比例函数和二次函数的单调性判断即可;对选项A,D中的函数,需利用单调性的定义判断. 2.(2014安徽师大附中期中,★★☆)已知函数f(x)=x-1 x+1 ,判断f(x)在(0,+∞)上的单调性并用定义证明. 思路点拨取值作差变形定号下结论

知识讲解_指数函数及其性质_基础

指数函数及其性质 编稿:丁会敏 审稿:王静伟 【学习目标】 1.掌握指数函数的概念,了解对底数的限制条件的合理性,明确指数函数的定义域; 2.掌握指数函数图象: (1)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质; (2)掌握底数对指数函数图象的影响; (3)从图象上体会指数增长与直线上升的区别. 3.学会利用指数函数单调性来比较大小,包括较为复杂的含字母讨论的类型; 4.通过对指数函数的概念、图象、性质的学习,培养观察、分析归纳的能力,进一步体会数形结合的思想方法; 5.通过对指数函数的研究,要认识到数学的应用价值,更善于从现实生活中发现问题,解决问题. 【要点梳理】 要点一、指数函数的概念: 函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释: (1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23x y =?,12x y =, 31x y =+等函数都不是指数函数. (2)为什么规定底数a 大于零且不等于1: ①如果0a =,则000x x ?>??≤??x x 时,a 恒等于, 时,a 无意义. ②如果0a <,则对于一些函数,比如(4)x y =-,当11 ,,24 x x = =???时,在实数范围内函数值不存在. ③如果1a =,则11x y ==是个常量,就没研究的必要了. 要点诠释:

(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。 (2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。 (3)指数函数x y a =与1 x y a ?? = ??? 的图象关于y 轴对称。 要点三、指数函数底数变化与图像分布规律 (1) ① x y a = ②x y b = ③x y c = ④x y d = 则:0<b <a <1<d <c 又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数 11 2,3, (), ()23 x x x x y y y y ====的图像: 要点四、指数式大小比较方法 (1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法 比较法有作差比较与作商比较两种,其原理分别为: ①若0A B A B ->?>;0A B A B -,或1A B <即可. 【典型例题】 类型一、指数函数的概念 例1.函数2 (33)x y a a a =-+是指数函数,求a 的值. 【答案】2 【解析】由2 (33)x y a a a =-+是指数函数, 可得2331,0,1, a a a a ?-+=?>≠?且解得12, 01,a a a a ==??>≠?或且,所以2a =. 【总结升华】判断一个函数是否为指数函数: (1)切入点:利用指数函数的定义来判断;

第03讲-函数的基本性质(单调性、奇偶性、周期性)

第03讲 函数的性质 (单调性、奇偶性、周期性、对称性) 【考纲解读】 2. 函数概念与基本初等函数I (指数函数、对数函数、幂函数) (1)函数 ④ 理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义. 【知识梳理】 1.单调性 定义: ①∈?21,x x 区间M(A M ?定义域), 012>-?x x 若②()()012>-=?x f x f y , 则③()x f 在M 上是增函数(M 称为增区间); 若②()()012<-=?x f x f y , 则③()x f 在M 上是减函数(M 称为增区间). 函数单调性题目类型 (1)利用定义的常见单调性题目: ①②?③,判断函数的单调性; ②③?①,判断自变量大小; ①③?②,判断函数值的大小。 (2)已知单调性,反求参数范围; (3)利用导数研究函数单调性; (4)利用已知函数的图像研究函数单调性; (5)复合函数的单调性 2.奇偶性 定义: (1)若()()x f x f D x =-∈?,,则()x f 是偶函数; 若()()000x f x f D x =/-∈?,使得,则()x f 不是偶函数; (2)若()()x f x f D x -=-∈?,,则()x f 是奇函数; 若()()000x f x f D x -=/-∈?,使得,则()x f 不是奇函数; 注意:定义的否定形式. 3.周期性:定义: 若存在非零常数T ,使得()()x f T x f D x =+∈?,, 则()x f 为周期函数,T 是一个周期. 4.对称性 (1)偶函数的图像关于y 轴对称; (2)奇函数的图像关于原点对称; (3)指数函数x a y =和对数函数x y a log =是互为反函数,它们的图像关于直线x y =对称; (4)若()x f 满足()()x a f x a f +=-,则()x f 的图像关于直线a x =对称; (5)若()x f 满足()()x a f x a f +-=-,则()x f 的图像 关于点()0, a 对称; (6)若()x f 满足()()x b f x a f +=-,则()x f 的图像 关于直线2 b a x += 对称; (7)若()x f 满足()()x a f b x a f +-=-2,则()x f 的 图像关于点()b a ,对称; 【典例精讲】 考点一 单调性 例1.(15湖南理)设函数()ln(1)ln(1)f x x x =+--,则()f x 是( ) A.奇函数,且在(0,1)上是增函数 B.奇函数,且在(0,1)上是减函数 C.偶函数,且在(0,1)上是增函数 D.偶函数,且在(0,1)上是减函数 【答案】A. 【解析】 试题分析:显然,)(x f 定义域为)1,1(-,关于原点对称,又∵)()1ln()1ln()(x f x x x f -=+--=-, ∴)(x f 练习 (2012山东理)设0a >且1a ≠, 则“函数()x f x a =在R 上是减函数”,是“函数 3()(2)g x a x =-在R 上是增函数”的 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件 (2006北京)已知(31)4,1 ()log ,1 a a x a x f x x x -+?是 (,)-∞+∞上的减函数,那么a 的取值范围是 (C) (A )(0,1)(B )1(0,)3(C )11[,)73 (D )1 [,1)7 考点二 奇偶性 例2. (2013上海春)已知真命题:“函数()y f x =的图像关于点( )P a b 、成中心对称图形”的充要条件为“函数 ()y f x a b =+- 是奇函数”. (1)将函数3 2 ()3g x x x =-的图像向左平移1个单位,再向上平移2个单位,求此时图像对应的函数解析式,并利用题设中的真命题求函数()g x 图像对称中心的坐标; (2)求函数2 2()log 4x h x x =- 图像对称中心的坐标; (3)已知命题:“函数 ()y f x =的图像关于某直线成轴对 称图像”的充要条件为“存在实数a 和b,使得函数 ()y f x a b =+- 是偶函数” .判断该命题的真假.如果是真命题,请给予证明;如果是假命题,请说明理由,并类比题设的真命题对它进行修改,使之成为真命题(不必证明). 【答案】(1)平移后图像对应的函数解析式为32(1)3(1)2y x x =+-++, 整理得33y x x =-,

考点03 利用函数的图像探究函数的性质(1)(解析版)

考点03 利用函数的图像探究函数的性质(1) 【知识框图】 【自主热身,归纳提炼】 1、(2017苏州暑假测试) 若函数6,2, ()(0,1)3log ,2,a x x f x a a x x -+?=>≠? +>? ≤的值域是[4,)+∞,则实数a 的取值范围是 . 【答案】12a <≤. 解析 作出函数的图象,易知当2x ≤时,()64f x x =-+≥,要使()f x 的值域为[4,)+∞, 由图可知,显然1a >且3log 24a +≥,即12a <≤. 2、(2016苏锡常镇调研) 已知函数f (x )=||2x -2(x ∈(-1,2)),则函数y =f (x -1)的值域为________. 【答案】[0,2) 解法1 由于平移不改变值域,故只需要研究原函数的值域.画出函数f (x )=|2x -2|的图像.由下图易得值域为[0,2). 解法2 因为x ∈(-1,2),所以2x ∈????12,4,2x -2∈????-3 2,2,所以|2x -2|∈[0,2).因为y =f (x -1)是由f (x )向右平移1个单位得到的,所以值域不变,所以y =f (x -1)的值域为[0,2). 3、(2017苏锡常镇二模)已知函数f (x )=? ???? 4, x ≥m , x 2+4x -3, x

相关文档
最新文档