相位法测向

相位法测向
相位法测向

相位法测向原理与仿真

03071201 张北辰

一、理论分析

1、相位法测向原理:

以单基线干涉仪测向为例,其电波到达相邻天线阵元形成的波程差如上图所示。图中测向天线阵由两个阵元组成,假设辐射源与阵元相距很远,所以可认为辐射源发射到阵元1和2的信号平行。假设阵元1和阵元2之间的间距为d,来波方向与阵列法线方向的夹角为 。测向的实质是测量夹角 。

阵元1和阵元2接收到的信号传播存在波程差,因而也存在相位差。设阵元1接收信号为

则阵元2的接收信号为

其中λ为信号波长

从上可以看出,相位差为

即为相位差和入射波方向的简单推倒公式。

2、精度与多值性问题:

相位差φ值测量不准, 将产生测角误差, 它们之间的关系如下

可以看出, 采用读数精度高(dφ小)的相位计, 或减小λ/d值(增大d/λ值), 均可提高测角精度。也注意到:当θ=0 时, 即目标处在天线法线方向时, 测角误差dθ最小。当θ增大, d θ也增大, 为保证一定的测角精度, θ的范围有一定的限制。

增大d/λ虽然可提高测角精度, 但在感兴趣的θ范围(测角范围)内, 当d/λ加大到一定程序时, φ值可能超过2π, 此时φ=2πN+ψ, 其中N为整数; ψ<2π, 而相位计实际读数为ψ值。由于N值未知, 因而真实的φ值不能确定, 就出现多值性(模糊)问题。必须解决多值性问题, 即只有判定N值才能确定目标方向。

还有一种有效的途径,便是使两个接收阵元均具有方向性,若使两接收阵元主瓣均对准θ=0方向,该方向接收到的Φ=0所对应的信号幅值比其他Φ=0对应信号幅值大,从而能在多值中找出目标的真正方位,解决多值问题

二:仿真

采用两个线阵作接收阵元,子阵元之间间距均为d=λ/2,入射角θ=0.0176°,

入射信号频率为100Hz,采样频率2000Hz进行仿真,结果如下

上图为两个基阵分别接收到的信号波形,可以看出,两个信号始终保持一个相位差,而这个相位差就是我们推算入射角度的重要量。

为了获得相位差,根据参考文献1,采用互相关法测量相位差,得到互相关函数的图像如下图所示:

通过计算,得到相位差的数据,从而推算得到入射角

由图中matalab仿真结果可以看到,设定的入射角为0.0176°,仿真测量得到的入射角为0.0167°,符合理论分析中所讨论的精度要求。

参考文献:

1、张毅刚, 付平, 王丽. 采用数字相关法测量相位差[J]. 计量学报, 2000, 21(03):216-221. DOI:doi:10.3321/j.issn:1000-1158.2000.03.011.

2、田坦. 声呐技术[M]// 哈尔滨工程大学出版社 [等], 2010.

雷达原理

一、绪论 雷达:无线电探测与测距。利用电磁波对目标检测、定位、跟踪、成像和识别。 雷达利用目标对电磁波的反射或散射现象来发现目标并测定其位置的。 组成框图 雷达测量原理 雷达发射信号: 雷达接收信号: 雷达利用收发信号之间的相关性获取目标信息 雷达组成: 天线:向确定的方向发射和接收特定频段的电磁波 收发开关: 发射状态将发射机输出功率接到天线,保护接收机输入端 接收状态将天线接收信号接到接收机,防止发射机旁路信号 发射机:在特定的时间、以特定的频率和相位产生大功率电磁波 接收机:放大微弱的回波信号,解调目标信息 雷达的工作频率: 工作频率范围:22mhz--35ghz 扩展范围:2mhz--94ghz 绝大部分雷达工作在:200mhz--10000ghz 雷达的威力范围:最大作用距离、最小作用距离、最大仰角、最小仰角、方位角范围 分辨力:区分点目标在位置上靠近的能力 距离分辨力:同一方向上两个目标之间最小可区别的距离 角度分辨力:在同一距离上的两个不同方向的点目标之间最小能区别的角度 数据率:雷达对整个威力范围内完成一次搜索所需要的时间倒数,也就是单位时间内雷达所能提供对一个目标数据的次数。 跟踪速度:自动跟踪雷达连续跟踪运动目标的最大可能速度 发射功率的和调制波形: 发射功率的大小直接影响雷达的作用距离

发射信号的调制波形: 早期简单脉冲波形,近代采用复杂波形 脉冲宽度:脉冲雷达发射信号所占的时间。影响探测能力和距离分辨力 重复频率:发射机每秒发射的脉冲个数,其倒数是重复周期。决定单值测距的范围,影响不模糊速区域大小 天线波束形状天线:一般用水平面和垂直面内的波束宽度来表示 天线的扫描方式:搜索和跟踪目标时,天线的主瓣按照一定规律在空间所作的反复运动。机械性扫描和电扫描 接收机的灵敏度:通常规定在保证50%、90%的发现概率条件下,接收机输入端回波信号的功率作为接收机的最小可检测信号功率。这个功率越小接收机的灵敏度越高,雷达的作用距离越远。 显示器的形式和数量:雷达显示器是向操纵人员提供雷达信息的一种终端设备,是人际联系的一个环节。 电子战对抗中的雷达: 电子战(EW ):敌我双方利用无线电电子装备或器材所进行的电磁信息斗争,包括电子对抗和电子反对抗。 电子对抗(ECM ):为了探测敌方无线电电子装备的电磁信息(电磁侦察),削弱或破坏其使用效能所采取的一切战术、技术措施(电子干扰、伪装、隐身和摧毁) 电子反对抗(ECCM ):在敌方实施电子对抗的条件下,保证我方有效采用电磁信息所采取的一切战术、技术措施(反侦察、抗干扰、反伪装、反隐身、反摧毁) 雷达反干扰 天线抗干扰:低旁瓣、旁瓣对消、波束控制、随机扫描 发射机抗干扰:提高有效辐射功率、频率捷变、频率编码、频率分集、脉冲压缩、波形隐蔽、窄脉冲、重频时变 接收机、信号处理机抗干扰:接收机抗饱和、重频、脉宽鉴别、MTI 、MTD 、积累检测 二、发射机 发射机任务:产生大功率高频振荡发射信号。脉冲雷达要求发射机产生一定宽度、一定重复频率、一定波形的大功率射频脉冲列 基本类型:连续波发射机、脉冲调制发射机(单极振荡式发射机、主振荡式发射机) 输出功率:发射机送到天线输入端的功率 峰值功率:脉冲期间发射机输出功率的平均值(不要过分增大法设计的峰值功率) 平均功率:脉冲重复周期内输出功率的平均值: 工作比D: 常规脉冲雷达工作比0.001 脉冲多普勒雷达工作比10-2 ~10-1量级 连续波雷达工作比100% 总功率:发射机输出功率与输入功率之比 主振放大式发射机特别注意改善输出级效率 信号形式: 信号形式由雷达体制决定 常规脉冲雷达为简单脉冲波形,特殊体制雷达为复杂调制波形 t r av P T P τ=r r T F D ττ= =

雷达方程原理

一. 雷达方程 简单形式的雷达方程:min 2 e t 4 max )4(S GA P R πσ=(2.1)? σ∝4 max R (1) 接收机噪声 除系统热噪声引起的噪声功率之外,接收机会产生一定的噪声输出,要引入噪声系数 out out in in N S N S BG kT N F //a 0out n = = ,噪声系数也反映了信号通过接收机时的信噪比衰减情况。 重新整理雷达方程:min n 02 e t 4 max )/()4(N S BF kT GA P R πσ = (2.8)? min 4 max SNR R σ ∝ 可用于进行理想自由空间中的目标探测,分析目标的雷达截面积对目标探测产生的影响。 (2) 雷达脉冲积累 多脉冲积累用于提高信噪比,改善雷达的检测能力,降低虚警漏警概率。 n 个相同信噪比的脉冲进行理想情况下的积累后,总信噪比为单个脉冲信噪比的n 倍。但实际情况下,第二检波器会引入效率损耗,使信号能量变为噪声能量,积累效率 n 1i )/()/()(N S n N S n E = 。 将脉冲积累的信噪比代入原雷达方程得到:n n 02 e t 4 max )/()4(N S BF kT GA P R πσ = (2.33),也可 以由积累效率和单个脉冲信噪比表示为:1 n 02 e t 4 max )/()4() (N S BF kT n nE GA P R i πσ= (2.34)。 (3) RCS 起伏 观测复杂目标(如飞机)时,小的观察角变化将引起雷达到目标散射中心的距离和时间发生变化,从而引起各回波信号的相对相位发生变化,导致RCS 起伏。 引入起伏损耗f L ,用f L N S 1)/(代替1)/(N S 。当e n 个独立采样积累时, e n f e f L n L /1)()(=。 此时的雷达方程为:e n f i L N S BF kT n nE GA P R /11n 02 e t 4 max ) ()/()4() (πσ=(2.45)。 (4) 发射机功率 雷达的平均发射机功率av P 更能反映雷达的性能,可以用它代替峰值功率t P 。将p t av f P P τ=代入雷达方程得到:p i f N S F B kT n nE GA P R 1n 02 e av 4 max )/()()4() (τπσ= (2.51),一般情况下,可将τ B 设计为1。 (5) 其它情况 需要考虑的因素包括:系统损耗、地杂波、最高精度等。另外,针对不同目标(点目标或分

第三讲光流分析法

第三讲 光流分析法 3.1 二维运动与视在运动 1. 而我们所能得到的是时变图像的某种采样点阵(或采样栅格)的图像序列,问题是: 2.可控与可观测问题—>即真实二维位移场与速度是否可观测? 3.二维运动——也称投影运动: 透视、 正交投影 三维运动可由物体像素的三维瞬时速度或三维位移来描述,但三维瞬时速度及三维位移正是我们要估计的,这是一个逆问题。而我们可观测到的是视在运动。 (1)假定投影中心在原点 P P ' — 三维位移矢量 p p ' — 二维成像平面上的二维位移矢量 成像平面,投影平面 ← 光学上 三维场景 ——> 二维的时变图像 ——> 数学上 3D →2D 投影 二维位移场 二维速度场 t 时刻 t ′时刻 P ′ P ′ 投影 P P 投影

(2)假定投影中心在O 1点 由于投影作用,从P 点出发, 终点在O 1P / 虚线上的三维位移矢 量均有相同的二维投影位移矢量。 所以说,投影的结果只是三维真实 运动的部分信息。 (3)设t l t t R t X ?+='∈,),(3 由像素的运动 '(,)(,,)C C X t d X t t S → 二维位移矢量函数 对应于点阵 ∧3 ,则有 , ;;),(),(t l t X d t l t X d C P ?=?(x ,t )∈ ∧3 ) ,(),(t l t X d l k n d P ?=?;; (n ,k )∈ Z 3 k 表达了t ‘- t 的时间离散 T n n n ),(21=? 假定三维瞬时速度为),,(3 21X X X &&&,则 ),(),(k n V t X V C P = 4.光流场与对应场 (1)p p ' 定义为对应矢量 光流矢量定义为某点 3),(R t X ∈ 上的图像平面坐标的瞬时变化率, 为一个导数。 T T dt dx dt dx V V V )/,/(),(2121== 表征了时空变化,而且是连续的变化。 (2) 当0→-'=?t t t 时,则光流矢量与对应矢量等价。如果在某个点阵∧3可 观测到这种变化,则就意义 对应场<——像素的二维位移矢量场 光流场<——像素的二维速度矢量场 也分别称为二维视在对应场与速度场。一般而言,对应矢量 ≠位移场 光流矢量≠速度场 ( O 1 p ′ p O X 2 X 1 P ′ P 图像平面X 3 X

《雷达原理》知识点总结

【雷达任务:测目标距离、方位、仰角、速度;从目标回波中获取信息 【雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。 【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。 【测角:根据接收回波最强时的天线波束指向 【雷达是如何获取目标信息的? 【雷达组成:天线,发射机,接收机,信号处理机,终端设备(电源,显示屏),收发转换开关 【发射机工作原理:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。 【发射机基本组成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。 主振放大式:脉冲调制器,中间和输出射频功放,电源,定时器,固体微波源(主控振荡器,用来产生射频信号) 工作过程:(1)单级振荡式:信号由振荡器产生,受调制 (2)主振放大式:信号由固体微波源经过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定时器协调工作。 优缺点:单击振荡式:简单经济轻便,频率稳定度差,无复杂波形; 主振放大式:频率稳定度高,相位相参信号,有复杂波形,适用频率捷变雷达【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。峰值功率(脉冲期间射频振荡的平均功率)和平均功率(脉冲重复周期内输出功率的平均值)。(3)总效率Pt/P。(4)调制形式:调制器的脉冲宽度,重复频率,波形。(5)信号稳定度/频谱纯度,即信号各项参数。 【调制器组成:电源,能量储存,脉冲形成 【调制器任务与作用:为发射机的射频各级提供合适脉冲,将一个信号载到一个比它高的信号上 【仿真线:由于雷达的工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数的网络代替长线,即仿真线 【刚/软性开关:刚性开关的电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关的人工线性调制器,特点为完全放电,效率高,功率大。 【接收机指标:(1)灵敏度:表示接收机接受微弱信号的能力。提高灵敏度,减小噪声电平,提高接收机增益。(2)工作频率宽度:表示接收机瞬时工频范围,提高:高频部件性能(3)动态范围:表示正常工作时接收信号强度的范围,提高:用对数放大器增益控制电路抗干扰(4)中频滤波特性:减小噪声,带宽>回波时,噪声大。(5)工作稳定度(6)频率稳度(7)抗干扰能力(8)噪声系数 【收发软换开关工作原理:脉冲雷达天线收发共用,需要一个收发软换开关TR,发射时,TR使天线与发射机接通,与接收机断开,以免高功率发射信号进入接收机使之烧毁;接收时,天线与接收机接通,与发射机断开,以免因发射机旁路而使微弱接收信号受损。 【收发开关组成及类型:高频传输线,气体放电管。分为分支线型和平衡式。 【显示器分类:距离,平面,高度,情况和综合,光栅扫描。 【显示器列举:距离(A型J型A/R型)平面(PPI)高度(E式RHI) 【A型显示器组成:扫掠形成电路,视频放大电路,距标形成电路。

实验六 相位干涉仪测向技术

学 院 通信工程学院 专 业 信息对抗技术 指导教师 沈雷老师/孙闽红老师 学生姓名 邓斌 学 号 11073115 实验日期 2014.05. 实验六 相位干涉仪测向技术 一、实验目的 无线电测向和定位就是确定通信辐射源的来波方向和位置。对通信信号的测向和定位是通信侦察对抗领域的一个重要且相对独立的技术领域。干涉仪测向又称为相位法测向。本实验主要目的为通过实验,了解并掌握通信测向中相位法测向的基本原理和方法。 二、实验原理 1、相位干涉仪测向原理 图 1 以单基线干涉仪测向为例,其电波到达相邻天线阵元形成的波程差如上图所示。图中测向天线阵由两个阵元组成,假设辐射源与阵元相距很远,所以可认为辐射源发射到阵元1和2的信号平行。假设阵元1和阵元2之间的间距为d ,来波方向与阵列法线方向的夹角为θ。测向的实质是测量夹角θ。 阵元1和阵元2接收到的信号传播存在波程差,因而也存在相位差。设阵元1接收信号为 20()()cos(2)r t s t E f t π== 则阵元2的接收信号为 102sin ()()cos(2)d r t s t E f t πθ τπλ =-=- 其中0/c f λ=为信号波长。 从上可以看出,信号传播距离差为θsin ?=?d l ,则相位差为:

λθπ?/sin 2??=?d 实际中d 、λ均已知,所以只要得到阵元1和2接收信号的相位差,便可以求出θ。需要注意的是,为了避免相位模糊问题,常需要满足条件π?

2 相位相关法

2 相位相关法 由离散图像的平移式(2): 这里1l =,上式两边求傅氏变换得 (7) 其中()12,k S f f 代表k 帧相对于空间变量12,x x 二维付氏变换. (7)式表明空间场的相对位移引起付里叶场的线性相位项. 其相角差: (8) 位移的大小可以从相位相关函数上求得. 2.1 相位相关函数 互相关:二幅图像f(x,y)、g(x,y)的互相关为 ()()()()()()**,,,,,,(,)(,) f x y g x y f p q g x p y q dpdq f x y g x y F u v G u v +∞ -∞ =?++??? ? 且 在这里为 ,1121,212112(,)(,1)(,,) (,)(,)k k k k c n n S n n k S n n k S p q S n p n q dpdq +∞∞ *+-∞ -∞ =+=++? ? 功率谱为: (),11211212(,),(,)k k k k C f f S f f S f f * ++=

互相关函数:(以卷积表示 ) (9) 互功率谱仍有: (10) 互功率谱的相位: 112112112211211211221121121122112112(,){(,)exp[2()]}(,){(,)exp[2()]}(,)(,)exp[2()](,)(,) k k k k k k k k S f f S f f j d f d f S f f S f f j d f d f S f f S f f j d f d f S f f S f f πππ*++* ++*++*+++= +-+= (12) 相位相关函数:取傅氏反变换得 ()(),1121122,,k k c n n n d n d δ+=-- 可见相位相关函数由冲击函数构成,其位移即是位移矢量 当n 1 = d 1 , n 2 = d 2 , (),112,1k k c n n += 相位相关函数等于1的位置,即冲击函数的位置就是位移的大小.

干涉仪测向系统误差分析

龙源期刊网 https://www.360docs.net/doc/116791429.html, 干涉仪测向系统误差分析 作者:李华龙 来源:《数字技术与应用》2011年第07期 摘要:本文根据干涉仪测向系统的测向原理,对基线的选择进行了分析,列出了影响测向结果的各项因素。分析了在试验条件允许的情况下,增加目标和测向系统间距离,将有助于从多个方面减小测向误差,提出了减小测向误差、提高测向精度的方法,取得了良好的试验结果。 关键词:干涉仪测向误差基线 中图分类号:TN98 文献标识码: A 文章编号:1007-9416(2011)07-0021-02 1、引言 无线电测向技术从二十世纪初开始出现,到现在已发展了上百年的时间,出现了各种各样的测向定位系统。目前根据测向体制划分主要有以下方法:比幅度法、相位法、多普勒法、时差测向法、空间谱估计测向法等方法。每一种测向方法都有其优点和缺点,测向体制的选择应根据不同的需要而确定,不存在最好的测向方法,而是在某种应用情况下必须考虑给定的环境条件下哪种方法能最好地满足要求。在车载平台中经常使用的是干涉仪测向系统。根据干涉仪测向基本原理可以得出单基线干涉仪测向系统的测向误差为: 即以下三大因素:波长测量精度(即频率测量精度)、选择的基线长度与信号波长的比值和测向设备的相位测量精度。还可以看出,在视场角范围内测向精度与信号的入射角有关,越靠近基线的垂直方向(小)测向精度越高。另外相关干涉仪测向有外场测试过程,因此在试验中测向天线阵场地和天线架设对最终的测向结果有很大的影响。 2、误差分析和改良 2.1波长测量精度 一般无线电侦察测向系统中,对频率测量误差要求在通信信号带宽的一半以内。在超短波频段,一般在系统中采用了运算速度较高的芯片组,通过FFT运算最后达到的测频精度为 5MHz/800=6.25kHz。 而系统工作频段为30~500MHz,因此将测频精度代入式(1)/中,其最大影响为0.2%。由此可见测频误差即使在单基线测量中对测向精度的影响也是很小的,因此在实际应用中一般可以忽略不计。以下为波长测量误差对不同频率影响情况:

多频外差解相位相关问题

李老师: 您好! 首先,非常感谢您在百忙之中抽空帮我解答疑问。 依据您的博士论文[1]及文献[2]的相关叙述,我选用1λ=1/59、 2λ=1/64和3λ=1/70三组不同频率的相移(4步)图像进行多频外差相 位展开实验。在实际实验过程中遇到了如下问题: 文献[2]仅阐述了如图1所示的简单情形下的相位计算过程,其相位1φ和2φ的起始相位均为0。然而,在实际过程中需要对图像尺寸为1024*768竖向条纹的进行相位计算和展开时,会有1λ和2λ的起始相位均不为0的情况,如图2蓝色方框所示,这使计算公式(1)和(2)失效。若仍按照式(1)和式(2)进行相位展开,得到的b λ=1/5的相位Phi 12的相位值为负(相位值应介于59205 π g :之间),如图3红色方框所示。而这明显是错误的。 111()() ()( )2x R x O x INT φπ Φ-= (1) 111()()()2x x O x φπΦ=+* (2) 其中,R 1为相位展开前后的波长之比,本实验按1λ=1/59展开得到b λ=1/5,故R 1=59/5。 请问您在相位展开的过程中是否也遇到类似的问题?是通过什么方式解决的呢?

图1. 相位展开原理. 图2. 相位展开MATLAB 仿真——Phi 1、Phi 2起始相位值 0. 1002003004005006007008009001000???? ???

1002003004005006007008009001000 图3. 相位展开MATLAB 仿真——Phi 12<0. 附:实验结果 对平板进行重建实验,如图4所示。由此求解得到的相位值Phi 1、Phi 2和Phi 3均正常,如图5a~c 所示。但由于上述问题,展开得到的Phi112和Phi 23不正确,因此,进一步展开得到的全局相位Phi 123也不正确,如图5d~f 所示。图6给出了第400行像素的Phi 12。 图4. 一张1/59的相移图像

相位干涉仪测向

相位干涉仪测向 07083115 07083119 一、 题目要求 使用Simulink 模拟构建一个相位测向系统, 构造两个有时延的到来信号,对其进行捕获,分别在时域和频域上对接收的信号进行方向估计,并评估侧向效果。 二、 实验方案及公式推导 A. 公式推导 图 1 信号为0()cos(2)s t E f t π=,则如图 1所示天线长为d,信号方向与参考方向夹角为θ 设2点的接收信号为20()()cos(2)r t s t E f t π== (1) 则1点的接收信号为102sin ()()cos(2) d r t s t E f t πθ τπλ =-=- (2) 其中0 c f λ= 为信号波长 ①时域测向 将12(),()r t r t 改写为复数形式得 022()j f t r t Ee π= (3) 21()j f t r t Ee π?-= (4) 其中2sin d πθ ?λ =- 对(3)式取共轭得, 0 2*2()j f t r t Ee π-= (5) (4)式与(5)式相乘得, *212()()j r t r t E e ?-= (6)

对(6)式求相角,乘以2d λ π-得, sin 2d ?λ θ π= (7) 取反正弦,乘以0 180 π ,求出 θ ②频域测向 将(3)、(4)作FFT 得, 20()()R w E f f δ=- (8) 10()()j R w E f f e ? δ-=- (9) 由公式 ()arctan () I Q R k R k θ= 求出 2121()()arctan arctan () () I I Q Q R k R k R k R k ?=- (10) 同① ,可求出 θ B.方案论述 一、伯努利二进制码流经BPSK 产生2()r t 二、产生12()()j r t r t e ?-= 三、①时域法:*12()()r t r t 取出? ②频域法:对12(),()r t r t 作FFT,求出相位差? 四、根据?的值对应求出θ 三、Simulink 框图说明及参数设计: 依据方案的设计,建立Simulink 仿真模型 A.框图模块说明 : 相乘器 相加器 二进制数据流 高斯白噪声信道

西南科技大学雷达原理试卷及答案 (1)

卷一 一、填空题(每空2分,共20分) 1、以典型单基地脉冲雷达为例,雷达主要由天线、发射机、接收机、信号处理机和终端设备等组成。 2、在满足直视距离条件下,如果保持其他条件不变(其中天线有效面积不变),将雷达发射信号的频率从1 GHz提高到4GHz,则雷达作用距离是原来的2倍。 3、雷达发射机按产生的射频信号的方式,分为单级振荡式发射机和主振放大式发射机两类。 4、某雷达脉冲宽度为1μs,脉冲重复周期为1ms,发射功率为100KW,平均功率为100 W. 5、脉冲多普勒雷达的脉冲重复频率为=1000Hz,对动目标进行检测。其多普勒频率为,能够出现盲速的多普勒频率等于1000Hz 。 6、雷达测角的方法分为两大类,即振幅法和相位法。 7、双基雷达是发射机和接收机分置在不同位置的雷达。 8、已知雷达波长为λ,目标的径向速度为v,那么回波信号的多普勒频移= 。 二、单选题(每题2分,共30分) 1、以下哪个部件最不可能属于雷达接收机(C) A、低噪声高频放大器 B、混频器 C、脉冲调制器 D、信号处理机 2、雷达测距原理是利用电波的以下特性(D) A、在空间介质中匀速传播 B、在空间介质中直线传播 C、碰到目标具有良好的反射性 D、以上都是 3、雷达之所以能够发射机和接收机共用一个雷达天线,是因为(C) A、雷达天线是定向天线 B、雷达天线是波导天线 C、首发转换开关的作用 D、雷达天线用波导传输能量 4、雷达射频脉冲与固定目标回波相比(D) A、二者功率相同,频率相同 B、二者功率不同,频率不同 A、二者功率相同,频率不同 B、二者功率不同,频率相同 5、雷达定时器产生的脉冲是发射机产生的脉冲是(A) A、触发脉冲,射频脉冲 B、发射脉冲,视频脉冲 C、触发脉冲,视频脉冲 D、发射脉冲,触发脉冲 6、雷达发射脉冲的持续时间取决于(C) A、延时线的调整 B、3分钟延时电路的调整 C、调制脉冲的宽度 D、方波宽度的调整 7、雷达天线的方向性系数是用来衡量天线的能量聚束能力的,其值应当(A)

(完整版)雷达组成及原理.doc

雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 学号: 2015010904025 教师:王文钦教授

一.简介 雷达( Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键 之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。 (4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段 雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。 二.雷达的组成 (一)概述 1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。 2、收发开关:收发隔离。 3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。 4、接收机:超外差,高 频放大,混频,中频放大,检波,视频放大等。(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。 5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测 判决之前完成( MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。 6、显示器(终端):原始视频,或经过处理的信息。 7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式) 才有)。 (二)雷达发射机 1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)

相位干涉仪测向算法及其在TMS320C6711上的实现

摘要:对实施被动无源测向定位的主要工具之一的相位干涉仪进行了较为详细和系统的研究,给出了一维相位干涉仪的基本关系式,分析了五通道相位干涉仪测向定位算法及其性能指标?熏对解相位模糊问题进行了探讨。最后,在高速浮点数字信号处理器TMS320C6711系统上实现了五通道相位干涉仪测向定位算法,达到了性能指标及实时实现。关键词:相位干涉仪测向定位相位模糊定位误差实时处理相位干涉仪测向技术广泛应用于天文、雷达、声纳等领域。将干涉仪原理用于无线电测向始于上世纪五十年代和六十年代,随着数字信号处理器的出现,通过数字信号处理器来实现高精度实时测向成为可能。本文在对一维和二维相位干涉仪进行研究的基础上给出了五通道相位干涉仪的基本关系式,分析了测向精度,并对解相位模糊问题和信道校正问题进行了探讨。采用多基线五元圆形天线阵列为模型,由天线阵列接收到的信号求解出五元天线阵列的互相关信号,并由此提取测向所需的方位信息。本文以五通道相位干涉仪硬件实现为目标,采用高速浮点数字信号处理芯片TMS320C6711进行测向处理。1相位干涉仪测向原理1.1一维相位干涉仪测向原理图1所示为一个最简单的一维双阵元干涉仪模型。图中,间隔为d(d称为基线)的两根天线A1和A2所接收的远场辐射 φ=(4πd/λ)cosθ(1)式(1)中,λ为接收电磁波的波长。因此,只要测量出φ,就能算出辐射源的到达方向θ:θ=arccos(φλ/4πd)(2)1.2测向误差的分析在实际系统中,两根天线A1和A2接收的信号为:xi(t)=s(t)exp[(-1)jj2πd/λcosθ]+ni(t),i=1,2(3)其中,ni代表对应阵元i接收的噪声,两阵元的噪声统计相互独立,且与信号统计独立。两个阵元接收信号的互相关为:r=E{x1(t)x2*(t)}=Psexp(j4πd/λcosθ)(4)式中,E代表数学期望运算,“*”代表复共轭运算,Ps代表信号功率,相关以后噪声得到抑制。由(4)式有:θ=arccos[(λ/4πd)arg(r21)+kλ/2d(5)式中,arccos表示反余弦函数,arg代表复数取幅角运算,区间为[-π,π]。k为整数,且满足:-2d/λ-arg(r21)/2π≤k≤2d/λ-arg(r21)/2π(6)在(6)式中,当d/λ>0.5时,k的取值不唯一,θ有多个解,由此产生测向模糊。对(5)式求导,有:|Δθ|=λ/4πd|sinθ|Δarg(r21)(7)由(7)式可以得出以下结论:sinθ越大,即方位角与干涉仪法线方向的夹角越小,测向精度越高;反之,测向精度降低,直至测向无效。当θ=±90°(即信号从干涉仪法线方向入射)时,精度最高;θ=0°或180°(即信号从干涉仪基线方向入射)时,接收信号互相关的幅角arg(r21)反映不出方位角的变化,测向无效。但单基线干涉仪不能同时测量俯仰角和方位角,此时至少需要另一条独立基线的干涉仪对测得的数据联合求解。1.3二维干涉仪测向原理及去模糊处理1.3.1多基线五元圆形天线模型五通道相位干涉仪采用宽口径、多基线的五元圆形天线阵,五边形的五个阵元均匀分布在半径为R的圆上,五个阵源分别为1、2、3、4、5,如图2所示。天线阵平面与地面平行,测得的方位角θ为以天线到地面的垂足为原点,目标在地面上的方位角。测得的俯仰角φ对应于目标到原点的距离(俯仰角0°对应原点)。两个阵元接收信号之间的互相关为:ri,j+1=E{xi(t)x*i+1(t)}=GiGi+1Psexp{j2π(R/λ)sinφ?[cos(θ+54°-72°i)-cos(θ-18°-72°i)]}i=1~5,定义r56=r51方位角θ和俯仰角φ的具体计算如下:Qri,i+1的幅角为αi,i+1=arg(ri,i+1)+2k2π=4π(R/λ)cos54°sinφcos(θ+108°-72°i)ri+3,i+4的幅角为αi+3,i+4=arg(ri+3,i+4)+2k1π=4π(R/λ)cos54°sinφcos(θ-108°-72°i)∴θ=atan2[αi+3,i+4-αi,i+1)csc108°,(αi+3,i+4+αi,i+1)sec108°]+72°i(8)式中,i=1~5,令r56=r51、r67=r12、r78=r23、r89=r34;atan2(y,x)代表四象限求反正切函数;arcsin代表反正弦函数。k1、k2为整数,且满足:

相位相关算法的详细介绍 文档

相位相关算法: 1.相位相关简介:相位相关算法的理论基础是傅里叶变换,目前在傅里叶变换领域有了快速算法fft,比较成熟的库有fftw开源库,因此相位相关法有极大的速度优势,相位相关在图像融合、模式识别特征匹配等有着广泛应用。 下面我就图像融合里的应用做个简要介绍: 针对有平移失配、旋转的图像融合分别作介绍。 1)图像间有平移变换。 图像f2(x,y)是图像f1(x,y)经平移(x0,y0)后得到的图像,即 f2(x,y)=f1(x-x0,y-y0),由傅里叶时移性质对应傅里叶变换F1和F2的关系如下: F2(u,v) =exp(-j*2*pi(u*x0+v*y0))*F1(u,v) 计算频域交叉功率谱可得: exp(j*2*pi(u*x0+v*y0))=F1(u,v)*F3 / |F1(u,v)*F3| F3是F2的共轭。

最后在对交叉功率谱ifft变换可得到一个冲击函数,此函数在其他位置几乎为零,只有在(x0,y0)处有最大值, 因此,可计算出平移参数。 2)针对图像间有平移旋转变换关系: 若图像f2(x,y)是图像f1(x,y)经平移(x0,y0)、旋转a角度后得到的图像,用下面公式表示为: f2(x,y)=f1(x*cos(a)+y*sin(a)-x0,-x*sin(a)+y*cos(a)-y0)) 由傅里叶旋转平移特性,fft变换后两图像间的关系如下: F2(u,v)=exp(-j2pi(u*x0+v*y0)) *F1(u*cos(a)+v*sin(a),-u*sin(a)+v*cos(a)) 用M1、M2分别表示F1、F2的能量,则: M2(u,v) =M1(u*cos(a)+v*sin(a),-u*sin(a)+v*cos(a)); 由上式看出F1、F2能量是相同的。把直角坐标转到极坐标可表示如下: M1(r,a) =M2(r,a-a0)

雷达原理与系统知识要点总结(必修)

成绩构成:平时20%(原理10%+系统10%,含考勤和课堂测试),期中30%,期末40%,课程设计10%。 雷达原理与系统(必修)知识要点整理 第一章: 1、雷达基本工作原理框图认知。 2、雷达面临的四大威胁 3、距离和延时对应关系 4、速度与多普勒关系(径向速度与线速度) 5、距离分辨力,角分辨力 6、基本雷达方程(物理过程,各参数意义,相互关系,基本推导) 7、雷达的基本组成(几个主要部分),及各部分作用 第二章雷达发射机 1、单级振荡与主振放大式发射机区别 2、基本任务和组成框图 3、峰值功率、平均功率,工作比(占空比),脉宽、PRI(Tr),PRF(fr)的关系。 第三章接收机 1、超外差技术和超外差接收机基本结构(关键在混频) 2、灵敏度的定义,识别系数定义 3、接收机动态范围的定义 4、额定噪声功率N=KTB N、噪声系数计算及其物理意义 5、级联电路的噪声系数计算 6、习题 7、AGC,AFC,STC的含意和作用 第四章显示器 1、雷达显示器类型及其坐标含义; 2、A型、B型、P型、J型 第五章作用距离 1、雷达作用距离方程,多种形式,各参数意义,PX=?Rmax=? (灵敏度表示的、检测因子表示的等) 2、增益G和雷达截面A的关系 2、雷达目标截面积定义 3、习题 4、最小可检测信噪比、检测因子表示的距离方程 5、奈曼皮尔逊准则的定义 6、虚警概率、检测概率、信噪比三者关系,习题.(会看图查数) 由概率分布函数、门限积分区间表示的各种概率形式; 6.5 CFAR ●什么是CFAR ●慢变化CFAR的框图和原理

●快变化CFAR的框图和原理,(左右平均、左右平均选大) ●CFAR的边缘效应,图及分析 7、为什么要积累,相参积累与非相参积累对信噪比改善如何,相参M~M倍。 8、积累对作用距离的改善,(方程、结论、习题) 9、大气折射原因、直视距离计算(注意单位Km还是m) 10、二次雷达方程、习题。 11、分贝表示的雷达方程,计算、习题,普通雷达方程的计算。 第六章距离测量 1、R,tr,距离分辨力、脉宽、带宽关系 2、最短作用距离、最大不模糊距离与脉宽、重频关系 3、双重频判距离模糊、习题。 4、调频连续波测距原理,(距离到频率的转换,简单推导) 5、相位差与距离的关系 6、习题 第七章测角 1、相位测角原理(路程差与相位差的相互补偿) 2、三天线测角原理、习题。 3、振幅法:最大信号和等信号法 4、余割平方扇形波束特点(角度不同、距离不同、增益不同,回波功率相同,公式) 5、机械扫描、电扫(相扫、频扫)各自特点。 6、相位扫描基本原理(移相器、波程差、等相面、方向图),相差与波程差关系式 7、思考题 第八章检测与测速 1、多普勒定义,与速度、波长对应关系。结论性 2、固定目标与动目标输出差异 3、盲速与频闪定义、产生原因(条件),计算(习题)。 4、点盲相与连续盲相产生原因,习题。 5、相参脉冲串信号的频谱(发射、接收、差异) 6、动目标显示最佳滤波器(公式、结论、物理意义) 7、改善因子定义 8、MTD窄带滤波器组实现与优点。 第十二章雷达信号基础 1、常用的雷达波形有哪些 2、要实现目标的有效检测,雷达波形需满足的条件(能量、分辨力、抑制) 3、连续波如何测速测距 4、PRI参差信号的特点和作用 5、频率捷变信号的特点和作用 6、几种典型的脉冲压缩信号的特点(扩频、大时带积) 7、什么是雷达分辨力

雷达感应原理调试

雷达感应开关原理调试 一、原理简介: 1.主要功能与原理:如上图所示,上图是雷达感应开关模块的感应板的电路原 理图,由集电极外PCB两层铜箔间的电容、三极管内阻、寄生电容等构成RC震荡电路,该震荡电路震荡产生高频信号,经过三极管放大,再经过围绕PCB三边的天线发射出去。发射的2.4-3.2GHz的微波信号如果遇到移动物体,则反射波相对发射波就会有相位变化,回型天线接收到反射信号,反射波与发射信号的相位移频就会以3-20MHz左右的低频输出(P4),该信号再由后级运放放大,驱动继电器,从而由继电器控制灯光。另外,中间也可以加上光敏二极管检测昼夜光线,作为夜间条件下控制输出的前提条件。 2.发射频率:RC振荡电路的频率f=1/2πRC,公式中的R是原理图中三极管的 输入阻抗,C是PCB上三极管集电极基极引线正反面铜箔之间的电容以及三极管寄生电容组成的总电容。该电容量公式为C=εS/d,式中ε为介质(在这里就

是指的PCB板材的介电常数),S为PCB极板面积,d为极板间距也就是PCB厚度。3.接收:通过回型天线接收反射回来的雷达波,如果发射与接收波之间有相位 移频,则输出低频信号P4。 4.发射避开公共频段又不能过高:因为3G和4G手机信号和WIFI信号的频率 范围在1.8-2.4GHz,模块的工作频率尽可能避开这个频段,避免相互干扰。 一般的发射频率2.5GHz左右最佳,频率过高,则高频三极管增益降低,感应距离近。发射频率同天线部分PCB线路板尺寸大小、厚度、布线、三极管输入阻抗与电容等有关。 5.发射频率与发射信号强度:如果有频谱仪测试发射天线端的发射信号,可以 测试到发射频点及其发射信号幅度。发射信号强度越大,感应距离越远。但是,高频三极管来说,随着频率的增加,其增益逐渐降低,发射的信号强度也就降低。另外,同一个频率,三极管的特征频率f T越大,其高频增益就越高,感应距离也就越远,所以,最好设计调整PCB,将频点做到2.4GHz。 6.接收灵敏度:同样频率,高频三极管对高频信号的f T越大,高频增益越高, 接收的移频信号输出幅度越大,感应灵敏度就越高,感应距离就越远。适当调整后级运放的放大倍数也可以调整感应距离,但是,如果单纯的提高后级运放的倍数,虽然感应较远距离,但会将小幅度的其它干扰信号也放大输出,造成误报。 影响感应距离的几个因素:A .发射天线板的尺寸,该尺寸越大,天线越长,则感应距离越远。B .高频三极管的特征频率越高,其高频增益越大,感应距离也就越远。C.后级运放的放大倍数适当的高,其对输出的移频信号放大的幅度大。 D.发射频率最好在标准规范的2.4GHz。高频三极管的增益会随着频率的增大而降低降低,频点太高,发射信号功率降低、接收灵敏度也降低。

雷达的工作原理及相控阵雷达

问:有源相阵控雷达和无源相阵控雷达的区别是什么? h t p:/b s.t i e x u e.n e t/] [ 转自铁 血社区 答:区别就是无源是只有单个或者几个发射机子阵原只能接收,而有源是每个阵原都有完整的发射和接收单元! 机载雷达经历了从机械扫描形式到相控阵电子扫描,再到最新的保形"智能蒙皮"天线的发展过程,电子扫描雷达在作战使用中的优势在哪里?未来的综合式射频(RF)传感器系统的总体特点和关键技术是哪些?您将从本文中得到启发 近50多年来,机载雷达不断采用新的技术成果,性能不断提高,其中重要的有全向多脉冲射频(MPRF)模式和高分辨率多普勒波束锐化(DBS)技术在雷达中的实际应用。目前,由于在信号处理和砷化镓微波集成电路领域技术的进步,雷达作为战术飞机主传感器的地位仍然会继续保持下去。 电子扫描技术的发展 雷达波束天线电子扫描应用的第一步是无源电子扫描阵列(ESA),其主要优点是实现了波束的无惯性扫描,在作战中有助于对辐射能量的控制。现役的此种类型的雷达有美国空军的B1-B和俄罗斯的米格-31装备的雷达,在研的有法国装备其"阵风"战斗机的RBE-2雷达。 有源ESA的出现是技术上的又一进步。它的每一个阵元中都有一个RF发射机和灵敏的RF接收机,在各个发射/接收(T/R)模块内都有一个功率放大器、一个低噪声放大器和用砷化镓技术制造的相位振幅控制装置。有源ESA雷达技术放弃了传统的中心式高功率发射机,除了具有无源相控阵雷达的优点外,还提高了能量的使用效率并具有自适应波束控制、强抗干扰能力和高可靠性等优点。 h t p:/b s.t i e x u e.n e t/] 血社区 [ 转自铁 西方国家第一代有源相控阵雷达系统接近定型的有美国装备F-22和日本装备 FS-X的雷达。英、法和德国共同研制的AMSAR项目也确定使用先进的有源相控阵雷达技术,为其后续的欧洲战斗机雷达的升级改装做准备。从今天的角度来看,雷达技术未来的下一个发展方向是保形"智能蒙皮"阵列,它把有源ESA技术和多功能共用RF孔径结合了起来,在天线阵元的安排上,与飞机机身的结构巧妙地配合,实现宽波段和多功能。保形天线阵列有高性能的处理器并使用空-时自适应处理技术有效地抑制了外部的噪声、干扰和杂波并能以最优化的方式来探测所感兴趣的目标。虽然有许多相关的技术问题需要解决,但保形"智能蒙皮"技术并非是个不切实际的解决方案,预计在20~25年的时间内就可以达到实用阶段。 在10~15年内,对战术飞机射频传感器(包括雷达)未来所执行的任务来说,最迫切的需要是增加功能、提高性能,并且还要注重经济性和可维护性。美国的"宝石路"计划已经证明,航空电子系统通过采用通用模块、资源共享和传感器的空间重构(重构的设备包括雷达、电子战及通信-导航-识别等射频传感器)可以做到系统的造价和重量减小一半,而可靠性提高三倍。它所确立的综合模块化航空电子的设计原则已用于JSF战斗机的综合传感器系统(ISS)和多重综合式射频传感器工程的设计中,欧洲类似的用于未来战术飞机的综

西南科技大学雷达原理试卷及答案

: 卷一 一、填空题(每空2分,共20分) 1、以典型单基地脉冲雷达为例,雷达主要由天线、发射机、接收机、信号处理机和终端设备等组成。 2、在满足直视距离条件下,如果保持其他条件不变(其中天线有效面积不变),将雷达发射信号的频率从1 GHz提高到4GHz,则雷达作用距离是原来的2倍。 3、雷达发射机按产生的射频信号的方式,分为单级振荡式发射机和主振放大式发射机两类。 4、某雷达脉冲宽度为1μs,脉冲重复周期为1ms,发射功率为100KW,平均功率为100 W. 5、脉冲多普勒雷达的脉冲重复频率为=1000Hz,对动目标进行检测。其多普勒频率为,能够出现盲速的多普勒频率等于 1000Hz 。 6、雷达测角的方法分为两大类,即振幅法和相位法。 - 7、双基雷达是发射机和接收机分置在不同位置的雷达。 8、已知雷达波长为λ,目标的径向速度为v,那么回波信号的多普勒频移= 。 二、单选题(每题2分,共30分) 1、以下哪个部件最不可能属于雷达接收机(C) A、低噪声高频放大器 B、混频器 C、脉冲调制器 D、信号处理机 2、雷达测距原理是利用电波的以下特性(D) A、在空间介质中匀速传播 B、在空间介质中直线传播 C、碰到目标具有良好的反射性 D、以上都是 - 3、雷达之所以能够发射机和接收机共用一个雷达天线,是因为(C) A、雷达天线是定向天线 B、雷达天线是波导天线 C、首发转换开关的作用 D、雷达天线用波导传输能量 4、雷达射频脉冲与固定目标回波相比(D) A、二者功率相同,频率相同 B、二者功率不同,频率不同 A、二者功率相同,频率不同 B、二者功率不同,频率相同 5、雷达定时器产生的脉冲是发射机产生的脉冲是(A) A、触发脉冲,射频脉冲 B、发射脉冲,视频脉冲 @ C、触发脉冲,视频脉冲 D、发射脉冲,触发脉冲

相关文档
最新文档