复混肥料中总氮含量的测定蒸馏后滴定法

复混肥料中总氮含量的测定蒸馏后滴定法
复混肥料中总氮含量的测定蒸馏后滴定法

复混肥料中总氮含量的测定蒸馏后滴定法

1范围

本标准规定了复混肥料中总氮含量的测定方法。

本标准不适用于含有机物(除尿素、氰氨基化合物外)大于7%的复混肥料。

2 规范性引用文件

下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡是不住日期的引用文件,其最新版本使用于本标准。

GB/T2441.1尿素的测定方法第1部分:总氮含量

GB/T8571 复混肥料实验室样品制备

HG/T2843 化肥产品化学分析中常用标准滴定溶液、标准溶液、试剂溶液和指示剂溶液3原理

在碱性介质中用定氮合金将硝酸态氮还原,直接蒸馏出单或在酸性介质中还原硝酸盐成铵盐,在混合催化剂在下,用浓硫酸消化,将有机态氮或酰胺态氮和氰氨态氮转化为铵盐,从碱性溶液中蒸馏氨。将氨吸收在过量硫酸溶液中。在甲基红-亚甲基蓝混合指示剂存在下,用氢氧化钠标准滴定溶液返滴定。

总氮实验操作规程细节要点

总氮测定细节注意事项 一、总氮先期测定需要了解水样含量的步骤 1、如果客户水样总氮不超过8mg/L,可以直接取5毫升,直接按照说明书的操作步骤测 定 例如:客户原水位15mg/L,处理后不超过8mg/L,可以直接操作(前提是要水样相对澄清,无悬浮物、泥土、渣滓等杂质,如果有这些可以静置一会,取中 间悬清液)。 2、如果客户水样总氮超过8mg/L,需要先稀释后,再按步骤操作实验。 例如:客户原水总氮浓度比较高,为30mg/L,需要先稀释10倍,取10毫升定容在100毫升的容量瓶中。然后测定稀释后的污水样,出来的结果乘稀释的倍 数10。就是原水总氮浓度。 二、总氮测定碘、溴离子干扰的判定,出来的数据结果是错误的, 不能进行测定。 如果客户水样中碘离子、溴离子含量高干扰试测定,碘离子相对于总氮含量的 2.2倍以上,溴离子相对于总氮含量的 3.4倍以上有干扰,这些干扰若多的话,首先 要稀释到干扰浓度以下,在进行操作实验。 例如:客户水样碘离子含量比较高,干扰测定,找几个稀释倍数点,测定结果中有线性关系开始的倍数点位,就合适,再测定。 三、客户未知的高浓度总氮,合理稀释的倍数大概判定。 稀释梯度倍数,同一个水样,稀释5倍、10倍、20倍、50倍、100倍或者以上倍数。加入碱性过硫酸钾消解40分钟,最后加入稀盐酸试剂,测定结果不超过5为宜,吸光度A值不大于1为合适。该稀释的倍数合适。 注:以上是工作经验所得,如果总氮含量过高,需要再相应多加倍数稀释。 四、总氮水样稀释手法 1、稀释2倍,取100毫升容量瓶,量取100毫升蒸馏水,倒入500毫升烧杯中,使用 同一个容量瓶,污水样先清洗2遍(因为挂壁的蒸馏水会稀释了水样, 保证内壁是同一水样)量取100毫升,倒入同一个500毫升烧杯中。混 匀。这样就是稀释了2倍。 2、稀释4倍,使用25毫升的胖度吸管,量取25毫升污水样,定容在100毫升的容量 瓶中,加蒸馏水到标线,混匀。 3、稀释5倍,使用20毫升的胖度吸管,量取20毫升污水样,定容在100毫升的容量 瓶中,加蒸馏水到标线,混匀。 4、稀释10倍,使用10毫升的胖度吸管,量取10毫升污水样,定容在100毫升的容量 瓶中,加蒸馏水到标线,混匀。 5、稀释100倍,使用10毫升的胖度吸管,量取10毫升污水样,定容在1000毫升的容 量瓶中,加蒸馏水到标线,混匀。 注:工作经验所得,比较实用,有利于减少稀释误差。 稀释水样,最少取10毫升定容稀释,取的水样少的话,容易造成稀释误差。

复混肥料中总氮含量的测定--蒸馏后滴定法

复混肥料中总氮含量的测定--蒸馏后滴定法 一.目的 确保使用蒸馏滴定法测定肥料中氮、磷、钾含量的方法的正确性与流程的规范化,及测定结果的准确性,从而保证肥料中氮、磷、钾的含量符合相关标准要求。 本标准不适用于含有机物(除尿素、氰氨基化合物外)大于7%的复混肥料。 二.范围 适用于公司内采用蒸馏滴定法对肥料中氮、磷、钾含量的测定 三.参考文件依据 GB/T8572 / HG/T2843 四.原理 在碱性介质中用定氮合金将硝酸根还原,直接蒸馏出氨或在酸性介质中还原硝酸盐成铵盐,在混合催化剂存在下,用浓硫酸消化,将有机态氮或酞胺态氮和氰氨态氮转化为铵盐,从碱性溶液中蒸馏氨。将氨吸收在过量硫酸溶液中,在甲基红一亚甲基蓝混合指示剂存在下,用氢氧化钠标准滴定溶液返滴定。 五.仪器 ①一般实验室仪器 ②消化仪器:1 000 ML圆底蒸馏烧瓶(与蒸馏仪器配套)和梨形玻璃漏斗; ③蒸馏仪器:按GB/T 2441. 1配备; ④防暴沸颗粒或防暴沸装置:后者由一根长约100 mm,直径约5mm玻璃棒连 接在一根长约25 mm聚乙烯管上; ⑤消化加热装置:置于通风橱内的1 500 W电炉,或能在7 min-8 min内使250 mL水从常温至剧烈沸腾的其他形式热源; ⑥蒸馏加热装置:1 000 W^-1 500 W电炉,置于升降台架上,可自由调节高度。 也可使用调温电炉或能够调节供热强度的其他形式热源。 六.试剂 本标准所用试剂和水,在未注明配制方法和规格时,均应符合HG汀2843的要求。 ⑴硫酸; ⑵盐酸; ⑶铬粉:细度小于250 μm; ⑷定氮合金(Cu: 50%,A1:45%,Zn:5%):细度小于850μm; ⑸硫酸钾; ⑹五水硫酸铜; ⑺混合催化剂制备:将1 000 g硫酸钾和50 g五水硫酸铜充分混合,并仔细研磨, ⑻氢氧化钠溶液:400 g/L; ⑼氢氧化钠标准滴定溶液:c (NaOH) =0. 5 mol/L; ⑽硫酸溶液:c(1/2H2S04)=0.5 mol/L或C (1/2 H2S04)=1 mol/L;

测定总氮时应注意的几个问题

测定总氮时应注意的几个问题 1、试剂的配制、存放 碱性过硫酸钾的配制过程十分重要,掌握不好,会影响消解效果,对测定结果产生一定的影响。GB 11894—89中关于碱性过硫酸钾的配制,只是简单的说将过硫酸钾和氢氧化钠溶于水中,并未作其它要求。实际上,过硫酸钾的溶解速度非常慢,若要加快溶解,绝对不能盲目加热,即使加热,也最好采用水浴加热法,且水浴温度一定要低于60℃,否则过硫酸钾会分解失效。配制该溶液时,可分别称取过硫酸钾和氢氧化钠,两者分开配制,再混合定容,或者先配制氢氧化钠溶液,待其温度降到室温后再加入过硫酸钾溶解。若二者在一只烧杯中溶于水,应缓慢加水,同时搅拌,防止氢氧化钠放热使溶液温度过高引起局部过硫酸钾失效。 过硫酸钾的存放也要注意,应避免与还原性物质、硫、磷等混合存放,另外,过硫酸钾易吸潮,放出氧气,因此,为防止失效,要将其放在干燥的试剂橱中。 2、无氨水的制备 实验过程对水的要求非常严格,普通的蒸馏水往往还达不到实验要求。这时需再做二次加工以得到无氨水。在用蒸馏法制备无氨水时,GB11894—89中指出:“弃去前50ml馏出液,然后将馏出液收集在带有玻璃塞的玻璃瓶中”。根据笔者的工作经验,仅仅弃去前50ml馏出液是不够的。举个例子说,如果蒸出1 000ml的无氨水,先前蒸出的200ml馏出液都要弃去,最后蒸出的200ml馏出液也要弃去,只保留中间蒸出的无氨水待用,否则,重蒸无氨水的空白值往往还不如制备之前的普通蒸馏水空白值好。 3、实验室环境 总氮的分析应在无氨的实验室环境中进行,室内不应含有扬尘、石油类及其它的氮化合物,绝对不能在分析氨氮等氮类项目的实验室中做总氮项目的分析,所使用的试剂、玻璃器皿等也要单独存放,避免交*污染,影响空白值。 4、玻璃器皿的洗涤 所使用的玻璃器皿应先用(1+9)盐酸浸泡后,再用无氨水冲洗数次才能使用,否则,也会造成空白值偏高或平行性较差的情况。 5、消解温度、压力的控制 对于使用医用手提蒸气灭菌器的实验室,因测定压力为1.1~1.4kg/cm2,温度为120℃~124℃,此时可以安装一个稳压器,将压力控制在该范围,这样就省去了通过人为切断电源控制的麻烦,稳定且省力。消解时,GB11894—89中要求达到规定温度压力后即开始计时,而笔者的经验是,达到规定温度压力后应当先放气使压力表指针回零,再次达到规定温度压力后再计时。或者直接打开放气阀加热一段时间,待蒸气灭菌器内的冷空气被彻底赶尽、放出热蒸气后再关闭放气阀消解,并且将消解温度控制在123℃,这样测定结果最为理想。 6、比色时的注意事项

含氮量测定

土壤中氮素的总贮量及其存在状态,与作物的产量在某种条件下有一定的正相关。土壤中氮素来源于四方面:动、植物残体的积累;有机、无机肥料的施用;土壤微生物及大气降水带入的氮。从形态上可以分成有机态和无机态两类,其中能被植物吸收利用的无机态氮约占全氮量的5%,绝大部分以有机态存在的氮素,需要在微生物的活动下逐渐分解矿化后,才能被植物利用。 我国植物大部分缺氮,因此施氮肥在大部分土壤上都有显著肥效,分析全氮含量可以判断土壤肥力,为推荐施肥量作参考。 土壤、植株和其它有机体中全氮的测定通常都采用开氏消煮法,用硫酸钾-硫酸铜-硒粉作加速剂。此法虽然消煮时间长,但控制好加速剂的用量,不易导致氮素损失,消化程度容易掌握,测定结果稳定,准确度较高,适用于常规分析。 1.2.3.1.开氏定氮法原理 土壤中的含氮有机化合物在加速剂的参与下,经浓硫酸消煮分解,有机氮转化为铵态氮,碱化后把氨蒸馏出来,用硼酸吸收,标准酸滴定,求出全氮含量。硫酸钾起提高硫酸溶液沸点的作用,硫酸铜起催化剂作用,加速有机氮的转化,硒粉是一种高效催化剂,用量不宜过多,否则会引起氮素损失。 该法的主要化学反应如下: 1.2.3.2.主要仪器和试剂 1.2.3.2.1.开氏瓶(50ml);半微量滴定管(10ml) 弯颈小漏斗;半微量定氮蒸馏器或普通定氮蒸馏仪;100ml三角瓶。 1.2.3.2.2.浓硫酸(相对密度1.84,三级)。 1.2.3.2.3.40%NaOH 称取工业用固体氢氧化钠(NaOH)420g,放入1000ml硬质烧杯中,加入约400ml蒸馏水,不断搅动(防止烧杯底部固结),溶解后转入塑料试剂瓶,加塞,防止吸收空气中CO2。放置几天,待Na2CO3沉降后,将清液虹吸入盛有约200ml无C02的水的塑料试剂瓶中,加水至1000ml。若用三级试制配置,则不用虹吸步骤,其它同上。 1.2.3.2.4.2%硼酸溶液称取20g硼酸(H3BO3,三级)用热蒸馏水(约60℃)溶解,冷却后稀释至1000ml,每L硼酸溶液中加入甲基红-澳甲酚绿混合指示剂20ml,并用稀酸或稀碱调节至紫红色(pH4.5)。 1.2.3.2.5.甲基红-溴甲酚绿混合指示剂0.099g溴甲酚绿和0.666g甲基红与玛瑙研钵中少量95%乙醇,研磨至指示剂完全溶解为止,最后加95%乙醇至100ml。 1.2.3.2.6.0.02或0.01NH2S04标准溶液先配制0.1NH2SO4溶液,标定后稀释5或10倍。 1.2.3.2.7.0.1NH2S04溶液的配制和标定每L水中注入3ml浓硫酸(三级),冷却,充分混匀。将碳酸钠(Na2CO3,二级或一级)装在扁形称量瓶中,在160℃烘2h以上,用称量瓶称取0.16一0.24g样品(精础到0.0001g) 3份,分别放入250ml三角瓶,溶于30毫g水中,加1-2滴溴甲酚绿-甲基红棍合指示剂,用配好的0.1N酸溶液滴定至溶液由绿色变为紫红色,煮沸2-3min逐尽C02,冷却后继续滴定至溶液突变为葡萄酒红为终点。 同时做空白试验。控下式计算,取3次平均值。 NH=W*2000/Na2CO3*(v-v0)=w/0.05300*(v-v0) 式中W--称取Na2CO3重量,g; V--标定所用酸溶液体积,ml; V0 --空白试验所用酸溶液体积,ml。 1.2.3.2.8.混合催化剂称取硫酸钾(K2SO4~三级)100g,硫酸铜(CuSO4.H2O,三级)10 g和硒粉lg,均匀混合后研磨,使通过80目筛,贮于瓶中。 1.2.3.3.操作步骤

水样中总氮的测定

水样中总氮的测定 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

实验2水样总氮的测定 一、实验目的 (1)掌握总氮的测定原理和方法。 (2)了解影响总氮测定的因素。 二、实验原理 K 2S 2O 8+H 2O →2KHSO 4+1/2O 2 KHSO 4→H ++ HSO 4ˉ HSO 4ˉ→H ++ SO 42- OH -+H +→H 2O 在60 ℃以上水溶液中,过硫酸钾可分解产生硫酸氢钾和原子态氧,分解出的原子态氧在120~124 ℃条件下,可使水样中含氮化合物的氮元素转化为硝酸盐。在此过程中有机物同时被氧化分解。 A =A 220-2A 275 (1-1) 本方法的检出限为0.05mg/L ,测定范围为0.20~4.00mg/L 。 三、实验试剂 (配制以下试剂均使用无氨水) (1)氢氧化钠溶液(200 g/L ):称取20 g 氢氧化钠,溶于无氨水中,稀释至100 mL 。 (2)氢氧化钠溶液(20 g/L ):,将溶液(1)稀释10倍而得。 (3)碱性过硫酸钾溶液:称取40 g 过硫酸钾(K 2S 2O 8)溶于600 mL 水 中,另称取15 g 氢氧化钠溶于300 mL 水中。待氢氧化钠溶液温度冷却至室温后,混合两种溶液定容至1000 mL ,溶液存放在聚乙烯瓶内,最长可贮存一周。

(4)盐酸溶液(1+9):浓盐酸和无氨水的体积比为1:9。 (5)硝酸钾标准贮备液(氮含量100 mg/L):硝酸钾(KNO )在 3 105℃~110℃电热干燥箱中干燥3h,在干燥器中冷却后,称取0.7218 g,溶于无氨水中,移至1000 mL容量瓶中,用无氨水稀释至标线,混匀。加入1~2 mL三氯甲烷作为保护剂,并在0~10 ℃暗处保存,可稳定6个月。 (6)硫酸溶液(1+35):浓硫酸和无氨水的体积比为1:35。 3. 实验器材 所用玻璃器皿用盐酸(1+9)或硫酸(1+35)浸泡,清洗后再用无氨水冲洗数次。 (1)紫外分光光度计:配备10 mm石英比色皿。 (2)压力蒸汽灭菌器:医用手提式蒸气灭菌器或家用压力锅(压力为1.1~1.4 kg/cm2),锅内温度相当于120~124 ℃。 (3)比色管:具玻璃磨口塞,25 mL。 四、实验方法和步骤 1. 样品测定 (1)取10.00 mL试样(20~80μgN)置于比色管中+5 mL碱性过硫酸钾溶液,塞紧磨口塞用绳扎紧瓶塞,以防弹出→将比色管置于医用手提蒸气灭菌器中,加热至顶压阀吹气,关阀→使压力表指针到1.1~1.3 kg/cm2,此时温度达120~124 ℃后开始计时→保持温度在120~124 ℃之间30 min→自然冷却、开阀放气,移去外盖,取出比色管,冷却至室温,按住管塞将比色管中的液体颠倒混匀2~3次→+(1+9)盐酸

土壤中氮含量的测定分析(精)

土壤中氮含量的测定分析 核心提示:摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。关键词:土壤;全氮;测定方法土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态... 摘要:概述了土壤中氮元素的存在形式、土壤全氮、无机氮(包括铵态氮、硝态氮)水解氮、酰胺态氮的测定方法。 关键词:土壤;全氮;测定方法 土壤是作物氮素营养的主要来源,土壤中的氮素包括无机态氮和有机态氮两大类,其中95%以上为有机态氮,主要包括腐殖质、蛋白质、氨基酸等。小分子的氨基酸可直接被植物吸收,有机态氮必须经过矿化作用转化为铵,才能被作物吸收,属于缓效氮。 土壤全氮中无机态氮含量不到 5%,主要是铵和硝酸盐,亚硝酸盐、氨、氮气和氮氧化物等很少。大部分铵态氮和硝态氮容易被作物直接吸收利用,属于速效氮。无机态氮包括存在于土壤溶液中的硝酸根和吸附在土壤颗粒上的铵离子,作物都能直接吸收。土壤对硝酸根的吸附很弱,所以硝酸根非常容易随水流失。在还原条件下,硝酸根在微生物的作用下可以还原为气态氮而逸出土壤,即反硝化脱氮。部分铵离子可以被粘土矿物固定而难以被作物吸收,而在碱性土壤中非常容易以氨的形式挥发掉。土壤腐殖质的合成过程中,也会利用大量无机氮素,由于腐殖质分解很慢,这些氮素的有效性很低。 土壤中的氮素主要来自施肥、生物固氮、雨水和灌溉水,后二者对土壤氮贡献很小,施肥是耕作土壤氮素的主要来源,而自然土壤的氮素主要来自生物固氮。 土壤含氮量受植被、温度、耕作、施肥等影响,一般耕地表层含氮量为0.05%~0.30%,少数肥沃的耕地、草原、林地的表层土壤含氮量在 0.50%~0.60%以上。我国土壤的含氮量,从东向西、从北向南逐渐减少。进入土壤中的各种形态的氮素,无论是化学肥料,还是有机肥料,都可以在物理、化学和生物因素的作用下进行相互转化。 1 土壤全氮的测定 1.1 开氏法 近百年来,许多科学工作者对全氮的测定方法不断改进,提出了许多新方法,主要有重铬酸钾-硫酸消化法、高氯酸-硫酸消化法、硒粉-硫酸铜-硫酸消化法。但开氏法目前仍作为一个统一的标准方法,此法容易掌握,测定结果稳定,准确率较高。 开氏法测氮的原理为:在盐类和催化剂的参与下,用浓硫酸消煮,使有机氮分解为铵态氮。碱化后蒸馏出来的氨用硼酸吸收,以酸标准溶液滴定,求出土壤全氮含量(不包括硝态氮)。含有硝态和亚硝态氮的全氮测定,在样品消

水中总氮的测定(标准操作规程作业指导书)

1.适用范围 本测定规程规定了碱性过硫酸钾消解紫外分光光度法测定水中的总氮。 当样品量为10ml时,本方法的检出限为0.05mg/L,测定范围为0.20~7.00mg/L。2.测定原理 在120-124℃下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220nm和275nm处,分别测定吸光度A220和A275,按下面公示计算校正吸光度A,总氮(以N计)含量与校正吸光度A成正比。 A=A220-2A275 3.仪器设备 3.1 紫外分光光度计:配有10mm石英比色皿。 3.2高压蒸汽灭菌器:最高工作压力不低于1.1~1.4kg/cm2,;最高工作温度不低 于120~124℃。 3.3玻璃具塞比色管:25ml。 3.4 分析天平:精度0.01g。 3.5一般实验室常用仪器和设备。 4.试剂 除另有说明,分析时均使用符合国家标准的的分析纯试剂,试验用水为蒸馏水。 4.1 蒸馏水。 4.2 碱性过硫酸钾溶液:称取10.0g过硫酸钾(进口试剂)溶于150ml水中(可置于50℃水浴中加热至全部溶解);另称取3.75g氢氧化钠溶于75m水中。待氢氧化钠溶液温度冷却至室温后,混合两种溶液定容至250ml,存放于聚乙烯瓶中。可保存一周。 4.3 (1+9)盐酸溶液:取100ml浓度为1.19g/ml的盐酸于900ml蒸馏水中混匀。 4.4 (200g/L)氢氧化钠溶液:称取20.0g氢氧化钠溶于少量水中,用水稀释至100ml。 4.5 (20g/L)氢氧化钠溶液:取200g/L氢氧化钠溶液10.0 ml,用水稀释至100ml。 4.6 浓硫酸:ρ(H2SO4)=1.84g/ml

有机肥料氮磷钾的测定

有机肥料氮磷钾含量的测定 学院:材料与化工学院(化学1班姓名:李美玲学号:201104034013 摘要: 介绍了用化学分析方法测定有机肥料氮、磷、钾的含量, 即样品经硫酸 —过氧化氢消化后, 制备待测溶液, 分别取待测溶液用NC - 2 型快速定氮仪测 定氮, 用磷钼酸喹啉重量法测定磷, 用四苯硼酸钾重量法测定钾,不须使用分光 光度计和火焰光度计, 适宜一般复合肥料厂采用, 对含氮、磷、钾分别达11 % 以上的样品均可用本法测定, 方法的准确度和精密度能满足生产的要求。 Summary: Describes has with chemical analysis method determination organic fertilizer nitrogen, and phosphorus, and potassium of content, is samples by sulfuric acid-hydrogen peroxide digestive Hou, preparation to measuring solution, respectively take to measuring solution with NC-2 type fast will nitrogen instrument determination nitrogen, with phosphorus Mo acid quinoline weight method determination phosphorus, with four benzene boric acid potassium weight method determination potassium, does not be using min light photometric meter and flame photometric meter, suitable General compound fertilizers factory used, on with nitrogen, and phosphorus, and potassium respectively up 11% above of samples are available this method determination, Method of accuracy and precision to meet the production requirements. 关键词: 化学分析方法、有机肥料、氮磷钾含量 引言:有机肥料中氮、磷、钾含量的测定, 按国家行业标准NY525 —2002 的要 求, 氮采用全量蒸馏滴定法、磷采用磷钒钼黄光度法、钾采用火焰光度法测定。 对普通复混肥料厂来说, 一是测氮的时间过长; 二是因为这些厂一般都没有购 置分光光度计和火焰光度计, 不便于磷、钾的测定。为了解决厂家都能分析测定 有机肥料中氮、磷、钾的问题, 笔者在生产实践中总结出适宜厂家使用的有机肥 料中氮、磷、钾快速测定的化学分析方法。方法的要点是用硫酸—过氧化氢消化 样品制取待测液, 分别测定氮、磷、钾。测氮用NC - 2 型快速定氮仪, 在10 min 内可完成氮的蒸馏、吸收、滴定全过程, 具有快速、准确的特点; 测磷用磷钼酸 喹啉重量法;测钾用四苯硼酸钾重量法。在温度120 ℃的条件下, 将磷、钾的沉 淀物一起烘干115 h , 可以同时测定磷、钾, 大大缩短了操作的时间。此方法 用于生产实践, 与国家行业标准的分析方法结果基本一致。普通的复混肥料厂不 须增添分析仪器, 便可应用本法测定有机肥料氮、磷、钾的含量, 达到指导生产 的要求。 1 方法原理 有机肥料在硫酸溶液中加热, 滴加过氧化氢溶液, 使有机质迅速消化, 制备氮、 磷、钾的待测液,然后用NC - 2 型快速定氮装置测定氮、磷钼酸喹啉重量法测 定磷、四苯硼酸钾重量法测定钾。 2.仪器与试剂 盐酸标准溶液01025 mol/ L ; 混合指标剂: 称取溴甲酚绿015 g和甲基红011 g 溶于100 mL 乙醇中, 用氢氧化钠溶液(约011 mol/ L) 和盐酸溶液(约011 mol/ L) 调至紫红色(pH 约为415) ; 中性硼酸: 20 g/ L 加入混合指示剂, 用上述 氢氧化钠和盐酸调至紫红色。喹钼柠酮试剂、四苯硼酸钠溶液; 四苯硼酸钠洗液:

测定总氮的几个注意事项

. 测定总氮的几个注意事项 一、药剂空白高的问题,就需要提纯过硫酸钾。提0.030造成药剂空白高主要原因是过硫酸钾纯度不够。空白高于纯方法就是二次结晶过硫酸钾:摄氏度的水浴锅上加热(水浴的大烧杯中加入约800mL水,501L1.(可以同时做两份)在摄氏度以上会60摄氏度。过硫酸钾在以免超过锅的温度要用温度计检测下是不是正常,60克过硫酸钾,用一滤纸盖在上面(避免污染),溶解速度慢,90分解)。我的经验是先加入可以边做别的事边提纯,有空就去搅拌几下,全部溶解之后(速度较慢)。用勺子逐渐向烧隔了近一小时多都不杯中加入过硫酸钾,一次不要加太多,溶了再加,直至不管怎样搅拌,能溶解为止(刚好有一丁点儿不能溶解最好),这个过程挺漫长。并用皮筋扎2.把完全溶解的饱和溶液放在室温中自然冷却,用一干净的塑料袋包住烧杯口,的广口瓶紧,再放进冰箱里(调到最低温度),放置一晚上,重结晶。建议同时用一个1L 放一瓶无氨水在冰箱里冷藏(用于冲洗用)。重结晶一夜后,第二天早上拿出来立即倒掉上清液,重结晶的晶体会结成一块沉在瓶底,3.用冰好的无氨水清洗几但其实结构很松散,用钢勺什么的弄两下就离散开了,然后再清洗:遍,尽量不要让下面的结晶流失。的无氨水,搅拌清洗后的烧杯里只剩下下面的结晶,向烧杯中加入约 400ML4.二次结晶:(看这次跟第一次结晶不同的是向烧杯中慢慢地加入无氨水,一开始可以一次稍多点水溶解,结晶的多少),剩下不多时要等久些,加的水也要少,直到有一丁点儿结晶不能溶解为止。步骤(清洗)。35.然后重复第2步骤(二次结晶)、第(烘的烧杯中,6.清洗后倒掉上清液,把结晶移入一250ML然后放入50摄氏度烘箱烘干即可烘干箱里的温度要用温度计检测是否正常)。烘干箱里不要放入其它物品,以免再次污染。度水浴锅上蒸干一时间较长,(我的烘了二天三夜)可以晚上放烘干箱里烘,白天放在50 定。完全烘干后的药品跟原来的药品一样松散干燥,搅动会发出清脆的声音。.烘干后的药品从烘箱里拿出要放在干燥器里冷却一小时以上。冷却后用干净的聚乙烯瓶7 装好盖紧。 8.实验过程中加碱性过硫酸钾的时候一定要避免加在瓶口处。二、总氮取水体积:因为碱性过硫酸钾消解紫外分光光度法测定总氮取水样量为10ML时,测定范围为0.20mg/l.. . 进行时要适当减少取水样量。如果取10ML5ML水样再稀释至。总氮高于—7.00mg/l7 mg/l时取水量就要再减少进行测定。我14 mg/l。当总氮高于14 mg/l测定的话,最高检出限是吸取水样时要取静止5ML水样进行测定。2ML一般是取水样进行测定。出水总氮低时可以取一定时间后的上清液。三、要用新鲜的无氨水。用的无氨水,消解后加的无整个总氮的测定过程中所用的无氨水,包括加药前稀释至10ML以免不同无氨水不同带以及测定吸光值时参比样用的无氨水,都必须使用同一瓶水。氨水,来的误差。四、密封事项生料带对药剂没影响不会影响这样密封性更好,防止氨氮跑出。比色管盖子用生料带缠好,从而结果。但缠在盖子上的生料带要保持完好无损,以免碎屑掉入比色管内,影响吸光值,影响化验结果。使纱布紧密然后用纱布和绳子扎紧。扎好后把纱布边沿往下拔,比色管盖子一定要塞紧,包住盖子。五、灭菌锅的温度 1小时。灭菌锅的温度设定为125度,消解时间设定为六、趁热拿出后,马上打开放气阀放气,放气后马上打开灭菌锅盖,消解结束后,待灭菌锅压力降为0 放回立即拿出装比色管的烧杯,把总氮的比色管(压住总氮比色管的盖子)趁热多次摇匀,烧

农业部各种肥料实用的标准及检测方法

常见肥料检验项目和标准 1.复混肥料检测项目:总氮、有效磷、钾含量,水分,粒度,水溶性磷占有效磷百分率,氯离子。GB 15063-2001 《复混肥料(复合肥料)》 本标准规定了复混肥料的技术要求、试验方法、检验规则以及标识、包装、运输和储存。 本标准适用于复混肥料(包括各种专用肥料以及冠以各种名称的以氮、磷、钾为基础养分的三元或二元固体肥料);已有国家或行业标准的复合肥料如磷酸一铵、磷酸二铵、硝酸磷肥、磷酸二氢钾、钙镁磷肥等应执行相应的产品标准。 1.1. 总氮含量测定蒸馏后滴定法GB 8572-88 。平行测定的绝对差值≤0.30% ,不同实验室测定结果的绝对差值≤0.50% 。在酸性介质中还原硝酸盐成铵盐,在触媒存在下,将有机态氮或尿素态氮和氰氨态氮转化为硫酸铵,从碱性溶液中蒸馏出氨,用过量硫酸标准溶液吸收,以甲基红- 亚甲基蓝乙醇溶液为指示剂,用氢氧化钠标准溶液反滴定,即可间接计算出氮含量。 1.2. 有效磷含量测定磷钼酸喹啉重量法GB/T 8573-1999 。平行测定的绝对差值≤0.20% ,不同实验室测定结果的绝对差值≤0.30% 。用水和乙二胺四乙酸二钠(EDTA )溶液提取复混肥料中的水溶性磷和有效磷,提取液中的的正磷酸根离子,在酸性介质中和喹钼柠酮试剂生成黄色磷钼酸喹啉沉淀,用磷

钼酸喹啉重量法测定磷的含量。 1.3. 钾含量测定四苯基合硼酸钾重量法GB 8574-88 。钾含量<10% ,平行测定的绝对差值 0.12% ,不同实验室测定结果的绝对差值0.24% ;钾含量10~20% ,平行测定的绝对差值0.30% ,不同实验室测定结果的绝对差值0.60% ;钾含量>20% ,平行测定的绝对差值0.39% ,不同实验室测定结果的绝对差值0.73% 。在弱碱性介质中,用四苯基合硼酸钠溶液沉淀试液中的钾离子(如试样中有氰氨基化物或有机物时,可先加溴水和活性炭处理),所得沉淀经过滤、洗涤、干燥后称量;为了防止铵离子和其它阳离子干扰,可预先加入适量的甲醛溶液及乙二胺四乙酸二钠盐(EDTA )使铵离子与甲醛反应生成六亚甲基四胺,其它阳离子与乙二胺四乙酸二钠络合。 1.4. 游离水含量测定 1.4.1. 真空干燥法(仲裁法)GB 8577-88 。水含量≤2% ,绝对差值0.30% ;水含量>2% 。绝对差值0.40% 。存在于试样中的水经二氧六环或无水乙醇萃取后,利用水与卡尔?费休试剂进行定量反应。 1.4. 2. 真空烘箱法GB 8576-88 。水含量≤2% ,绝对差值0.20% ;水含量>2% 。绝对差值 0.30% 。在一定温度下,试样在电热恒温真空干燥箱中减压干燥,失重表示为游离水含量。 1.5. 粒度测定。用一定规格试验筛,江实验室样品分成不同粒径的颗粒,计算百分率。 1.6. 水溶性磷含量测定同有效磷含量测定。 1.7. 氯离子含量测定。氯离子含量<5% ,平行测定的绝对差值≤0.20% ,不同实验室测定结果的绝对差值0.30% ;氯离子含量5%-25% ,平行测定的绝对差值≤0.30% ,不同实验室测定结果的绝对差值0.40% ;氯离子含量>25% ,平行测定的绝对差值≤0.40% ,不同实验室测定结果的绝对差值 0.60% 。在酸性溶液中加入过量的硝酸银溶液,使氯离子转化成氯化银沉淀,用邻苯二甲酸二丁酯包裹沉淀,以硫酸铁铵为指示剂,用硫氰酸铵滴定液滴定剩余的硝酸银。 2.农业用尿素检测项目:总氮、缩二脲、水分、粒度。GB 2440-2001 《尿素及其测定方法》 本标准规定了尿素的技术要求、试验方法、检验规则以及标识、包装、运输和储存。 本标准适用于由氨和二氧化碳合成制得的尿素,分为工业用和农业用二类。其主要用途为在农业上用作肥料,在工业上用作塑料、树脂、涂料、医药等工业的原料。 尿素的技术指标要求

氮肥中氮含量的测定—氨态氮的测定方法电子教案(精)

相关知识 依据国家标准GB/T8572-2010复合肥料中总氮含量的测定 知识点:肥料中氮的测定方法 1、氨态氮的测定 (1)酸量法(碳酸氢铵和氨水) ①方法原理:试液与过量的硫酸标准滴定溶液作用,加热煮沸5min ,冷却后加2d 混合指示剂,用氢氧化钠标准溶液返滴定剩余硫酸,由硫酸标准溶液的量和消耗量氢氧化钠标准溶液的量,求出氨态氮的含量。反应如下: 2NH 4HCO 3+H 2SO 4=(NH 3)2SO 4+2CO 2↑+2H 2O 2NaOH +H 2SO 4(剩余)=Na 2SO 4+2H 2O ②结果计算: 试样中氮含量以质量分数表示,按下式计算 ③方法讨论 此方法适用于碳酸氢铵、氨水中氮含量的测定。 迅速精确称量试样,立即将试样用水洗入已盛有已知浓度硫酸溶液的锥形瓶中,使试样完全溶解反应。 (2)蒸馏后滴定法 ①方法原理:样品与过量强碱溶液作用,然后从碱性溶液中蒸馏出的氨,用过量的硫酸标准溶液吸收,以甲基红或甲基红-亚甲基蓝乙醇溶液为指示剂,用氢氧化钠标准溶液返滴定至终点。由硫酸标准溶液的量和消耗的氢氧化钠标准溶液的量,求出氨态氮的含量。 NH 4++OH -=NH 3↑+H 2O 2NH 3+H 2SO 4=(NH 4)2SO 4 2NaOH +H 2SO 4(剩余)=Na 2SO 4+2H 2O ②结果计算: 计算试样中的含氮量同酸量法 ③方法讨论 此方法适用于含铵盐的肥料和不含受热易分解的尿素或石灰氮之类的肥料的测定。 蒸馏后滴定法操作过程相对繁琐,但测定结果准确,使用范围广,常用作仲裁分析。 (3)甲醛法 氨态氮 强酸的铵盐 甲醛法 强碱分解-蒸馏法 氨水或弱酸的铵盐:返滴定法

环境项目原始记录表格

目录五日生化需氧量分析记录(Ⅰ) 2 五日生化需氧量分析记录(Ⅱ) 3 氯化物原始记录表 4 原子荧光分光光度计原始记录 5 COD分析原始记录表 6 二氧化氮分析原始记录表 7 氟化物分析原始记录表 8 无机含氮化合物分析原始记录表 9 阴离子表面活性剂分析原始记录表 10 总氮分析原始记录表 11 总硬度分析原始记录表 12 pH、电导率、水温分析原始记录 13 高锰酸盐指数原始记录 14 挥发酚分析原始记录表 15 甲醛分析原始记录表 16 全盐量分析原始记录表 17

总磷分析原始记录表 18 二氧化硫原始记录表 19 六价铬、总铬原始记录表 20 溶解氧原始记录表 21 氟化物电极法分析原始记录表 22 氟化物分光光度法分析原始记录表 23 工业企业厂界环境噪声测量记录 24 原子吸收分光光度法分析原始记录 25 水中苯系物的测定原始记录 26 环境空气苯系物的测定原始记录 27 社会生活环境噪声监测原始记录 29 地表水采样记录 30 污染源废水采样记录 31 大气环境采样记录 32 PM2.5、PM10、烟(粉)尘重量分析原始记录表 33 建筑噪声监测原始记录 34

五日生化需氧量分析记录(Ⅰ) 项目名称项目编 号分析项目样品性质仪器编号 检测依据采样日 期收样日期 培养时间年月日时室温℃ 至年月日时室温℃ 培养箱温度℃稀释水制备日期

分析者校核者审核 者 共页第页 五日生化需氧量分析记录(Ⅱ) 项目名称项目编 号分析项目样品性质仪器编号 检测依据采样日 期收样日期 培养时间年月日时室温℃ 至年月日时室温℃ 培养箱温度℃稀释水制备日期

检测总氮时的注意事项

前段时间,有其他自来水公司的检测人员打电话问我怎么降低总氮检测时的空白值,我在网络论坛中也经常看到有人这样提问,现在我就将我在做总氮时的一些经验总结出来,以供大家参考。 水中总氮项目的测定常采用碱性过硫酸钾消解紫外分光光度法。采用这种方法的优点是步骤相对简单, 所需试剂较少, 要求使用的仪器设备一般实验室都能具备。但是该方法对空白值的要求非常严格, 其所需试剂中的过硫酸钾、氢氧化钠本身都含有一定量的氮, 因此空白实验不易做好。要做好总氮的空白实验, 不仅与试剂有关, 而且还与实验用水、器皿、家用压力锅或医用手提蒸气灭菌器的压力、实验室环境及方法步骤的掌握等因素关系密切。 一、试剂的配制、存放 碱性过硫酸钾的配制过程十分重要, 掌握不好, 会影响消解效果, 对测定结果产生一定的影响。GB11894- 89中关于碱性过硫酸钾的配制, 只是简单的说将过硫酸钾和氢氧化钠溶于水中, 并未作其它要求。实际上, 过硫酸钾的溶解速度非常慢, 若要加快溶解, 绝对不能盲目加热, 即使加热, 也最好采用水浴加热法, 且水浴温度一定要低于60℃, 否则过硫酸钾会分解失效。配制该溶液时, 可分别称取过硫酸钾和氢氧化钠, 两者分开配制, 再混合定容, 或者先配制氢氧化钠溶液, 待其温度降到室温后再加入过硫酸钾溶解。若二者在一只烧杯中溶于水, 应缓慢加水, 同时搅拌, 防止氢氧化钠放热使溶液温度过高引起局部过硫酸钾失效。过硫酸钾的存放也要注意, 应避免与还原性物质、硫、磷等混合存放, 另外, 过硫酸钾易吸潮, 放出氧气, 因此, 为防止失效, 要将其放在干燥的试剂橱中。 二、实验用水的制备 实验过程对水的要求非常严格。GB11894-89 中指出,在用蒸馏法制备无氨水时: 弃去前50m l馏出液, 然后将馏出液收集在带有玻璃塞的玻璃瓶中。根据我的经验, 重蒸馏制水的方法完全可以用超纯水来代替。但是,并不是所有的超纯水都可以直接拿来测总氮。比如,

常见肥料检验项目和标准精编版

常见肥料检验项目和标 准 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

常见肥料检验项目和标准 1.复混肥料检测项目:总氮、有效磷、钾含量,水分,粒度,水溶性磷占有效磷百 分率,氯离子。GB15063-2001《复混肥料(复合肥料)》 本标准规定了复混肥料的技术要求、试验方法、检验规则以及标识、包装、运输和 储存。 本标准适用于复混肥料(包括各种专用肥料以及冠以各种名称的以氮、磷、钾为基 础养分的三元或二元固体肥料);已有国家或行业标准的复合肥料如磷酸一铵、磷酸二铵、硝酸磷肥、磷酸二氢钾、钙镁磷肥等应执行相应的产品标准。 1.1.总氮含量测定蒸馏后滴定法GB8572-88。平行测定的绝对差值≤0.30%,不同实验室测定结果的绝对差值≤0.50%。在酸性介质中还原硝酸盐成铵盐,在触媒存在下, 将有机态氮或尿素态氮和氰氨态氮转化为硫酸铵,从碱性溶液中蒸馏出氨,用过量硫酸 标准溶液吸收,以甲基红-亚甲基蓝乙醇溶液为指示剂,用氢氧化钠标准溶液反滴定, 即可间接计算出氮含量。 1.2.有效磷含量测定磷钼酸喹啉重量法GB/T8573-1999。平行测定的绝对差值 ≤0.20%,不同实验室测定结果的绝对差值≤0.30%。用水和乙二胺四乙酸二钠(EDTA) 溶液提取复混肥料中的水溶性磷和有效磷,提取液中的的正磷酸根离子,在酸性介质中 和喹钼柠酮试剂生成黄色磷钼酸喹啉沉淀,用磷钼酸喹啉重量法测定磷的含量。 1.3.钾含量测定四苯基合硼酸钾重量法GB8574-88。钾含量<10%,平行测定的绝对 差值0.12%,不同实验室测定结果的绝对差值0.24%;钾含量10~20%,平行测定的绝对 差值0.30%,不同实验室测定结果的绝对差值0.60%;钾含量>20%,平行测定的绝对差 值0.39%,不同实验室测定结果的绝对差值0.73%。在弱碱性介质中,用四苯基合硼酸 钠溶液沉淀试液中的钾离子(如试样中有氰氨基化物或有机物时,可先加溴水和活性炭 处理),所得沉淀经过滤、洗涤、干燥后称量;为了防止铵离子和其它阳离子干扰,可

海能仪器复合肥料中的总氮含量的测定(凯氏定氮法)

海能仪器:复合肥料中的总氮含量的测定(凯氏定氮法) 凯氏定氮仪具有高精度颜色传感器判断终点,智能化程序控 制,可自动完成加水稀释、加酸、加碱、蒸馏、滴定、滴定杯自动 排液清洗、消化管排空、结果计算和输出打印结果,全程无需人为 干预,数据准确可靠等优点。整个过程只需5min,而传统的全氮蒸 馏法和半微量蒸馏法需要20min甚至更长的时间。因此凯氏定氮仪 在食品、化工、农牧业、医药卫生等领域的蛋白质含量测定方面有 着巨大的优势和应用前景。 消化技术是制约全自动凯氏定氮仪发展的一个瓶颈技术。由于 在复合肥料中含有硝态氮、铵态氮、有机态氮、尿素态氮、氰氨态 氮等多种形态的氮,所以复合肥料中总氮的消化过程相对于单一形 态氮较复杂,有必要总结出一套适合全自动凯式定氮仪并且易操 作、准确、快速的消化方法。 本研究结合现行化肥定氮国标方法和其他消化手册,改进了消 化方法,一定程度上克服了全自动凯氏定氮仪的瓶颈,使得利用全 自动凯式定氮仪测定复合肥料中的总氮含量更加快速、准确、易操作。 1材料与方法 1.1消化原理 将复合肥料中的硝酸盐在催化剂定氮合金的作用下加入浓盐 酸还原成铵盐,用浓硫酸进行消化,将有机态氮或尿素态氮和氰氨

态氮转化为硫酸铵。 1.2试剂 试剂均为二次蒸馏水;定氮合金(Cu、Al和Zn的含量分别为50%、45%和5%)及其他标定和使用的试剂同GB/T8572。 1.3仪器 全自动凯氏定氮仪;消化系统。 1.4实验方法 称取复合肥料样品0.1g-0.2g于消化管中,加入15ml蒸馏水摇动使试样溶解,再加入1.0g定氮合金,7ml浓盐酸,置于石墨消解仪上,加热至150℃左右,反应20min,取下蒸馏管于消化管架上冷却到室温。再加入10ml浓硫酸,把消化管置于石墨消解仪上缓慢升温至420℃消化,待蒸馏管中澄清透亮并且有小股硫酸白烟冒起,后取下消化管和消化管架于通风橱内冷却至室温。再加10-20ml 蒸馏水于蒸馏管中于100℃继续消化,待蒸馏管中溶液呈明亮透明蓝色溶液时取下蒸馏管冷却至室温,上全自动凯氏定氮仪进行蒸馏。 2.结果与分析 2.1硝酸铵总氮含量分析对比 在复合肥料的总氮含量的测定中硝酸铵常常被用作加标样品和验证试验样品,所以硝酸铵的消化和定氮程度常常决定着复合肥料总氮含量的测定数据。采用国标法消化时间长,试剂用量大。foss 法虽然在消化时间和试剂用量上都比较小,但由于硝酸铵中含有硝

总氮的测定方法

总氮的测定方法 (1)、原理 当样品与浓硫酸和硫酸钾的混合物(沸点315~370℃)在催化剂硫酸铜或硫酸汞存在时,一起加热,其中的有机氮和氨态氮转化为硫酸铵。然后加入NaOH溶液使之成碱性,蒸镏使氨释放出来并以硼酸吸收,然后用硫酸滴定硼酸铵。 此法测得的总氮包括了有机氮和原来即以氨态存在的氮,但不包括硝酸盐或亚硝酸盐形式存在的氮,有机氮中的某些化合物如含氮的杂环化合物、吡啶、叠氮化合物、偶氮化合物、硝基和亚硝基化合物等也未包括在内。以此法测定的总氮称之为凯氏(Kjeldagl)氮,即TKN。测定同一水样中氨态氮含量后,总凯氏氮和氨态氮的差值即为有机氮。 ------------------------------------------------------- (2)、药品与仪器 ①、浓硫酸,密度1.84g/cm3; ②、50% NaOH溶液; ③、10% CuSO4溶液; ④、4%硼酸溶液; ⑤、无水硫酸钾或无水硫酸钠; ⑥、0.020mol/L(1/2H2SO4标准溶液:吸取分析纯浓硫酸2.80ml,溶于1000ml蒸镏水中,得到约0.10mol/L(1/2H2SO4)溶液,用碳酸钠标定。然后从中吸取200ml,用蒸镏水稀释至1000ml备用。 ⑦、混合指示剂:取0.05g甲基红和0.10g溴甲酚绿溶于100ml乙醇中; ⑧、1%酚酞的乙醇溶液; ⑨、4%Na2S。9H2O溶液; ⑩、蒸镏水:将普通蒸镏水酸化后加入KMnO4进行蒸镏,并重复蒸镏一次,以使其中不含有任何铵盐或氨。本试验所用蒸镏水均应经过这样的处理; ⑩、浮石:在蒸镏水中煮沸后干燥备用; ⑩、600瓦可调温电炉两台; ⑩、凯氏烧瓶及凯氏蒸镏装置 (3)、操作步骤 操作可分为消化、蒸镏和滴定三个步骤。 ①、消化: 准确量取一定体积(以含氮0.5~10mg为宜)的废水水样置于凯氏烧瓶,加入10ml浓硫酸、5克硫酸钾或硫酸钠、1ml硫酸铜溶液,并放入几块沸石,将凯氏烧瓶以45度的角度固定于通风橱内加热煮沸,烧瓶内将产生白烟。继续煮沸,烧瓶中颜色逐渐变黑,直至溶液完全透明无色或浅绿色。再继续煮沸20分钟。 ②、蒸镏: 将凯氏烧瓶冷却,以约150ml蒸镏水冲洗烧瓶壁,加入2.5ml硫化钠溶液和3~5滴酚酞,然后缓慢沿壁加入50mlNaOH溶液尽量使其不与烧瓶内液体混合。立刻将烧瓶按图所示安装到蒸镏装置上去(事先安装好含50ml硼酸的吸收瓶),小心转动烧瓶使烧瓶内的两层液体混合并开始加热。煮沸20~30分钟或在不使用蒸气发生器时蒸发至烧瓶内液体体积减少至原体积约约1/3时,停止蒸镏。 ③、滴定: 卸下吸收瓶,加入几滴混合指示剂,以0.02mol/L(1/2H2SO4)滴定至溶液变为紫色。

有机肥料国家标准及各个指标的检测方法

有机肥料的国家标准及各个指标的检测方法 简介:本文介绍了生物有机肥肥料的国家标准,以及各个指标的检测方法。具体包括:有效活菌数,有机质,水分,PH,粪类大肠菌群数,蛔虫卵死亡率,N,P5O2,K2O,重金属等指标的测定方法和流程。可供同行人士参考,可大大缩减您查阅资料的时间,本文采用word文字编辑,下载后可以直接复制粘贴。一.各个指标的标准 1.各个技术指标 项目指标要求 有效活菌数≧0.2亿/g 有机质(以干计)≧45% 水分≦30% PH 5.5-8.5 粪大肠菌群数≦100个/g 蛔虫卵死亡率≧95% ≧5% 总养分质量分数(N+P5O2+K2O,以烘干 计) 2.重金属指标 项目指标要求 总AS ≦15mg/kg 总Cd ≦3mg/kg 总Pb ≦50mg/kg 总Cr ≦150mg/kg 总Hg ≦2mg/kg 二.各个指标检测方法 1.有效活菌数的测定 (1)稀释 称取固体样品10g,加入带玻璃珠的100ml的无菌水中,静置20分钟,在旋转式摇床上200r/min充分震荡30分钟,即成母液菌悬液。 用5ml无菌转液管分别吸取5ml上述母液菌悬液加入45ml无菌水中,按1

比10进行系列稀释,分别得到10-1,10-2,10-3、、、稀释倍数的菌悬液。 (2)加样及培养 每个样品取3个连续适宜稀释度,用0.5ml无菌移液管分别吸取不同稀释度菌悬液0.1ml,加至预先制备好的固体培养基平板上,分别用无菌玻璃刮刀将不同稀释度的菌悬液均匀地涂布于琼脂表面。 每一稀释度重复3次,同时以无菌水作空白对照,于适宜的条件下培养。 (3)菌落识别 根据所检测菌种的技术资料,每个稀释度取不同类型代表菌落通过涂片、染色、镜检等技术手段确认有效菌。当空白对照培养皿出现菌落数时,检测结果无效,应该重做。 (4)菌落计数 以出现20-30个菌落数的稀释度的平板为计数标准,(丝状真菌为10-150个菌落数),分别统计有效活菌数目和杂菌数目。当只有一个稀释度,其有效菌平均菌落数在20-300个之间时,则以该菌落数计算。若有两个稀释度,其有效菌落数在20-300个之间时,应该两者菌落总数之比值决定,若其比值小于等于2应该计算两者的平均数;若大于2,则以稀释度小的菌落数平均数计算。有效活菌数按下列公式计算,同事计算杂菌数。 N1=(x*k*v1/m0*v2)*108 N2=(x`*k*v1/v0*v2)*108 式中: N1——————质量有效活菌数,单位为亿每克; N2——————体积有效活菌数,单位为亿每毫升; x·——————有效菌落平均数; K———————稀释倍数; V1———————基础液体积,单位为毫升; V2———————菌悬液加入量,单位为毫升; V0———————样品量,单位为毫升; M0———————样品量,单位为克。 2.有机质的测定 (1)方法原理 用定量的重铬酸钾-硫酸溶液,在加热条件下,使有机肥料中的有机碳氧化,

相关文档
最新文档