单片机的智能电源管理系统

单片机的智能电源管理系统
单片机的智能电源管理系统

中国石油大学(华东)现代远程教育毕业设计(论文)

题目:单片机的智能电源管理系统学习中心:重庆信息工程专修学院奥鹏学习中心

年级专业:0404级电气工程及自动化

学生姓名:黄大吉学号:0451480125 指导教师:韩亚军职称:讲师

导师单位:重庆信息工程专修学院

中国石油大学(华东)远程与继续教育学院论文完成时间:2007 年12 月24 日

中国石油大学(华东)现代远程教育

毕业设计(论文)任务书

发给学员黄大吉1.设计(论文)题目:单片机的智能电源管理系统

2.学生完成设计(论文)期限:年月日至年月日3.设计(论文)课题要求:本论文详以理论联系实际,详细阐述了基于单片机的智能电源管理系统。以严密的逻辑思维对本设计进行了全面的论证,所引用的文献都进行过仔细筛选。最后严格按照学校规定格式排序。对于不熟悉的知识点,也在指导老师的指导下完成。

4.实验(上机、调研)部分要求内容:在完成论文的过程中,利用所学的电路设计软件Protel99,设计论文中需要用到的图形,用学习过的C 或者VB语言编写相应程序。最后用Office 2003排版论文版面和图象处理软件加工文中图表。

5.文献查阅要求:在学校图书馆查阅到的相关资料、文献都经过严格筛选,以确保其准确性、真实性。本论文的完成过程中还充分利用了当今资源丰富的互联网。在网上查找了很多符合题材的相关资料。本着尊重他人成果,以及避免侵权,本论文中对所有查阅引用到的资料都详细注明了出处。

6.发出日期:年月日

7.学员完成日期:年月日

指导教师签名:

学生签名:

摘要

本文介绍了基于cygnalC8051F020单片机为主控单元的智能电源管理系统,详细阐述了该系统的工作原理、控制策略及其硬件、软件实现。本系统具有配置灵活、可扩展性强等特点,适用于便携式设备和无人值守设备的电源管理。

随着对移动性要求的提高,以及使用便利性的要求,多数电子产品采用可充电电池作为主要供电方式。通常来说,设计者一般会使用专用电池管理芯片来控制充电电压、电流及整个充电流程。但使用专用芯片,会带来设计成本增加,PCB板面积增大的问题,同时所设计的电路只能针对于选定的电池,如更换不同型号的电池则需要重新设计电路。

针对于此,本文提出了一种利用单片机剩余资源的电池管理电路,具有电路简单、成本低、功耗小、可靠性强、灵活性高的特点。

关键词:电源管理;CYGNAL单片机;电量监测

目录

摘要 (i)

目录 (i)

第1章前言 (1)

第2章C8051FXXX系列单片机的特点 (3)

第3章电源管理系统的工作原理与硬件结构设计 (6)

3.1电池充电特性 (6)

3.2补偿转换器工作特性 (8)

3.3补偿转换器电感的确定 (9)

3.4电压与电流检测 (10)

3.5电能状态检测 (11)

3.6电源输入输出控制 (11)

3.7键盘与LCD显示 (11)

3.8通讯扩展 (12)

第4章电源管理控制策略 (13)

4.1涓流充电阶段 (14)

4.2容积充电阶段 (14)

4.3定压充电阶段 (15)

第5章电源管理软件设计 (16)

第6章结论 (17)

致谢 (18)

参考文献: (19)

第1章前言

随着人们生活质量的提高及工业技术的发展,人们已经不再满足于楼上楼下,电灯电话的生活,各种简单、易用、智能化的电子产品成为人们的迫切需求。而近几年迅速发展起来的便携式产品更是受到人们的热烈追捧,致使便携式产品设计方案在电子产品设计中被广泛采用。其具备移动性强、便于携带、易操作等优点。在这些设备中,单片机扮演着重要的角色。它是一种广泛应用于各种产品的半导体器件,它是在一枚芯片上集成了一个完整的计算机(常被称为“系统级芯片”),而普通台式计算机则是由机箱内的不同部分协同操作所构成的。无论台式计算机还是大型主机系统,任何计算机都有共通之处。它们都有运行程序的中央处理器(CPU)、储存可变数据的随机存取存储器(RAM)、可擦除的编程制度存储器(EPROM)、输入/输出(I/O)、定时器和中断控制器。台式机属于“通用计算机”,可运行数以千计的成讯。

单片机则属于“专用计算机”,经编程后可以执行若干特殊任务。特别是当需要把所有或大部分内部元件都集中在一枚芯片上的时候,单片机便可大显身手。单片机还具有的特点包括:单片机通常嵌入在某些其他设备中,负责控制产品的功能或动作;专门针对一项具体任务,并负责运行某一具体程序。该程序存储于片上程序存储器中,通常不会改变,新型单片机的存储器均为闪存,可进行多达百万次的重新编程;通常情况下都是低功耗器件。台式计算机通常需要连接电源适配器,耗电为50瓦左右;但以电池供电的单片机却只需耗费用千分之一的电力,即50毫瓦;配备专用输入装置,而且在大多数情况下会附设作为输出的小型LED 或LCD屏幕。可以从所控制的电子设备中获得输入信号,然后把信号发送至设备的不同组件,确保设备正常运行呢。有的甚至能连接互联网或其他网络,用于自动售货机等设备,以确保用户可以远程检查库存;体

积小、成本低并且经久耐用。例如大多数的厨房电器中都有单片机,最常见的是一些配备发光二极管(LED)或液晶显示屏(LCD)的小键盘的产品(如微波炉)。即使像烤面包炉结和搅拌机这种没有屏幕显示的新型家电,往往也用到了单片机。时至今日,所有的现代汽车内都可能配备少则1个,多则70多个单片机。新推出的汽车平均使用25至35个单片机,应用范围涉及引擎控制、防抱死刹车系统、卫星导航控制及安全气囊系统。可以说差不多任何带遥控功能的电子设备或电器都有单片机的应用。单片机是大部分消费类电子产品不可或缺的元件,这些产品包括:数码相机、手机、摄像机、自动应答系统、激光打印机、特殊功能电话、寻呼机、新型电冰箱、洗碗机及洗衣干衣机等等。但很多便携式设备需要自身独立的内置电源管理系统,保证其在移动或无人职守状态下工作,它们一般采用可充电的锂离子电池或镍氢电池作为设备内置电源(连续使用三到五年不更换,甚至更长时间)。因为蓄电池的使用和保护方法及剩余电量监测对电池寿命有着重大的影响,是产品性能的一个重要方面。所以合理的充电策略对维持畜电池性能延长其使用寿命都有重要的意义。电源管理是一个完整的系统,它不仅包含对畜电池的电量检测和充放电管理和为设备提供标准电压等级和定制电压等级的电源输出,还应有人机交互的功能。因此我们将使用单片机来实现这一系统的各种功能。

本文利用CygnalC8051FXXX系列单片机作为核心构成的控制器,实时检测电源输入、蓄电池电压、充放电电流等参数,自动完成电源管理过程,并将电源信息通过LCD显示以便用户及时了解设备状态。本设计还具有人机交互接口和通讯接口,可实现控制功能的扩展。

第2章C8051FXXX系列单片机的特点

CygnalC8051FXXX系列单片机C8051Fxxx单片机采用流水线结构,机器周期由标准的12个系统时钟周期降为1个系统时钟周期,处理能力大大提高,峰值性能可达25MIPS。C8051Fxxx单片机是真正能独立工作的片上系统(SOC)。每个MCU都能有效地管理模拟和数字外设,可以关闭单个或全部外设以节省功耗。FLASH存储器还具有在系统重新编程能力,可用于非易失性数据存储,并允许现场更新8051固件。应用程序可以使用MOVC和MOVX指令对FLASH进行读或改写,每次读或写一个字节。这一特性允许将程序存储器用于非易失性数据存储以及在软件控制下更新程序代码。片内JTAG调试支持功能允许使用安装在最终应用系统上的产品MCU进行非侵入式(不占用片内资源)、全速、在系统调试。该调试系统支持观察和修改存储器和寄存器,支持断点、单步、运行和停机命令。在使用JTAG调试时,所有的模拟和数字外设都可全功能运行。每个MCU都可在工业温度范围(-45℃到+85℃)内用2.7V-3.6V(F018/019为2.8V-3.6V)的电压工作。端口I/O、/RST和JTAG 引脚都容许5V的输入信号电压。C8051Fxxx系列器件使用Cygnal的专利CIP-51微控制器内核。CIP-51与MCS-51TM指令集完全兼容,可以使用标准803x/805x的汇编器和编译器进行软件开发。CIP-51内核具有标准8052的所有外设部件,包括3个16位的计数器/定时器、一个全双工UART、256字节内部RAM空间、128字节特殊功能寄存器(SFR)地址空间及4个8位的I/O端口。CIP-51还另外有增加的模拟和数字外设或功能部件。CIP-51采用流水线结构,与标准的8051结构相比指令执行速度有很大的提高。在一个标准的8051中,除MUL和DIV以外所有指令都需要12或24个系统时钟周期。而对于CIP-51内核,70%的指令的执行时间为1或2个系统时钟周期,只有4条指令的执行时间大于4

个系统时钟周期。C8051Fxxx系列MCU在与标准8051相比,在CPU 内核的内部和外部有几项关键性的改进提高了整体性能,更易于在最终应用中使用。扩展的中断系统向CIP-51提供22(C8051F3xx为12)个中断源(标准8051只有7个中断源),允许大量的模拟和数字外设中断微控制器。一个中断驱动的系统需要较少的MCU干预,却有更高的执行效率。在设计一个多任务实时系统时,这些增加的中断源是非常有用的。MCU可有多达7个复位源:一个片内VDD监视器、一个看门狗定时器、一个时钟丢失检测器、一个由比较器0提供的电压检测器、一个强制软件复位、CNVSTR引脚及/RST引脚。/RST引脚是双向的,可接受外部复位或将内部产生的上电复位信号输出到/RST引脚。除了VDD 监视器和复位输入引脚以外,每个复位源都可以由用户用软件禁止。MCU内部有一个能独立工作的时钟发生器,在复位后被默认为系统时钟。如有需要,时钟源可以在运行时切换到外部振荡器。外部振荡器可以使用晶体、陶瓷谐振器、电容、RC或外部时钟源产生系统时钟。这种时钟切换功能在低功耗系统中是非常有用的,它允许MCU从一个低频率(节电)外部晶体源运行,当需要时再周期性地切换到高速(可达16MHz的内部振荡器。是完全集成的高速高集成度具有独立工作的片上系统的混合信号系统级芯片[5],特别适用于电池供电的场合及便携式设备中,其特点如下:

1、低功耗:在2.7V电压32KHz条件下工作电流仅为20uA,这时单片机所有外设模块都可使用,关闭flash更可使功耗降低至10uA,正在达到了微安级。25M的高速功耗也仅10mA。

2、硬件资源丰富:在F02X系列单片机内集成了片内看门狗定时器、VDD监视器和温度传感器、64KBFlash、4KBRAM、2个串行通信总线、5个16位定时器、可编程计数器阵列(PCA)、8个12位ADC带PGA和模拟多路开关、2个可编程12位DAC、32个I/O口。

3、先进的非侵入式在系统调试技术:所有信号都支持JTAG标准测试接口,方便进行片上在线仿真,固化flash存储器内的程序易于在线升级和调试。

4、专用IDE集成开发环境,提供全系列单片机配置向导,方便用户使用汇编和C语言编程。综上所述,C8051F02X系列单片机具有极低的功耗、强大的处理能力、丰富的片上资源、高效的开发环境。

第3章电源管理系统的工作原理与硬件结构设计

本文所述的电源管理系统采用混合信号设计技术,以单片机为核心的数字电路对电源进行动态管理,以模拟电路实现对电路的控制驱动及电源电压的转换和监测。电源管理系统由单片机、电能状态检测电路、电源输入输出控制电路、键盘与LCD显示模块和远程通讯模块等构成,结构如图3-1所示。

图3-1 电源管理模块结构图

3.1电池充电特性

对于不同化学特性的电池(锂电池、镍氢电池、镍镉电池),充电方式各不相同。然而,大多数电池的充电过程都可以归纳为以下三个阶段,

示意图如图3.1-1所示。

涓流充电阶段;

定流充电阶段;

定压低电流充电阶段以及充电终止。

电池充电过程是将电能经过转化以后存储到电池内。电池的充电电流由电池的额定容量所决定,单位为‘C’。例如,一块容量为1000mAh 的电池,如果充电电流为1000mA的话,则可以说电池以1C(1倍于电池容量)进行充电。通常所说的涓流充电,一般是指电池以1/50C,甚至更低的电流进行充电。快速充电,一般不使用涓流充电方式。充电器在对电池进行充电时,一般使用涓流和恒流(容积)充电两种方式。自发热通常是导致充电过早结束的主要原因,因此充电的初始阶段采用涓流充电,以最大程度上控制电池的自发热。在到达电池的大部分能量已经恢复的中间阶段时,采用容积充电。一般采用测量充电电压和充电电流来判断充电过程是否结束,具体方法与电池的化学特性有关。例如,大多数锂电池充电器将充电电压设定为恒值,用检测充电的最小电流的方法来判断充电是否结束,而镍镉电池需要根据电压及温度的变化来判断充电是否结束。对电池充电时,绝大部分的电能都被转化为化学能存储起来,然而转换效率却不可能达到100%。未被转化为化学能的电能被转化为热能,致使电池温度上升。当电池接近充满状态时,几乎所有的电能都被转化为热能,造成电池的温度上升,在这种情况下,如果没有及时终止充电,将会损坏电池甚至彻底毁坏电池。快速充电(两小时内将电池充满)通常使用大电流进行充电,以尽量缩短充电时间。此时,对电池温度的检测就显得极其重要,特别是锂电池,如果过充可能导致爆炸。因此,在整个充电期间都应该检测电池温度。一旦检测到温度超限,应该立即终止充电。

相对于别的电池,由于锂电池较高的能量/体积比以及能量/重量

比,已成为大多数便携式系统设计的首选(本文后续介绍都以以锂电池为例)。多数锂电池充电器在充电结束阶段采用充电电流极小的递减充电方式。锂电池充电示意图如图3-2所示

图3-2 锂电池充电阶段示意图

3.2补偿转换器工作特性

图3-3所举例子为补偿转换器示意图。通过单片机的片上8位PWM (脉宽调制)的PCA输出控制旁路开关。开关闭合时,电流流向如图3.2-1A所示,输入的电流对电容和电感充电。

开关打开时如图3.2-1B所示,电感的特性会保持流过自身的电流不会突变。电流随即会流过续流二极管,同时继续对电容充电。以上两个阶段进行循环。总体说来,如果PWM控制信号中占空比减少的话,平均电压会下降,反之亦然。因此,通过控制占空比的大小,可调节电压和电流的大小。

A

B

图3-3 补偿转换器示意图

3.3补偿转换器电感的确定

由于在占空比为50%状态下,转换器工作效率最高,因此在计算补偿转换器的电感时设定PWM 输出信号在该状态。

占空比计算公式如公式3-4所示,T 为PWM 周期(设定T = 10.5μs )。

占空比 = ton/T 公式3-4

选择上述设定50%的PWM 占空比,电感的计算公式如公式3-5所

示↓↓→↓→L ton T

max 2)(o o sat i I ton V V V L --=

公式3-5 PWM 周期↓ → ton ↓ → 电感量L ↓。设定单片机采用8位的

PWM 模式,使用24.5MHZ 时钟,进行256分频后可以产生95.7kHZ 的

1

885

1.07740.0)

1()1()1()1()1()1(R R R R V R R R V I AIN AIN εεεεεεε+++-?---++?=开关频率。充电电压V i 为15V ;饱和电压V sat 为0.5V ;输出电压V o 为

4.2V ;最大输出电流I OMAX 为1500mA ,由公式3-5可计算出电感约为18μH 。电路中的电容的作用用来减少电压波纹,效果与电容的大小成正比。

3.4电压与电流检测

AIN0.0和AIN0.1与单片机的AD 口相连。电池电压经R5和R8分压后送单片机AD 端检测。R5与R8的分压比应根据电池电压的不同来选择,使得AIN0.1端的电压最高不能高于单片机AD 采样的参考电压。电流的测量采用分压电阻网络的方法。R1为阻值为1欧的功率电阻,其两端的电压差即为充电电流。设定R1左端电压为V0,右端电压为V1。则充电电流I 由如下公式3-6确定。

假设R4-R7电阻的精度为ε,则最大的测量电流如公式3-7所示。

经计算,测量电流的误差与电阻精度ε相当,对于电池电流的测量采用ε=1%的电阻已足够。如需更加精确地测量电压、电流,可使用插值算法。由于测量电阻两端的分压网络无非线性器件,因此可认为电压、电流呈线性特性。如公式3-8所示。

b V k I +?=

因此需要首先测量出两点的电压和电流值来确定公式中的两个未知数k 、b 。一点应接近零值,另一点接近于满幅电压。求得的k 、b 值存储在单片机片上Flash 中,后续的电流值可由公式3-8计算求得。

18851.07740.0110R R R R V R R R V R V V I AIN AIN +?-+?=-=

3.5电能状态检测

状态检测模块主要采集输入电源电压、电池电压、电池电流等信号。电压信号从电阻分压器获得,无须放大;电流信号来自采样电阻,采样电阻串联在系统地回路,采样信号要求小于0.1V,需要一单端放大电路对信号进行调理。所有信号送到单片机的A/D输入端,A/D转换器的基准电压设定为+2.5V。

3.6电源输入输出控制

电源输入接口性能对电源管理系统及设备的稳定工作是十分重要的,基于国家半导体公司生产的DC/DC可调电压变换器LM2678的电源接入方式可为设备提供稳定可靠的工作电源。LM2678的优点在于可以接受8-40V宽范围的直流电压输入,减少外界电压波动和不稳定造成对设备的不利影响;可提供最高达60W输出功率时转换效率仍可高达92%[3]。

考虑到锂电池的充电饱和电压为8.4V,在电路设计时将LM2678的输入电压设为9V。输入电源再通过一级线性稳压器后直接转换为标准的+3.3V和+5V电源供给设备。以三极管和场效应管组成的可控复合开关为电源管理系统输出非标准电压等级电源留出扩展接口,以实现单片机对电能输出的完全可控。

3.7键盘与LCD显示

键盘与LCD显示是进行人机交互的重要手段。单片机具有丰富的IO,扩展键盘不需要增加成本,本系统采用低电平中断方式设置了6个按键。系统状态信息显示采用点阵式液晶显示屏,本系统采用240×65点阵MOBI2007模块,可显示图形及各种字符,使用16×16字库可显示

4行,每行15个汉字符。电源状态信息以图文结合的方式显示在屏上。

3.8通讯扩展

单片机的两个串行通讯接口为电源管理系统提供了扩展功能,结合键盘与LCD显示模块,可结合设备的整体设计完成特殊的扩展功能,方便的实现多CPU协同工作体系,也使得硬件资源得到充分的利用。

第4章电源管理控制策略

蓄电池的管理是完全受控于单片机的,电池与输入电源是备用关系。充分参考电池参数与特性定制以下充电控制原则:优化充电过程,缩短充电时间;控制充电电流,无损伤充电;减少充电循环,延长电池寿命。以聚合物锂电池充放电特性曲线如图4-1为依据,将充电过程分为三个阶段,分别是预充电、快速充电和补充充电[4],在不同阶段单片机以PWM 波对充电电流进行控制,以剩余电量为判断依据实现对电池充电过程自动控制,此过程接受人工干预,用户可对充放电过程进行手动控制。

图4-1 充放电特性曲线

充电流程如图4-2所示,分为三个阶段。

图4-2 充电流程图

4.1涓流充电阶段

当电池已经被初始放电后,充电流程控制程序进入涓流充电阶段。

由于初始状态下,对电池充电发热量较大,因此为保证安全,充电电流极小,被限制在I LOWCURRENT。并时刻监测电池温度,如温度超限,应立即停止充电。

I LOWCURRENT的典型值一般为1/50C。涓流充电状态一直持续到电池电压达到最小容积充电电压V TMINVOLTBULK。

4.2容积充电阶段

当电池电压达到最小容积充电电压V TMINVOLTBULK时,充电进入容积充电阶段。根据图1所示的锂电池充电过程,该阶段应该保证充电电流为恒值。

此时,控制开关的单片机PWM信号控制充电电压,使得充电电流保持为容积充电的恒值I BULK。(通常来说容积充电电流为1C)。

4.3定压充电阶段

当充电电压达到V TOP(通常一块锂电池的典型值为4.2V),充电程序应该进入定压充电阶段。此时,应通过单片机输出的PWM信号来控制充电电压为恒值。此阶段电池继续被充电,而充电电流在逐渐下降,直到充电电流将到最小容积充电电流I MINIBULK1。

此后,为保证充电饱和性,应继续保持充电状态30分钟后结束整个充电过程。通常来说,充电第三阶段占用时间较前两个阶段稍长。

在大部分实际应用中的便携式嵌入式系统,可能在电池的任何一种状态下开始充电。此时充电电路需要首先检测充电的电流状态,判断电池应处于何种充电状态,并从该状态开始充电。

第5章电源管理软件设计

软件采用C语言编写,采用中断采集与主循环计算相互配合的双层结构设计。系统主时钟为24MHz,定时器定时200ms产生中断,在中断处理中采样电源信息。主循环计算当前状态,控制各开关动作,并将系统状态显示在液晶屏上。

本设计的一个特色就是用软件实现电量计量,它是一个动态的过程,其原理是以一次充放电的最大电量差值做作为电池100%的容量[4]。每次充放电过程中都会记录充电量最大值和放电量最大值,两个量的差作为当前剩余电量百分比的判断依据。主程序流程图如图5-1所示。

图5-1主程序流程图

基于单片机的智能稳压电源设计

基于单片机的智能稳压电源的设计 摘要 本文介绍了一种基于单片机的智能稳压电源的设计方案,其核心技术是通过单片机控制数模转换来改变其后的稳压模块的输出。该系统由整流滤波初步稳压部分、单片机控制部分、DAC和显示部分组成,该稳压电源能连续步进可调,并且可实时显示,弥补了传统稳压电源的不足。 关键词:单片机,稳压电源,连续步进可调,DAC

Design of Intelligent Power Supply Based on MCU This paper introduces a single-chip microcomputer-based Intelligent Power Supply Design program, its core technology through the MCU to control digital-to-analog converters to change the voltage regulator module subsequent output. The system consists of rectifier filter preliminary regulator of the MCU control of the DAC and display components, the power supply can be continuously adjustable stepper, and can be real-time display, made up for the shortcomings of traditional voltage regulator power supply. Key words:MCU,Regulated Power Supply,Stepping and adjustable row,DAC

单片机的智能电源管理系统

中国石油大学(华东)现代远程教育毕业设计(论文) 题目:单片机的智能电源管理系统学习中心:重庆信息工程专修学院奥鹏学习中心 年级专业:0404级电气工程及自动化 学生姓名:黄大吉学号:0451480125 指导教师:韩亚军职称:讲师 导师单位:重庆信息工程专修学院 中国石油大学(华东)远程与继续教育学院论文完成时间:2007 年12 月24 日

中国石油大学(华东)现代远程教育 毕业设计(论文)任务书 发给学员黄大吉1.设计(论文)题目:单片机的智能电源管理系统 2.学生完成设计(论文)期限:年月日至年月日3.设计(论文)课题要求:本论文详以理论联系实际,详细阐述了基于单片机的智能电源管理系统。以严密的逻辑思维对本设计进行了全面的论证,所引用的文献都进行过仔细筛选。最后严格按照学校规定格式排序。对于不熟悉的知识点,也在指导老师的指导下完成。 4.实验(上机、调研)部分要求内容:在完成论文的过程中,利用所学的电路设计软件Protel99,设计论文中需要用到的图形,用学习过的C 或者VB语言编写相应程序。最后用Office 2003排版论文版面和图象处理软件加工文中图表。 5.文献查阅要求:在学校图书馆查阅到的相关资料、文献都经过严格筛选,以确保其准确性、真实性。本论文的完成过程中还充分利用了当今资源丰富的互联网。在网上查找了很多符合题材的相关资料。本着尊重他人成果,以及避免侵权,本论文中对所有查阅引用到的资料都详细注明了出处。 6.发出日期:年月日 7.学员完成日期:年月日 指导教师签名: 学生签名:

摘要 本文介绍了基于cygnalC8051F020单片机为主控单元的智能电源管理系统,详细阐述了该系统的工作原理、控制策略及其硬件、软件实现。本系统具有配置灵活、可扩展性强等特点,适用于便携式设备和无人值守设备的电源管理。 随着对移动性要求的提高,以及使用便利性的要求,多数电子产品采用可充电电池作为主要供电方式。通常来说,设计者一般会使用专用电池管理芯片来控制充电电压、电流及整个充电流程。但使用专用芯片,会带来设计成本增加,PCB板面积增大的问题,同时所设计的电路只能针对于选定的电池,如更换不同型号的电池则需要重新设计电路。 针对于此,本文提出了一种利用单片机剩余资源的电池管理电路,具有电路简单、成本低、功耗小、可靠性强、灵活性高的特点。 关键词:电源管理;CYGNAL单片机;电量监测

单片机控制开关电源

单片机控制开关电源 单片机控制开关电源,单从对电源输出的控制来说,可以有几种控制方式. 其一是单片机输出一个电压(经DA芯片或PWM方式),用作电源的基准电压.这种方式仅仅是用单片机代替了原来的基准电压,可以用按键输入电源的输出电压值,单片机并没有加入电源的反馈环,电源电路并没有什么改动.这种方式最简单. 其二是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,调整DA的输出,控制PWM芯片,间接控制电源的工作.这种方式单片机已加入到电源的反馈环中,代替原来的比较放大环节,单片机的程序要采用比较复杂的PID算法. 其三是单片机扩展AD,不断检测电源的输出电压,根据电源输出电压与设定值之差,输出PWM波,直接控制电源的工作.这种方式单片机介入电源工作最多. 第三种方式是最彻底的单片机控制开关电源,但对单片机的要求也最高.要求单片机运算速度快,而且能够输出足够高频率的PWM波.这样的单片机显然价格也高. DSP类单片机速度够高,但目前价格也很高,从成本考虑,占电源成本的比例太大,不宜采用.

廉价单片机中,AVR系列最快,具有PWM输出,可以考虑采用.但AVR单片机的工作频率仍不够高,只能是勉强使用.下面我们具体计算一下AVR单片机直接控制开关电源工作可以达到什么水平. AVR单片机中,时钟频率最高为16MHz.如果PWM分辨率为10位,那么PWM波的频率也就是开关电源的工作频率为16000000/1024=15625(Hz),开关电源工作在这个频率下显然不够(在音频范围内).那么取PWM分辨率为9位,这次开关电源的工作频率为16000000/512=32768(Hz),在音频范围外,可以用,但距离现代开关电源的工作频率还有一定距离. 不过必须注意,9位分辨率是说功率管导通-关断这个周期中,可以分成512份,单就导通而言,假定占空比为0.5,则只能分成256份.考虑到脉冲宽度与电源的输出并非线性关系,需要至少再打个对折,也就是说,电源输出最多只能控制到1/128,无论负载变化还是网电源电压变化,控制的程度只能到此为止. 还要注意,上面所述只有一个PWM波,是单端工作.如果要推挽工作(包括半桥),那就需要两个PWM波,上述控制精度还要减半,只能控制到约1/64.对要求不高的电源例如电池充电,可以满足使用要求,但对要求输出精度较高的电源,这就不够了.

基于单片机的数控直流稳压电源

基于单片机的数控直流稳压电源 一、引言 (1)题目要求: 利用LM317三端稳压器,设计制作一个数控稳压电源,要求: 1、输出电压:2-15V,步进0.1V,纹波≤10mV; 2、输出电流0.5A; 3、输出电压值由数码管显示,由“+”、“-”键分别控制输出电压的步进 (2)概况:直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的多功能直流稳压电源功能简单、难控制、可靠性低、干扰大、精度低且体积大、复杂度高。普通直流稳压电源品种很多.但均存在以下问题:输出电压是通过粗调(波段开关)及细调(电位器)来调节。这样,当输出电压需要精确输出,或需要在一个小范围内改变时(如 1.02~1.03V),困难就较大。另外,随着使用时间的增加,波段开关及电位器难免接触不良,对输出会有影响。常常通过硬件对过载进行限流或截流型保护,电路构成复杂,稳压精度也不高。本文设计了一种以单片机为核心的智能化高精度简易直流电源,克服了传统直流电压源的缺点,具有很高的应用价值。 二、系统设计 (1)方案论证: 方案:采用单片机控制此方案采用 AT89C51单片机作为整机的控制单元,通过改变输入数字量来改变输出电压值。这里主要利用单片机程控输出数字信号,经过 D /A 转换器( DA0832)输出模拟量,然后使用运算放大器把电

流转换成电压,在通过三段稳压器LM317使得输出电压和输出电流达到稳压的目的。 方案论证: 1、输出模块:使用运算放大器做前级的运算放大器,由于运算放大 器具有很大的电源电压抑制比,可以减少输出端的纹波电压。使用LM317做电流稳压器,把电流稳定到0.5A。 2、数控模块:采用AT89C51单片机完成整个数控部分的功能,同 时,AT89C51作为一个智能化的可编程器件,便于系统功能的扩展。 3、显示模块:本来准备使用液晶显示,可是想想我们的层次不够, 液晶现实的额程序不会写,只能退而其次,选择使用单片机通过锁存器控制8段LED数码管直接显示,这样可以精确的显示输出电压。 (2)系统结构: 系统结构设计图如上图所示。该系统主要由单片机最小控制系统、显示电路、独立按键、D/A转换电路、放大电路和稳压电路组成。单片机设定预输出值,并可以通过独立键盘改变单片机的预设值。然后通过DAC0832转化为模拟量,再经过运算放大和稳压稳流电路最后输出预设电压值,通过LED显示能够直观的看到预设值。因为器材原因,我们设计的稳压电源采用的是外部稳压器提供的电源。这样虽然算不上是一个完整的数控直流稳压电源,但是,除了这点,我们设计的电源基本已经复合要求。

基于单片机的智能稳压电源设计

基于单片机的智能稳压电源设计 摘要 本智能稳压电源利用16位单片机SPCE061A为控制核心,可预置输出电压值并显示在液晶显示模块(LCD)上,通过其内置的A/D输出对PWM进行调制,再控制大功率开关管导通,再经过滤波输出。同时通过采样电路将实际输出值反馈到单片机中构成闭环系统,进行比较、调整,提高了电源的输出精度。输出电压范围为0.01v~10v,而且可以步进调整输出的电压值。 关键词:智能;单片机;PWM调制;稳压电源 Design of Smart Power Supply Based on SCM Wu Renjie (College of Physics Science and Information Engineering, Jishou University, Jishou,Hunan 416000) Abstract The 16 Bit SCM SPCE061A was used as the control unit in this design, the output voltage value can be protested form the keyboard and displayed it on the LCD module .At the same time, its built-in A / D converter moderate the output as pulse width moderation(pwm), and switch on the output, after that output through a filter . At the same time the circuit would sample the actual output value and feedback the output to the SCM’s input system, after comparing and adjusting to improve the output accuracy. Output voltage range from 0.01 v to 10v, it can also stepping adjust the output voltage value. Key words:intelligent;SCM;PWM modulation;power supply 目录

智能手机电源管理模块的设计

龙源期刊网 https://www.360docs.net/doc/1715971686.html, 智能手机电源管理模块的设计 作者:芦昱昊 来源:《电子技术与软件工程》2017年第04期 摘要随着国民生活质量的不断提高,电子产品更新换代的速度也越来越快。通讯产品中的电源动力系统一直是开发者关注的重点,也是用户选择智能手机的关键选项,因此对智能手机电源管理模块的设计分析是十分必要的。 【关键词】智能手机电源模块设计管理 手机行业的发展变化可谓是日新月异,近年来肉眼可见的黑白屏到彩色屏、仅有通话功能到目前的各种实用应用,都是智能手机功能进步的体现。然而这些复杂功能的实现都是需要稳定的电源系统作为支持的,因此开展电源模块的电压以及效率设计管理是为智能手机的良好发展前景奠定基础。 1 智能手机电源管理模块的设计原则 智能手机的设计过程是设计师明确消费者对设备要求下进行的,因此需要从体积、重量、续航时间上等多方面进行详细考虑。智能手机体积的缩小处理是针对系统集中功能和元件封装技术的体现,因此需要考虑到减小PCB板后产生的各种影响。在体积和重量都有限制的情况下,提高电池的容量和密度是最佳的创新选择,同时注重电源系统在工作状态下的转化频率,也是处理续航时间的主要方案。由此可知,电源管理模块的转化率和能耗是手机改革重点,手机厂家需要从电能转化的效率和电源的使用效率两方面提高设备的科技含量,制造出具备高性价比和满足消费者需求的优势产品。 2 智能手机电源管理模块的设计分析 2.1 PMU 市面上很多电子产品需要根据实际功能调节出不同电压的电源,也就意味着电池在供电的同时还需要根据芯片迅速转换电压,转换期间的功率损耗也应当保持在规定范围之内,同时该电源模块还需要维持电源的充电安全。这样的新型电源模块电路被称作是电源管理单元,英文缩写为PMU,是为提高电源转化效率和降低能耗的电源管理方案。PMU的构架分为集中式和分布式,但是二者共同存在的几率很小,设计者需要在系统划分之初决定好使用哪种方案。集中式是仅执行PMU附近的单一处理器进行电压调节和电源切换工作,而分布式系统则是作用于每一个电源子系统上。二者的选择重点是从智能手机应用的数量和响应速度的要求,同时还要考虑到电源模块管理过程中的间隔距离。通过比较来看,PMU分布式的方案较集中式的灵活一些,只需要在系统之间加入一根电源轨,作为所有外围的电源连接线,那么每一个外围电

基于单片机控制的开关电源的设计

哈尔滨剑桥学院 毕业设计 论文题目:基于单片机控制的开关电源的设计 学生:孙中凯 指导教师:李德胜高级工程师 专业:电气工程及其自动化 班级: 12级电气2班 2016年5月

毕业设计(论文)审阅评语

毕业设计(论文)答辩评语及成绩

基于单片机控制的开关电源的设计 摘要 电源技术是一种应用功率半导体器件,综合电力变换技术、现代电子技术、自动控制技术的多学科的边缘交叉技术,随着科学技术的发展,电源技术又与现代控制理论、材料科学、电机工程、微电子技术等许多领域密切相关。目前电源技术已逐步发展成为一门多学科互相渗透的综合性技术学科。他对现代通讯、电子仪器、计算机、工业自动化、电力工程、国防及某些高新技术提供高质量、高效率、高可靠的电源起着关键作用。 本文设计主要目的是实现一个单片机控制开关电源,所以在这次设计中使用了单片机实现。在这次设计文档中,详细阐述了开关电源与线性电源的比较,总体结构设计,通过键盘预置期望输出电压值,模/数转换器对输出电压进行采样,由软件控制单片机输出相应的脉冲宽度,对开关电源进行脉宽调制,输出预期的电压。并采用PID算法控制输出电压稳定,构成可输出12v到0v的可调节电压,并显示实时预置值与电压。 关键词:财开关电源;半导体;PID算法;闭环控制;数控

目录 摘要.................................................................................................................................................. I 1 绪论 (1) 1.1 课题环境背景 (2) 1.1.1绿色节能型开关电源 (2) 1.1.2 智能化数字电源 (1) 1.1.3 可编程开关电源 (1) 1.2 电源技术的发展与方向 (2) 1.2.1 线性电源和开关电源 (2) 1.2.2 电源技术的发展方向 (2) 1.2.3 开关电源的市场前景和研究现状 (3) 1.3 本文研究主要内容 (3) 2 系统方案设计 (4) 2.1 开关电源工作原理 (4) 2.2 开关电源与线性电源的比较 (4) 2.2.1 线性电源的缺点 (4) 2.2.2 开关电源的优点 (4) 2.3 系统方案论证 (5) 2.3.1 方案1 (5) 2.3.2 方案2 (5) 2.3.3 方案3 (6) 2.3.4 方案分析 (6) 2.3.5 总体结构设计 (6) 2.4 系统难点分析 (7) 2.4.1 如何提高电源工作频率 (7) 2.4.2 储能电感的绕制 (8) 2.4.3 标度转换技术 (9) 2.5 开关变换器结构分析与选择 (9) 2.5.1 降压变换电路分析 (9)

基于单片机的稳压电源设计原理说明

4 稳压电源设计 4.1 电路分析 稳压电路见图4-1所示。三极管射极电压是稳压电源的输出电压,可以接用电器或负载,这个电压值通过TLC549(A/D,同TLC548)数据转换后,送往单片机处理并显示。调整按键可以改变输入TLC5615(D/A,同TLC5616)的数据。TLC5615的输出电压通过运算放大器与实际输出取样电压比较,控制三极管的电压输出。稳压电路的电压输出接受单片机检测,同时又受单片机的控制。电路在仿真时,各点的电压都连接有电压表显示。 图 1 稳压电路 4.2 电路模块 一、A/D转换部分 TLC549 对输出电压进行采集,其操作如下: (1)cs先为高电平。(cs为片选信号,为1时,输入脉i/o clock不起作用); (2)clock = 0 (3)cs = 0;cs置底电平。同时date_out为高。(=1); (4)延时1.4us。(setup time,cs low before first clock); (5)开始转化数据。因为TLC549是8位串行模数转换器。需将8 位数据依次串行输出。期间,clock高低电平转化一次; (6)8次数据转化之后。cs置1,片选无效。等待17us后读出数据。 二、D/A转换部分 TLC5615为10位D/A转换电路,其原理TLC5615的PDF文件。输出电压= (转换数值/1024)*2*基准电压

三、显示 采用数码管对A/D转换后的数据进行显示,因为TLC549 是8位A/D,程序中需要对转化的数据进行处理后才能在七段数码管上动态显示。TLC549的检测电压值范围为0~5V,A/D转换后数据位0~255,应该显示0~5,并且包含小数点部分。 四、按键操作部分 四个独立的按键主要是对DA 的输入数据进行操作的,ADD按键,SUB 按键这些按键在安下一次松开后便进行加1 的操作,若按键超过一定的时间则增加步长,使其数值能够快速增加,这样就不必要达到一个电压时,一直按几百次。SUB按键也是如此。至于那个预读取按键,主要是用于保存你要常用的电压值,这样一来你就可以在使用此电源时,不必要每次都要按键调整,可以通过读取AT24C04的值进行电压预置,保存按键,是用于保存你长使用的电压值,通过此次的电压值保存,使你可以快速达到你所要求的电压值。4.3 编程思路 程序分为键盘处理、D/A、A/D和存储四个模块。运用扫描法,对键盘进行扫描,有按键就更改输入TLC5615 的数值,ADD按键是对数据进行加以操做,长按的话使步进值增大,实现快加,SUB按键与ADD按键同,预读取按键用于读取AT24C04中预置的数值,保存按键用于保存当前电压值;显示部分主要是对TLC549采集回来的电压进行处理显示,它主要是在定时器0的中断服务程序中显示,100ms刷新显示一次;TLC5615模块,通过对dA的串行数据输入,使其在输出电压时可控,输出电压后经lm324,三极管,加上负载输出电压,输出电压后,用TLC549芯片100ms采集一次,送数码管显示。 4.5 程序清单 主函数: #include #include "intrins.h" #include "AT24C04.h" #define uchar unsigned char #define uint unsigned int uchar code LED[10] = {0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90}; uchar code Bit_sel[4] = {0x08,0x04,0x02,0x01 }; //各个数码管对应的位选数据 sbit DIO = P1^0; //数据线 sbit CS = P1^1; //片选 sbit CLK = P1^2; //io口时钟 sbit SCS = P1^4; sbit SDATA = P1^5; sbit SCLK = P1^3; sbit ADD = P3^0; sbit SUB = P3^1; sbit Pre_read = P3^2; sbit Store = P3^3;

基于单片机控制的开关电源设计

基于单片机控制的开关电源设计 系部:电子与通信工程系 姓名:龚倩倩 专业班级:电信10D1 学号: 102222105 指导老师:邵雯 2012年9月21日

声明 本人所呈交的基于单片机控制的电源开关设计,是我在指导教师的指导和查阅相关著作下独立进行分析研究所取得的成果。除文中已经注明引用的内容外,本论文不包含其他个人已经发表或撰写过的研究成果。对本文的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。 作者签名: 日期:

【摘要】 开关电源体积小、效率高,被誉为高效节能电源,现己成为稳压电源的主导产品。随着开关电源在计算机、通信、航空航天、仪器仪表及家用电器等方面的广泛应用, 人们对其需求量日益增长, 并且对电源的效率、体积、重量及可靠性等方面提出了更高的要求。开关电源以其效率高、体积小、重量轻等优势在很多方面逐步取代了效率低、又笨又重的线性电源。 本文介绍了一款基于PWM技术的DC-DC开关稳压电源,用proteus仿真,输出纹波小,电压稳定可靠. [关键词]:开关电源,DC-DC,单片机,proteus [Abstract]: The small size of the switching power supply, high efficiency, known as energy-efficient power supply, has now become the leading products of the regulated power supply.With the wide application of switching power supplies in computers, communications, aerospace, instrumentation and household appliances, people growing their demand and higher power efficiency, size, weight, and reliabilityrequirements. Switching power supply for its high efficiency, small size, light weight advantages in many ways to gradually replace the inefficient, clunky, heavy linear power. This article describes a DC-DC switching power supply based on PWM technology, with proteus simulation output ripple voltage is stable and reliable. [Keywords]: switching power supplies, DC-DC, single-chip, proteus

清华大学毕业设计论文—基于51单片机的数控直流稳压电源(含批注)

信息科学与技术学院 电子工程系 2014届毕业论文设计 题目基于51单片机的数控直流稳压电源专业电子工程 学生姓名黄丽 学号 1058402106 指导教师张芳铭 论文字数 完成日期

数控直流稳压电源就是能用数字来控制电源输出电压的大小,而且能使输出的直流电压能保持稳定、精确的直流电压源。本文介绍了利用D/A转换电路、辅助电源电路、去抖电路等组成的数控稳压电源电路,详述了电源的基本电路结构和控制策略。它与传统的稳压电源相比,具有操作方便,电压稳定度高的特点,其结构简单、制作方便、成本低,输出电压在1-10V之间连续可调,其输出电压大小以0.5V步进,输出电压的大小调节是通过“ ”、“-”两个键操作的,而且可以根据实际要求组成具有不同的输出电压值的稳压源电路。该电源控制电路选用89C51单片机控制主电路采用串联调整稳压技术具有线路简单、响应迅速、稳定性好、效率高等特点。 关键词:稳压电源、单片微型机;数控直流、D/A转换;

第一章绪论 (4) 1.1数控直流稳压电源的产生背景 (4) 1.2系统开发的意义 (5) 1.3系统主要功能 (6) 1.4研究中拟解决的主要问题 ........................................... 错误!未定义书签。第二章系统总体方案设计 ....................................................... 错误!未定义书签。 2.1系统概述........................................................................ 错误!未定义书签。 2.2系统整体概述................................................................ 错误!未定义书签。 2.2.1控制部分.............................................................. 错误!未定义书签。 2.2.2显示部分.............................................................. 错误!未定义书签。 2.2.3 键盘接口部分..................................................... 错误!未定义书签。 2.2.4 电源部分............................................................. 错误!未定义书签。 2.2.5 其它电路部分..................................................... 错误!未定义书签。第三章系统硬件电路设计 ....................................................... 错误!未定义书签。 3.1单片机主控电路设计 ................................................... 错误!未定义书签。 3.2显示电路 ....................................................................... 错误!未定义书签。 3.3按键电路 ....................................................................... 错误!未定义书签。 3.4电源电路 ....................................................................... 错误!未定义书签。 3.5系统时钟及复位电路 ................................................... 错误!未定义书签。 3.6系统总电路 ................................................................... 错误!未定义书签。第四章系统软件设计 ............................................................... 错误!未定义书签。 4.1主程序 ........................................................................... 错误!未定义书签。第五章组装与调试 ................................................................... 错误!未定义书签。 5.1硬件电路的布线与焊接................................................ 错误!未定义书签。 5.2电路组装和调试............................................................ 错误!未定义书签。结束语 ......................................................................................... 错误!未定义书签。参考文献 ..................................................................................... 错误!未定义书签。致谢 ........................................................................................... 错误!未定义书签。附录 ........................................................................................... 错误!未定义书签。

电源管理人机界面软件著作权用户手册

智能电源管理人机界面软件(简称:SPM-HMI) [V1.0] 用户手册 龙岩联合创展电气有限公司

1. 概述 (1) 1.1. 编写目的 (1) 1.2. 软件使用环境 (1) 1.3. 编程语言与程序量 (1) 1.4. 软件特点 (1) 1.4.1. 程序设计特点 (1) 1.4.2. 系统设计特点 (2) 2. 使用说明 (2) 2.1. 按键操作和显示功能说明......................................................... 错误!未定义书签。 2.2 界面说明............................................................................. 错误!未定义书签。 2.2.1 系统上电自检..................................................................... 错误!未定义书签。 2.2.2 运行操作 (3) 2.2.3 模式选择 (4) 2.2.4 主菜单设置 (4)

1. 概述 1.1. 编写目的 软件《智能电源人机界面软件》(简称SPM-HMI)作为智能电源的配套软件,主要用于该电源设备与工程师的信息交互平台,解决了该设备运行状态显示、故障监测、参数设定及查询等关键问题,可以辅助工程师完成对电源设备的运行监控、故障监控、参数调整和系统自检等多个任务,其中涉及技术领域较多,如嵌入式控制技术、图形点阵液晶显示技术、磁控感应技术等,为了帮助用户更好的使用该软件,特编写此用户手册。 1.2. 软件使用环境 本软件在使用时对硬件、软件和设备有如下要求: 1)PC台式机或者笔记本电脑,奔腾150 MHz或者更高主频,64MB或者更大内存, 8M或者更多硬盘剩余空间,彩色图形显示卡,键盘鼠标。 2)Windows98/NT/2000/XP中文操作系统。 3)具有五个轻触按钮、一个128*64的图形点阵式液晶屏,且核心控制芯片为PIC18F 系列芯片的智能电源管理系统。 1.3. 编程语言及源程序量 本软件采用99版ANSI C编程语言编写,开发环境是运行在Windows98/NT/2000/XP 操作系统下的MPLAB IDE v8.0以上版本,使用PICC仿真。程序的兼容性为代码级兼容,在PIC18F系列内只需要修改端口驱动,更换液晶屏控制器种类或使用其它8位核心芯片则需要修改硬件驱动。 本软件源代码行数为3223行。 1.4. 软件特点 1.4.1. 程序设计特点 在程序设计上,为用户提供了一个简洁易用的调试使用环境。 4)可扩展性:采用结构化设计,如果人机界面需要扩展显示信息,或者增加功能,只 需在软件的结构化程序上增加相应的内容。 5)可移植性:在不同的平台上进行程序移植时,无需修改应用程序内容,只需修改驱 动程序即可。 6)可靠性:软件对于用户来说是相对封闭的,用户的所有操作都不需要对代码进行修 改(获得作者许可的对软件的二次开发除外)。

用单片机控制LED流水灯方案(电路程序全部给出)开关电源方案制作

用单片机控制的LED流水灯设计<电路、程序全部给出)开关电源设计制作学习园地 »。您尚未登录注册 | 社区服务 | 勋章中心 | 帮助 | 首页 | 无图版 社区服务 银行 朋友圈 开关电源设计制作学习园地 -> 好好学习-天天向上 -> 用单片机控制的LED流水灯设计<电路、程序全部给出) XML RSS 2.0 WAP --> 本页主题: 用单片机控制的LED流水灯设计<电路、程序全部给出)加为IE收藏 | 收藏主题 | 上一主题 | 下一主题 pwmdy 级别: 电源-1级工程师 精华: 0 发帖: 212 威望: 126 点 金钱: 212 RMB 贡献值: 0 点 注册时间:2009-05-21 最后登录:2009-11-22 用单片机控制的LED流水灯设计<电路、程序全部给出) 1.引言 当今时代是一个新技术层出不穷的时代,在电子领域尤其是自动化智能控制领域,传统的分立元件或数字逻辑电路构成的控制系统,正以前所未见的速度被单片机智能控制系统所取代。单片机具有体积小、功能强、成本低、应用面广等优点,可以说,智能控制与自动控制的核心就是单片机。目前,一个学习与应用单片机的高潮正在工厂、学校及企事业单位大规模地兴起。学习单片机的最有效方法就是理论与实践并重,本文笔者用AT89C51单片机自制了一款简易的流水灯,重点介绍了其软件编程方法,以期给单片机初学者以启发,更快地成为单片机领域的优秀人才。 2.硬件组成 按照单片机系统扩展与系统配置状况,单片机应用系统可分为最小系统、最小功耗系统及典型系统等。AT89C51单片机是美国ATMEL公司生产的低电压、高性能CMOS 8位单片机,具有丰富的内部资源:4kB闪存、128BRAM、32根I/O口线、2个

基于单片机的直流稳压电源的设计设计

基于单片机的直流稳压电源的设计设计

毕业设计论文 基于单片机的直流稳压电源的设计

摘要 直流稳压电源是电子技术常用的设备之一,广泛的应用于教学、科研等领域。传统的直流稳压电源几乎都是用旋纽开关调节电压,调节精度不高、难控制、体积大、结构复杂,而且经常跳变,使用麻烦。 将单片机数字控制技术融入直流稳压电源的设计中,设计出的数字化直流稳压电源具有数码显示、数字输入调压、电压调节精度高的特点。而且通过软件编程,易于实现功能的扩展。数控电源目前的发展,主要朝着更高的数控精度和分辨率及更好的动态特性;更好的环保性能;智能化与高可靠性;更广泛的应用方向发展。 本设计利用AT89S51作为主控芯片,控制数模转换模块DAC0832的输出电压,通过运算放大器OPA552放大输出。设置四个按键,来实现电压的增减,并带有数码显示模块。可以达到每步0.1V的精度,输出电压范围0~15V,电流可以达到200mA。 关键词:数控电源;AT89S51;DAC0832;OPA552

Abstract Direct current voltage-stabilized power supply is one of the commonly used equipment in electronic technology. It’s widely used in teaching, researching and other fields.Most of the traditional direct current voltage-stabilized power supply use the knob switch to adjust the voltage.It has the trouble of low-precision and difficult to control. The structure is complex and the volume is large. The numerical control technique of single chip microcomputer is adopted in the design of direct current voltage-stabilized power supply for a digitalized.Having numeral display,the direct current power can adjust voltage programmably and differentiate voltage precisely.Moreover,it’s easy to have its function enlarged through the programmer.Numerical control direct current voltage-stabilized power supply mainly toward to high-precision,high-resolution,better dynamic characteristics,better environmental performance,intelligent,high reliability and wider application direction. In this design,using the AT89S51 as main module to control the output voltage of DAC0832. The voltage is magnified by amplifier OPA552. In this system, the step of voltage is control by four keys, and the display module is also designed.The step precision is 0.1V,the output voltage is range from 0V to 15V and the current is up to 200mA. Key words: Numerical control power;AT89S51;DAC0832;OPA552

基于单片机控制的开关电源及其设计

2.基于单片机控制的开关电源的可选设计方案 由单片机控制的开关电源, 从对电源输出的控制来说, 可以有三种控制方式, 因此, 可供选择的设计方案有三种: ( 1) 单片机输出一个电压( 经D/AC 芯片或PWM方式) , 用作开关电源的基准电压。这种方案仅仅是用单片机代替了原来开关电源的基准电压, 可以用按键设定电源的输出电压值, 单片机并没有加入电源的反馈环, 电源电路并没有什么改动。这种方式最简单。 ( 2) 单片机和开关电源专用PWM芯片相结合。此方案利用单片机扩展A/D 转换器, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 调整D/A 转换器的输出, 控制PWM芯片, 间接控制电源的工作。这种方式单片机已加入到电源的反馈环中, 代替原来的比较放大环节, 单片机的程序要采用比较复杂的PID 算法。 ( 3) 单片机直接控制型。即单片机扩展A/DC, 不断检测电源的输出电压, 根据电源输出电压与设定值之差, 输出PWM波, 直接控制电源的工作。这种方式单片机介入电源工作最多。 3.最优设计方案分析 三种方案比较第一种方案: 单片机输出一个电压( 经D/AC芯片或PWM方式) , 用作开关电源的基准电压。这种方案中, 仅仅是用单片机代替了原来开关电源的基准电压, 没有什么实际性的意义。第二种方案: 由单片机调整D/AC 的输出, 控制PWM芯片, 间接控制电源的工作。这种方案中单片机可以只是完成一些弹性的模拟给定, 后面则由开关电源专用PWM芯片完成一些工作。在这种方案中,对单片机的要求不是很高, 51 系列单片机已可胜任; 从成本上考虑,51 系列单片机和许多PWM控制芯片的价格低廉; 另外, 此方案充分解决了由单片机直接控制型的开关电源普遍存在的问题———由于单片机输出的的PWM脉冲频率低, 导致精度低, 不能满足要求的问题。因此, 单片机和PWM芯片相结合, 是一种完全可行的方案。第三种方案: 是最彻底的单片机控制开关电源, 但对单片机的要求也高。要求单片机运算速度足够快, 且能输出足够高频率的PWM波。DSP 类单片机速度够快, 但价格也很高, 占电源总成本的比例太大, 不宜采用。廉价单片机中, AVR 系列最快, 具有PWM输出, 但AVR单片机的工作频率仍不够高, 只能是勉强

车载智能化电源管理系统的研究

车载智能化电源管理系统的研究 摘要:伴随汽车工业现代化水平的提高,车载设备的数量与信息化水平都在不 断提高,这就是车载设备消耗功率有了很大的提高,这就给车载电源的供电能力 提出了更高的要求。因此,为了保证车辆的安全稳定运行,就需要提高车载电源 的供电稳定性,这要求设计人员一方面能够继续提高车载电源的电源容量水平, 另一方面也需要通过设计安全可靠的智能化电源管理系统来协调车载电源复杂的 供电工作。接下来,本文将从车载智能化电源管理系统的设计原理以及系统组成 等方面入手,旨在为我国汽车工业的发展提供一点建议。 关键词:智能化电源管理系统信息交互应用 一、智能化电源管理系统概述 伴随汽车工业的发展,汽车的设计理念经历了不断更新与完善,当前对于汽 车的各功能设计来说,行业上已经达成共识,要以安全性为第一要点,行驶性为 第二要点的同时,需要注重设计中的人性化。因此,作为汽车系统重要组成部分 的智能化电源管理系统而言,需要达到以下功能目标。(1)电源系统的保护功能,实现对于整车电源的有效保护,当出现短路、过电流故障时,能够及时切断 车载电源回路,从而保护系统。(2)实现对于车载电池荷电状况的SOC检查, 完成电量状况的实时监控,及时通知用户进行充放电,从而保证电源稳定性。(3)完成对于汽车静态状态下电流控制,保证汽车能够在长时间停放后保证启 动的最低电量要求,从而延长汽车必要情况下的停放实践。(4)与汽车其他组 成部分实现信息交互,从而帮助用户更好的了解汽车整体状况。(5)实现对于 车载电源故障问题的智能化诊,为汽车故障维修提供信息。 二、智能化电源管理模块的功能要求 为保证车载智能化电源管理系统能够正常发挥功能,需要按照实际的功能需 要划分电源管理系统的电源管理模块,具体来说主要有以下六个划分模块。(1)电池健康度估算模块(SOC),主要是根据车载电源系统中电池的运行电压、电流、电池温度以及运行时间等基本参数来进行合理计算SOC的值;(2)通过监 控元件实现车载电池运行状况的实时监控,监控内容主要有电池的充放电过程、 电池运行的温度、电池运行的安全状态等;(3)实现对于电池常见故障的智能 诊断,并在必要情况下及时切断电流,实现有效的安全保护与失效控制;(4) 智能化电源管理系统的自检与诊断功能,对于系统自身状况的检验,记录各种故 障信息,为检修提供方便;(5)通过自动化控制功能,实现电源系统内电池的 充放电均衡功能;(6)实现与汽车内其他控制系统的信息交互。 三、智能化电源管理系统的应用 3.1过电流、短路的保护功能 车载智能化电源管理系统的过电流保护原理如下。电源管理系统针对电源系 统内各个需要进行电流检测的关键位置进行正常工作电流的估算与实际测量,从 而收集得到电流值I初,为根据过载电流主要是指长时间通电回路,过载电流设 定过电流倍数 K,那么在实际情况的电源系统工作中,电源管理系统对电源通道 的电流状况进行采集得到了实际电流I实,当I实大于I初时,那么智能化电源管 理系统就会判断电源出现过载电流,从而控制电源系统内部的继电器断开电流。 而针对电源内部的短路保护功能,在设计上则比较简单,与传统电源管理系 统相似,同样都是通过保险丝的应用就可以完成短路保护,当电源系统回路中出 现短路故障时,保险丝会第一时间熔断,从而起到保护系统的作用。但是相比之

相关文档
最新文档