有机太阳能电池

有机太阳能电池
有机太阳能电池

有机太阳能电池

摘要有机太阳能电池因具有成本低、质轻、柔韧性好、可大面积印刷制备的优点而受到广泛关注,对电池原理,结构,材料的研究对提高有机太阳能电池的性能有重大意义。本文主要综述了有机太阳能电池的工作原理,电池结构以及电极材料。并对有机太阳能电池的应用前景做了展望。

关键词原理;结构;材料;应用前景

1.有机太阳能电池简介

有机太阳能电池,顾名思义,就是由有机材料构成核心部分的太阳能电池。主要是以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流, 实现太阳能发电的效果.由于无机硅太阳能电池的材料生产成本高,污染大、能耗高,寻找新型太阳能电池材料和低成本制造技术便成为人们研究太阳能电池技术的目标。有机太阳能材料和电池制备技术有望成为低成本制造的选择之一。

世界上第一个有机光电转化器件是由Kearns和Calvin在1958年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。1986年,行业内出现了一个里程碑式的突破——有机半导体的发明。器件的核心结构是由四羧基苝的一种衍生物(PV)和铜酞菁(CuPc)组成的双层膜。双层膜的本质是一个异质结,其思路是用两种有机半导体材料来模仿无机异质结太阳能电池。1992年,土耳其人Sariciftci在美国发现,激发态的电子能极快地从有机半导体分子注入到C60分子中,而反向的过程却要慢得多。1993年,Sariciftci在此发现的基础上制成PPV/C60双层膜异质结太阳能电池。随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(体异质结)。而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。给体和受体在混合膜里形成一个个单一组成的区域,在任何

位置产生的激子,都可以通过很短的路径到达给体与受体的界面(即结面),从而电荷分离的效率得到了提高。

2.有机太阳能电池工作原理

激子概念

在有机半导体材料中,分子之间只有很弱的范德华作用力,不能形成连续的能带,电子被光激发后只能停留在原分子轨道内,不能转移到其他分子上。因此,有机分子在光激发后会形成较为稳定的空穴-电子对,亦即激子。既然激子是没有分离的空穴-电子对,要实现光电转化,就要将这一对空穴与电子分离开。在有机太阳能电池中,激子的分离意味着电子从一个分子转移到另一个分子上,从化学角度看,就是发生了氧化还原反应。

有机太阳能电池光电转化过程关键步骤:

1)电子给体吸收入射光,形成激子;

2)激子扩散到电子给体与电子受体的界面上;

3)激子在给体/受体的界面上被分离(即发生氧化还原反应);

4)分离后的电子和空穴被传导到阴极和阳极上。

图1: 有机异质结型太阳能电池的能级结构(a) 和工作原理(b)

3.有机太阳能电池材料

有机小分子化合物

有机小分子太阳能电池材料都具有一定的平面结构, 能形成自组装的多晶膜. 这种有序排列的分子薄膜使有机太阳能电池的迁移率大大提高. 常见的有机小分子太阳能材料有并五苯、酞菁、亚酞菁、卟啉、菁、苝和C60 等。并五苯是五个苯环并列形成的稠环化合物,是制备聚合物薄膜太阳能电池最有前途的备用材料之一. 酞菁具有良好的热稳定性及化学稳定性, 是典型的p 型有机半导体, 具有离域的平面大π 键, 在600~800nm 的光谱区域内有较大吸收。卟啉具有良好的光稳定性, 同时也是良好的光敏化剂. 苝类化合物是典型的n 型材料,具有电荷传输能力, 其吸收范围在500 nm左右C60 分子中存在的三维高度非定域电子共轭结构,使得它具有良好的电学及非线性光学性能, 其电导率为10- 4 S/cm, 成为异质结电池中使用最多的小分子电子受体材料

图2:常见小分子材料结构图

有机大分子化合物

在过去的几十年间,人们将具有半导体性质的有机大分子化合物(共轭聚合物)制成各种光电器件,对电致发光二极管进行了研究,基于共轭聚合物的有机太阳能电池从20世纪90年代起得到了迅速的发展。

富勒烯衍生物

由于C60特殊笼形结构及功能, 将C60作为新型功能基团引入高分子体系,

得到具有导电性和光学性质优异的新型功能高分子材料. C60引入高分子的主链、侧链, 形成富勒烯的衍生物经过改良的C60,PCBM ([6,6]-苯基-C61-丁酸甲酯)具有较好的溶解性,被广泛应用于聚合物器件中.

图3:一些富勒烯衍生物的结构图

聚对亚苯基亚乙烯及其衍生物

聚对亚苯基亚乙烯[poly(phenylene vinylene), PPV]及其衍生物是近年来广泛研究的一类共轭聚合物材料, 通常作为给体. 代表性材料是MEH-PPV, 具有较好的溶解性, 禁带宽度eV)适中. MEH-PPV 的空穴迁移率高, 但电子迁移率较低。

图4:一些PPV 衍生物的结构图

聚噻吩及其衍生物

聚噻吩(PTh)及其衍生物是良好的导电聚合物, 也是近年来在有机太阳能电池中广泛研究的一类给体材料。噻吩类材料可以“头尾相连”形成有序薄膜, 从而具有较高的迁移率, 有利于载流子的传输。薄膜生长速度慢时, 自组织程度高,

迁移率高.另外, 热处理可以改善含噻吩类活性材料的薄膜形貌和增加结晶度等使ηp 提高。溶剂对噻吩薄膜性能也有一定的影响。

图5:一些聚噻吩衍生物的结构图

含氮共轭聚合物

含氮的共轭聚合物也是一类较常见的有机太阳能电池材料, 主要包括聚乙烯基咔唑(PVK)、聚吡咯(PPy)和聚苯胺(PAn). 聚乙烯基咔唑(PVK)侧基上带有大的电子共轭体系, 可以吸紫外光, 激发出的电子可以通过相邻苯环形成的电荷转移复合物自由迁移. 聚吡咯(PPy)具有电导率高, 易于制备及掺杂、稳定性好、电化学可逆性强的特点

图6:含氮共轭聚合物的结构图

聚芴及其衍生物

聚芴及其衍生物由于具有好的稳定性和高的发光效率而引起人们的广泛兴趣。由于聚芴中含有刚性平面结构的联苯,所以往往表现出好的光稳定性和热稳定性。其光电性能的研究也从发光材料拓展到了太阳能电池材料。由于纯粹的聚芴不仅溶解性差,而且是蓝光材料,能隙较宽,和太阳光谱不能很好的匹配,所以对聚芴的研究往往集中在溶解性和能隙的调控上。

图7:一些聚芴衍生物的结构图

模拟叶绿素材料

植物的叶绿素可将太阳能转化为化学能的关键一步是叶绿素分子受到光激发后产生电荷分离态,且电荷分离态寿命长达1s。电荷分离态存在时间越长越有利于电荷的输出。美国阿尔贡国家实验室的工作人员合成了具有如下结构的化合物C-P-Q。卟啉环吸收太阳光,将电子转移到受体苯醌环上,胡萝卜素也可以吸收太阳光,将电子注入卟啉环,最后正电荷集中在胡萝卜素分子,负电荷集中在苯醌环上,电荷分离态的存在时间高达4ms。卟啉环对太阳光的吸收远大于胡萝卜素。如果将该分子制成极化膜附着在导电高分子膜上,就可以将太阳能转化为电能。

图8:一种新叶绿素化合物结构图

4.有机太阳能电池结构

单层Schottky 结构

单层Schottky 结构有机太阳能电池是由单层的有机半导体材料嵌入在两个电极之间构成的。由于两个电极功函数不同,有机半导体与具有较低功函数电极之间将形成Schottky 势垒(能带弯曲区域W),即内建电场。光照下,有机半导体材料吸收光后产生激子。由于较大的库仑力使得这些激子不能分离成自由电子和空穴。由于有机半导体内激子的扩散长度一般都很小,只有扩散到Schottky 势垒附近的激子才有机会被分离,所以单层Schottky结构电池的能量转换效率很低,在目前的有机太阳能电池研究中很少再使用这种结构。

图9:单层Schottky 有机太阳能电池的结构和工作原理

双层异质结结构

在双层光伏器件中,给体和受体有机材料分层排列于两个电极之间,形成平面型给体-受体界面。而且阳极功函数要与给体HOMO 能级匹配;阴极功函数要与受体LUMO 能级匹配,这样才有利于电荷收集。双层异质结结构中激子分

离的驱动力是给体材料和受体材料的LUMO 能级之差,即激子在给体和受体界面的LUMO 能级之差的作用下分离,其电荷分离效率较高,自由电荷重新复合的机会也较低。与单层器件相比,双层器件的最大优点是同时提供了电子和空穴传输的材料。当激子在给体-受体界面分离产生电荷转移后,电子在n 型材料中传输至阴极,而空穴则在p 型材料中传输至阳极。

图10:双层异质结有机太阳能电池的结构和工作原理

本体混合异质结结构

在本体混合异质结结构电池中,由于纳米尺度界面的存在,大大增加了给体-受体接触面积,使得材料中产生的激子很容易扩散到给体-受体界面并分离,从而提高了激子的分离效率,使电池性能进一步提高。理想情况下,在混合异质结电池中电荷的分离与收集是等效的。但实际上混合体微观结构是无序的,网络间存在大量缺陷,从而阻碍了电荷的分离和传输。研究发现,将给体和受体通过共价键连接,可以很简单地获得微相分离的互渗透连续网络结构,基本能够克服以上的缺陷。

图11:本体混合异质结有机太阳能电池的结构和工作原理

叠层结构

叠层结构电池是将两个或两个以上的电池单元以串联的方式做成一个器件,子电池 1 中产生的空穴和子电池 2 中产生的电子扩散至连接层并复合,每个子电池中只有一种电荷扩散至相对应的电极。叠层结构电池可利用不同光吸收谱的材料来改善电池对太阳光的吸收,减少高能量光子的热损失,最终提高电池效率。由于串联的叠层电池的开路电压一般大于子单元结构,其转换效率主要受光生电流的限制。

图12:叠层有机太阳能电池的结构和工作原理

p-i-n 结构

p-i-n 结构的异质结有机太阳能电池的能量转换效率在同类电池中是比较高的。p-i-n 结构有机太阳能电池中,p、i 和n 分别指p 型材料层、本征吸收i层和n 型材料层。在p-i-n 型异质结有机太阳能电池中,光吸收和电荷载流子的传输是两个独立的过程。激子分离后,形成的空穴和电子分别通过p 层和n 层传输到电极。通过改变宽带隙材料层的厚度,可以使得本征层处于光场最强的位置,可以提高电池的性能。

图13:p-i-n 型异质结有机太阳能电池的结构和工作原理

5.有机太阳能电池优缺点

优点:

(1)与无机太阳能电池使用的材料相比,有机半导体材料的原料来源广泛易得、廉价,环境稳定性高,有良好的光伏效应、材料质量轻、较高的吸收系数(通常>105cm-1)、有机化合物结构可设计且制备提纯加工简便、加工性能好,易进行物理改性等。

(2)有机太阳能电池制备工艺更加灵活简单,可采用真空蒸镀或涂敷的办法制备成膜,还可采用印刷或喷涂等方式,生产中的能耗较无机材料更低,生产过程对环境无污染,且可在柔性或非柔性衬底上加工,具有制造面积大、超薄、廉价、简易、良好柔韧性等特点。

(3)有机太阳能电池产品是半透明的,便于装饰和应用,色彩可选。

5.2缺点:

(1)有机材料的载流子迁移率一般都很低,与无机材料相比要低若干个量级,这对有机半导体器件的效率有较大影响;

(2)有机半导体材料吸收太阳光波段不宽,绝大部分材料最大吸收波段在350nm~650nm,而地球表面可吸收的太阳光的能量主要分布在600nm~800nm,因此吸收光谱与太阳光光谱不匹配,导致光电转换效率低;如果通过增加激活层的厚度来提高光的吸收,但同时也会使器件的串联电阻增大激子和载流子的迁移距离增加,短路电流减小,从而导致光电转换效率较低

(3)激子在半导体薄膜的迁移过程中不可避免的存在着激子复合的损失,一般仅离边界或结点最近的激子才会产生光伏电流,使得有机太阳能电池实际转化效率低下;

(4)有机半导体材料在有氧和水存在的条件下往往是不稳定的且寿命比较

短。

6.有机太阳能电池应用前景

1、与传统硅电池相比,有机光伏电池更轻薄,在同等体积的情况下,展开后的受光面积会大大增加。因此,可将有机光伏电池可以应用于通信卫星中,提高光电利用率。

2、由于其轻薄柔软易携带的特性,有机光伏电池不久将能给微型电脑、数码音乐播放器、无线鼠标等小型电子设备提供能源。

3、在衣服表层嵌入轻薄柔软的有机光伏电池与有机发光材料,将太阳能转化为电能并储存,冬天可发热保暖,衣服在夜间也会发出各种色的可见光,使人们的衣服更加绚丽。

4、将有机光伏电池应用在柔性显示器中,其廉价的成本、轻薄、环保、可折叠的性能比其它电池具有更大的优势。采用有机光伏电池作为电源给OLED屏幕供电,其轻便性能可以减轻重量。

5、在军事方面,有机太阳能电池与OLED技术的结合可用于集多种通讯能力于一体的护腕式通讯设备,实时观看视频和图形信息,便于军队进行野战评估。

参考文献

[1]刘小青、王立,有机太阳能电池应用前景展望[J],能源研究与管理2010( 4 )

[2] 张剑,有机太阳能电池结构研究进展[J], 电子元件与材料. 2012

[3] 张天慧、朴玲钰,有机太阳能电池材料研究新进展[J], 有机化学Vol. 31, 2011 No. 2, 260~272

[4] 庄陶钧、刘亚东,有机太阳能电池技术及市场展望[J],光机电信息Aug. 2010

有机太阳能电池简介

有机太阳能电池简介 随着社会的发展,能源危机在近几十年变得越来越突出,传统的化石能源有着随时枯竭的危险,同时化石能源的使用造成的环境污染也越来越突出。在此背景之下,寻找可代替的新能源成为当下研究的热点,而在众多备选的替代者中,太阳能电池由于其清洁性,可持续性等优点得到了大量的关注。 在1954年贝尔实验室制作了光电转化效率达6%的太阳能电池,标志着商业化太阳能电池研究的开始。到20世纪70年代,用于卫星的半导体硅太阳能的光电转化效率已达到15%~20%。但硅系列太阳能电池材料纯度要求很高且制作工艺复杂,因此成本高,难以大规模生产。其它类型半导体材料的太阳能电池因存在材料来源及工艺等问题也同样难以得到推广。而有机太阳能电池以其材料来源广泛、制作成本低、耗能少、可弯曲、易于大规模生产等突出优势显示了其巨大开发潜力,成为近十几年来国内外各高校及科研单位研究的热点。但有机太阳能电池从其诞生以来,一直面临着效率低下的问题,至今为止,在实验室内的效率才刚刚突破10%,与硅太阳能电池相距甚远,因此提高电池效率是有机太阳能电池的主要研究方向。 一.有机太阳能电池原理及构造 1有机太阳能电池的光生电原理 对于一个有机OPV(有机太阳能电池),其基本原理就是利用光电材料的光生伏特效应产生电流,其基本的物理过程如图一所示。不同于无机材料能直接吸收光子产生自由电子,有机光敏材料在吸收光子之后会产生一个激子对,即电子空穴对,必须使激子解离之后才能形成光电流。而解离产生的电子必须到达电极才能对器件的光电流产生贡献。也就是说,产生光电流需要经过吸收光子,产生激子,激子解离扩散,电极收集这些过程,这一过程相比较无机材料要困难的多,这也造成OPV的光电转化效率一直不高。

太阳能电池

太阳能电池及材料研究 引言 太阳能是人类取之不尽用之不竭的可再生能源.也是清洁能源,不产生任何的环境污染。在太阳能的有效利用当中;大阳能光电利用是近些年来发展最快,最具活力的研究领域,是其中最受瞩目的项目之一。为此,人们研制和开发了太阳能电池。制作太阳能电池主要是以半导体材料为基础,其工作原理是利用光电材料吸收光能后发生光电于转换反应,根据所用材料的不同,太阳能电池可分为:1、硅太阳能电池;2、以无机盐如砷化镓III-V化合物、硫化镉、铜铟硒等多元化合物为材料的电池;3、功能高分子材料制备的大阳能电池;4、纳米晶太阳能电池等。不论以何种材料来制作电池,对太阳能电池材料一般的要求有:1、半导体材料的禁带不能太宽;②要有较高的光电转换效率:3、材料本身对环境不造成污染; 4、材料便于工业化生产且材料性能稳定。基于以上几个方面考虑,硅是最理想的太阳能电池材料,这也是太阳能电池以硅材料为主的主要原因。但随着新材料的不断开发和相关技术的发展,以其它村料为基础的太阳能电池也愈来愈显示出诱人的前景。本文简要地综述了太阳能电池的种类及其研究现状,并讨论了太阳能电池的发展及趋势。 1 硅系太阳能电池 1.1 单晶硅太阳能电池 硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟。高性能单晶硅电池是建立在高质量单晶硅材料和相关的成热的加工处理工艺基础上的。现在单晶硅的电地工艺己近成熟,在电池制作中,一般都采用表面织构化、发射区钝化、分区掺杂等技术,开发的电池主要有平面单晶硅电池和刻槽埋栅电极单晶硅电池。提高转化效率主要是*单晶硅表面微结构处理和分区掺杂工艺。在此方面,德国夫朗霍费费莱堡太阳能系统研究所保持着世界领先水平。该研究所采用光刻照相技术将电池表面织构化,制成倒金字塔结构。并在表面把一13nm。厚的氧化物钝化层与两层减反射涂层相结合.通过改进了的电镀过程增加栅极的宽度和高度的比率:通过以上制得的电池转化效率超过23%,是大值可达23.3%。Kyocera公司制备的大面积(225cm2)单电晶太阳能电池转换效率为19.44%,国内北京太阳能研究所也积极进行高效晶体硅太阳能电池的研究和开发,研制的平面高效单晶硅电池(2cm X 2cm)转换效率达到19.79%,刻槽埋栅电极晶体硅电池(5cm X 5cm)转换效率达8.6%。 单晶硅太阳能电池转换效率无疑是最高的,在大规模应用和工业生产中仍占据主导地位,但由于受单晶硅材料价格及相应的繁琐的电池工艺影响,致使单晶硅成本价格居高不下,要想大幅度降低其成本是非常困难的。为了节省高质量材料,寻找单晶硅电池的替代产品,现在发展了薄膜太阳能电 池,其中多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池就是典型代表。 1.2 多晶硅薄膜太阳能电池 通常的晶体硅太阳能电池是在厚度350~450μm的高质量硅片上制成的,这种硅片从提拉或浇铸的硅锭上锯割而成。因此实际消耗的硅材料更多。为了节省材料,人们从70年代中期就开始在廉价衬底上沉积多晶硅薄膜,但由于生长的硅膜晶粒大小,未能制成有价值的太阳能电池。为了获得大尺寸晶粒的薄膜,人们一直没有停止过研究,并提出了很多方法。目前制备多晶硅薄膜电池多采用化学气相沉积法,包括低压化学气相沉积(LPCVD)和等

浅谈太阳能电池片厂的空调系统

浅谈太阳能电池片厂的空调系统------以茂迪(苏州)新能源有限公司1F、3F车间扩建工程为例 作者:于洪亮 太阳能电池片是目前非常火热的产业之一,太阳能电池片厂的空调系统因其特殊生产工艺也有其自身的特点。由于太阳能电池片厂的制程设备散热负荷较大,湿负荷基本稳定,常年热湿比很大,而且工艺排气量很大。下面以茂迪(苏州)新能源有限公司昆山电池片厂1FAB区、3FCD区电池片车间扩建工程为例,详细叙述太阳能电池片厂的空调系统。 本次是茂迪(苏州)新能源有限公司昆山电池片厂1FAB区、3FCD区电池片车间扩建工程,空调系统也为在原有系统基础上作扩充。冷源为8℃的冰水,热源为50℃的热水,在各空调机房内有相应冷热水管预留接口。但配合业主的需求,原空调主系统的水系统扩充一台冰机(甲供)、一台冷却塔(甲供)、一台冷却水泵、一台冰水一次泵、一台汽水板换和一台热水泵,皆直接接入原主管路上的预留阀。MAU的高压喷雾加湿及空气水洗喷淋的软水源为原有软水系统,1F AB区车间的MAU所需软水由3FMAU机房内原有软水管路引入,3F CD区车间的MAU所需软水直接由屋面5吨的软水箱上预留口引下。 本次扩建车间空调系统属工艺性空调,温度要求23±3℃,湿度要求55±10%,但无洁净度要求。本次车间(包括1F车间、1FFQC、3F车间)采用的空调方案为MAU(全新风空调箱)+RAU(循环风空调箱)的全空气系统。车间内的湿度由MAU定露点来控制,温度由RAU来控制调节,车间内的正压也是由MAU变频率调节新风量来控制的

本次工程空调设备配备情况:1F车间采用2台45000CMH风量的变频MAU+8台25000CMH风量的吊挂式RAU;1FFQC区采用1台21000CMH 风量的落地式RAU,新风由1F车间的2台MAU的送风管引来;2FFQC的办公区采用8台吊挂明装的FCU(风机盘管);3F车间采用2台55000CMH 风量的变频MAU+2台70000CMH风量的落地式RAU;3F更衣区采用1台15000CMH吊挂式的RAU。 下面具体介绍一下空调箱的配置情况。MAU的功能段配置为新风进风水洗段、初中效过滤段、热水预热段、冰水表冷除湿段、高压喷雾加湿段(带湿膜挡板)、热水再热段、风机送风段。(如下面示意图所示) MAU功能段配置示意图 RAU的功能段配置为室内回风进风段、初中效过滤段、表冷(热)段、风机送风段。(如下面示意图所示)

有机太阳能电池

2 有机太阳能电池综述 2.1有机太阳能电池材料简述 对于有机太阳能电池材料可以简单地分为两类,一类是小分子材料,另一类是聚合物材料。严谨一些的分法可以大致分为以下五类:⑴有机小分子化合物; ⑵有机大分子化合物;⑶D-A二元体系;⑷模拟叶绿素分子结构材料;⑸有机无机杂化体系。但鉴于本论文的工作内容和研究深度,在这里只对前面简单分类作主要介绍。 2.1.1小分子材料 有机小分子光电转换材料大部分是一些含共轭体系的染料分子,它们能够很好地吸收可见光从而表现出很好的光电转换性质。它们具有化合物结构可设计性、材料质量轻、生产成本低、加工性能好、便于制备大面积太阳能电池等优点。主要的小分子材料有酞菁[3]、卟啉[4-6]和苝菁[7,8]等,现简单介绍如下:酞菁类化合物是典型的p型有机半导体,具有离域的平面大π键,600~800nm 的光谱区域内有较大吸收。其合成已经工业化,是太阳能电池中很受重视、研究得最多的一类材料。这几十年来,人们主要研究了从金属酞菁在金属电极尤其是铂电极上的光电效应,探讨了如中心金属离子、掺杂及环境气氛等影响金属酞菁光伏效应的多种因素,到金属酞菁在无机半导体如ZnO、CdS、SnO2等上面的光伏效应。 卟啉由4个吡咯环通过亚甲基相连形成的具有18个π电子的共轭大环化合物,其中心的氮原子与金属原子配位形成金属卟啉衍生物。卟啉和金属卟啉都是高熔点的深色固体,多数不溶于水和碱,但能溶于无机酸,溶液有荧光,有非常好的光、热稳定性。卟啉体系最显著的化学特性是其易与金属离子生成1:1配合物,卟啉与元素周期表中各类金属元素(包括稀土金属元素)的配合物都已经得到。 苝属于n型半导体材料,其吸收范围在500nm左右,其在可见光区有强吸收。单线态电子从染料注入半导体的导带的速度通常比三线态快。菁染料是一种双极性分子,属p型半导体,是良好的光导体,在溶液中具有良好的溶解度。在光激发下,份菁分子的电荷分离效率较高。不过,菁染料存在稳定性差的缺陷。 此外,其它有机小分子材料还有:方酸类化合物[9,10]、罗丹明、并四苯等。

有机太阳能电池

有机太阳能电池 摘要有机太阳能电池因具有成本低、质轻、柔韧性好、可大面积印刷制备的优点而受到广泛关注,对电池原理,结构,材料的研究对提高有机太阳能电池的性能有重大意义。本文主要综述了有机太阳能电池的工作原理,电池结构以及电极材料。并对有机太阳能电池的应用前景做了展望。 关键词原理;结构;材料;应用前景 1.有机太阳能电池简介 有机太阳能电池,顾名思义,就是由有机材料构成核心部分的太阳能电池。主要是以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流, 实现太阳能发电的效果.由于无机硅太阳能电池的材料生产成本高,污染大、能耗高,寻找新型太阳能电池材料和低成本制造技术便成为人们研究太阳能电池技术的目标。有机太阳能材料和电池制备技术有望成为低成本制造的选择之一。 世界上第一个有机光电转化器件是由Kearns和Calvin在1958年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。1986年,行业内出现了一个里程碑式的突破——有机半导体的发明。器件的核心结构是由四羧基苝的一种衍生物(PV)和铜酞菁(CuPc)组成的双层膜。双层膜的本质是一个异质结,其思路是用两种有机半导体材料来模仿无机异质结太阳能电池。1992年,土耳其人Sariciftci在美国发现,激发态的电子能极快地从有机半导体分子注入到C60分子中,而反向的过程却要慢得多。1993年,Sariciftci在此发现的基础上制成PPV/C60双层膜异质结太阳能电池。随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(体异质结)。而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。给体和受体在混合膜里形成一个个单一组成的区域,在任何

太阳能电池材料的发展及应用

太阳能电池材料的发展及应用 材料研1203 Z石南起新材料(或称先进材料)是指那些新近发展或正在发展之中的具有比传统材料的性能更为优异的一类材料。新材料是指新近发展的或正在研发的、性能超群的一些材料,具有比传统材料更为优异的性能。新材料技术则是按照人的意志,通过物理研究、材料设计、材料加工、试验评价等一系列研究过程,创造出能满足各种需要的新型材料的技术。 随着科学技术发展,人们在传统材料的基础上,根据现代科技的研究成果,开发出新材料。新材料按组分为金属材料、无机非金属材料(如陶瓷、砷化镓半导体等)、有机高分子材料、先进复合材料四大类。按材料性能分为结构材料和功能材料。21世纪科技发展的主要方向之一是新材料的研制和应用。新材料的研究,是人类对物质性质认识和应用向更深层次的进军。 功能材料是指那些具有优良的电学、磁学、光学、热学、声学、力学、化学、生物医学功能,特殊的物理、化学、生物学效应,能完成功能相互转化,主要用来制造各种功能元器件而被广泛应用于各类高科技领域的高新技术材料。 功能材料是新材料领域的核心,是国民经济、社会发展及国防建设的基础和先导。它涉及信息技术、生物工程技术、能源技术、纳米技术、环保技术、空间技术、计算机技术、海洋工程技术等现代高新技术及其产业。功能材料不仅对高新技术的发展起着重要的推动和支撑作用,还对我国相关传统产业的改造和升级,实现跨越式发展起着重要的促进作用。 功能材料种类繁多,用途广泛,正在形成一个规模宏大的高技术产业群,有着十分广阔的市场前景和极为重要的战略意义。世界各国均十分重视功能材料的研发与应用,它已成为世界各国新材料研究发展的热点和重点,也是世界各国高技术发展中战略竞争的热点。在全球新材料研究领域中,功能材料约占85%。我国高技术 (863)计划、国家重大基础研究[973]计划、国家自然科学基金项目中均安排了许多功能材料技术项目(约占新材料领域70%比例),并取得了大量研究成果。

浅析太阳能电池片废水处理工艺

浅析太阳能电池片废水处理工艺 李慧娟1郭晓霞2 1、内蒙古鑫安能源咨询评估有限公司内蒙古包头014010 2、城市建设研究院内蒙古 分院内蒙古包头014010 摘要:太阳能光伏电池是一种新型的依靠太阳能进行能量转换的光电元器件,它将太阳能转换成电能,清洁无污染,具有广阔的应用前景。太阳能光伏电池作为一种清洁能源,应用前景广泛。而近年来,太阳能电池片生产技术不断进步,生产成本不断降低,转换效率不断提高,使光伏发电的应用日益普及并迅速发展,逐渐成为电力供应的重要来源。但是,太阳能电池片生产工艺产生的废水、废气处理不当的话,容易对环境造成污染,在此,本文对单晶硅生产工艺产生的废水处理工艺做详细的阐述。 关键词:太阳能电池片废水处理工艺 中图分类号:TM914.4文献标识码:A 一、引言 随着社会的发展,不可再生资源日益减少,寻求清洁可再生能源成为社会发展的必然趋势,因此,太阳能、风能、生物能产业得到快速发展。太阳能光伏电池是一种新型的依靠太阳能进行能量转换的光电元器件,它将太阳能转换成电能,清洁无污染,具有广阔的应用前景。太阳能光伏电池作为一种清洁能源,应用前景广泛。其生产废水因含有,腐蚀性强,治理困难。采用两级反应沉淀法,先添加氯化钙除氟,再加絮凝剂和助凝剂进行沉淀,在一级、二级沉淀池中分别进行沉降。结果显示,出水质量浓度降至10mg/L以下,达到《污水综合排放标准》(GB8978.1996)的一级排放标准,解决了企业废水处理问题,废水处理效果好,运行稳定,具有推广价值。 二、单晶硅太阳能电池工艺简介 太阳能电池片是一种能量转换的光电元件,它可以在太阳光的照射下,把光能转换成电能,从而实现光伏发电[1]。生产电池片的工艺比较复杂,一般要经过硅片检测、表面制绒、扩散制结、等离子刻蚀、去磷硅玻璃、镀减反射膜、丝网印刷、快速烧结和检测分装等主要步骤。 三、污水成分分析 电池片生产工艺中,单晶硅片制绒工艺是用碱(通常用氢氧化钠)腐蚀硅片表面形成金字塔形貌,过程中用氢氟酸和盐酸清洗,主要产生的废水有浓碱废水、酸碱冲洗废水;去磷硅玻璃工序用氢氟酸去除硅片表面的磷硅玻璃,会产生含氟废水。 从废水的成分来说,主要有以下三部分,含氟废水:主要包括含氢氟酸、硅类的含氟冲洗废水,无机废水主要成分为氢氟酸和SS,[H+]及氟离子浓度较高,酸碱废水中含有硅粉等悬浮物,少量的氟化物,一定量的异丙醇,因此COD、SS污染浓度高[2]。因此,设计后废水收集在两个不同的储罐和两个集水池,分别为:浓碱储罐、浓酸储罐、酸碱废水、含氟废水,废水按照浓度的不同,分开收集,做到轻污分流,节约处理成本。 四、处理工艺的建立 按照工艺的设计,废水按照浓度和成分的不同,分别收集在不同的储罐和集水池,分别为浓酸储罐、浓碱储罐、含氟冲洗废水池、酸碱废水。 浓酸储罐主要收集酸洗和去磷硅玻璃工序中氢氟酸和盐酸槽的废水,废水酸度大,氟离子含量高;浓碱储罐主要收集制绒槽的废水,有机物含量比较高(主要含异丙醇),含有硅粉等悬浮物,COD、SS污染浓度高;含氟冲洗废水池主要收集硅片出氢氟酸槽后的冲洗废水,废水水量大,含有少量的氟离子;酸碱废水池分别收集硅片出碱槽后的冲洗废水、硅片

有机太阳能电池原理及其前景展望

电子信息学院 《太阳能电池》 结业论文 有机太阳能电池原理及其前景展望

班级 姓名 学号 指导教师 日期2015.10

有机太阳能电池原理及其前景展望 *** (***) 摘要:俗话说,万物生长靠太阳,地球上的风能、水能、生物质能等等都来自于太阳;即使是化石燃料(如煤炭、石油、天然气等),从根本上说也是来自于太阳。如今,这些远古时期留下来的不可再生资源面临着枯竭的命运,如何寻找新的可替代能源成为当务之急,而太阳能以其清洁环保、资源丰富的特点成为其中一个选择,其中有机太阳能电池是实现将太阳能直接转变为电能的最有前景的器件之一。介绍了有机太阳能电池的基本原理,并对其应用前景做出了展望分析。 关键词:有机太阳能电池;原理;结构;转换效率;缺陷;优势 中图分类号:TM914.4文献标识码:A The Principle of Organic Solar Cells and its prospect *** (***) Abstract:As the saying goes, all living things depend on the sun for their growth, and on earth, wind, water, and biomass energy and so on from the sun;Even (fossil fuels such as coal, oil, natural gas, etc.), basically is from the sun.Today, the non-renewable resources of ancient times to stay face the fate of dried up, how to look for new alternative energy become priority, and the characteristics of solar energy with its clean environmental protection, resources become one of the options, including organic solar cells is the realization of the solar energy directly into electrical energy one of the most promising devices.This paper introduces the basic principle of organic solar cells, and to the analysis and outlook of its application prospect. Key words:organic solar cells;principle;structures;transfer efficiency;defect;superiority 0引言 现今能源问题是世界各国经济发展的首要问题,太阳能是未来最有希望的能源之一[1],

有机太阳能电池研究进展(1)

专题介绍 有机太阳能电池研究进展 X 林 鹏,张志峰,熊德平,张梦欣,王 丽 (北京交通大学光电子技术研究所,信息存储、显示与材料开放实验室,北京,100044) 摘 要:有机太阳能电池与无机太阳能电池相比,还存在许多关键性问题。为了改善有机太阳能电池的性能,各种研究工作正在进行,这些研究主要是为了寻找新的材料,优化器件结构。对电池原理、部分表征方法、效率损失机制、典型器件结构、最近的发展、以及未来的发展趋势作了简要描述。 关键词:有机太阳能电池;器件结构;给体;受体;转换效率 中图分类号:T N 383 文献标识码:A 文章编号:1005-488X(2004)01-0055-06 Progres s in Study of Organic Sola r Ce ll LIN Peng ,ZHANG Zhi -feng ,XIONG De -ping ,ZHANG Meng -xin ,WANG Li (I nstitute of O p toelectronics T echnology ,Beij ing J iaotong University ,Beijing ,100044,China )Abstr act :Compaer ed with inorganic solar cells ,organic solar cells still have many critical pr oblems.In order to improve the properties of organic solar cells,a lot of different studies have been carried on.T he main purposes of these studies are to seek new mater ials and new device structure.A brief review of the theory of photovoltaic cells,along with some aspects of their characterization ,the basic efficiency loss mechanism ,typical device structures ,and the trends in research will be presented. Key wor ds :organic photovoltaic cell;device structure;donor;acceptor ;conversion effi-ciency 前 言 进入21世纪以来,由于煤、石油、天然气等自然资源有限,已经不能满足人类发展的需要。环境污染也已经成为亟待解决的严重问题。同使用矿物燃料发电相比,太阳能发电有着不可比拟的优点。 太阳能取之不尽,太阳几分钟射向地球的能量相当 于人类一年所耗用的能量。太阳能的利用已经开始逐年增长。但目前使用的硅等太阳能电池材料,因成本太高,只能在一些特殊的场合如卫星供电、边远地区通信塔等使用。目前太阳能发电量只相当于全球总发电量的0.04%。要使太阳能发电得到大规模推广,就必须降低太阳能电池材料的成本,或 第24卷第1期2004年3月 光 电 子 技 术OPT OELECT RONIC T ECHNOLOGY Vol.24No.1 Mar.2004   X 收稿日期:2003-11-17 作者简介:林 鹏(1978-),男,硕士生。主要从事光电子技术研究。 张志峰(1977-),男,硕士生。主要从事有机电致发光(OLED)的研究工作。熊德平(1975-),男,硕士生。主要从事无机半导体材料方面的研究工作。

有机太阳能电池报告

有机太阳能电池报告 经过这几堂课的学习我从中学到了一些关于有机太阳能的相关知识,虽然听进去的不多但是也有所收获,下面简要做下有机太阳电池的总结。 有机太阳能电池是成分全部或部分为有机物的太阳能电池,他们使用了导电聚合物或小分子用于光的吸收和电荷转移。有机物的大量制备、相对价格低廉,柔软等性质使其在光伏应用方面很有前途。通过改变聚合物等分子的长度和官能团可以改变有机分子的能隙,有机物的摩尔消光系数很高,使得少量的有机物就可以吸收大量的光。相对于无机太阳能电池,有机太阳能电池的主要缺点是较低的能量转换效率,稳定性差和强度低。 有机太阳能电池的原理: 太阳能电池的基本原理是基于半导体异质结或金属半导体界面附近的光伏效应,所以又称为光伏电池。当光子入射到光敏材料时,激发材料内部产生电子和空穴对,在静电势能作用下分离,然后被接触电极收集,这样外电路就有电流通过。 在太阳光的照射下有机材料吸收光子,如果该光子的能量大于有机材料的禁带宽度E,就会产生激子(电子空穴对)激子的结合能大约为0.2~1.0 eV高于相应的无机半导体激发产生的电子空穴对的结合能。因此激子不会自动解离.两种具有不同电子亲和能和电离势的材料相结触,接触界面处产生接触电势差,可以驱动激子解离。 有机太阳能电池以具有光敏性质的有机物作为半导体的材料,以光伏效应而产生电压形成电流。主要的光敏性质的有机材料均具有共轭结构并且有导电性,如酞菁化合物、卟啉、菁(cyanine)等。 有机太阳能电池按照器件结构可基本分为3类: (1)单质结(肖特基型)有机太阳能电池 (2)异质结有机太阳能电池(p-n 异质结混合异质结即本体异质结级联结构) (3)染料敏化有机太阳能电池 单质结(肖特基型)有机太阳能电池 这是一种研究较早的太阳能电池,结构为:玻璃/电极/有机层/电极,如图a所示: 对于单层结构的电池来说,其内建电场源于两个电极的功函数差或者金属

浅谈钙钛矿太阳能电池技术与发展

浅谈钙钛矿太阳能电池技术与进展 全华锋BY619102 摘要:基于钙钛矿材料(CH3NH3PbI)制备的太阳能电池的效率由2009年的3.8%增长到了目前的20.2%,因为其较高的光吸收系数,较低的成本以及易于制备等优势引起了广泛的关注。钙钛矿材料不仅可以作为光吸收层,还可以作为电子传输层(ETM)和空穴传输层(HTM),由此可以制备不同结构的钙钛矿太阳电池:介孔结构、介观超结构、平面结构和有机结构等。除此之外,钙钛矿材料的制备方法的多样性也使其更具吸引力,目前已有一步溶液法、两步连续沉积法、双源共蒸发法和溶液—气相沉积法。本文主要介绍钙钛矿太阳电池的发展历程、工作原理、薄膜的制备方法以及各层的作用,最后对钙钛矿太阳电池面临的问题和发展前景进行介绍。 关键词:钙钛矿材料;太阳电池;光吸收层 1.钙钛矿太阳电池的发展历程 随着人类社会的不断发展与进步,由工业发展带来的能源和环境问题日益明显,化石燃料(石油、煤炭、天然气等)的有限储量及其燃烧带来的全球变暖问题使人们不得不去寻找和开发环保且可再生的新型能源。太阳能来源丰富,取之不尽,用之不竭,而且太阳能绿色环保无污染,是未来有希望获得大规模应用的新能源之一,受到国际社会的广泛关注与研究。将太阳能转换为电能的重要器件之一就是太阳电池。 2009年,日本人Kojim等首先将有机-无机杂化的钙钛矿材料应用到量子点敏化太阳电池中,制备出第一块钙钛矿太阳电池,并实现了 3.8%的效率。但这种钙钛矿材料在液态电介质中很容易溶解,该电池仅仅存在了几分钟级宣告失败,随后,Park等人于2011年将CH3NH3PbI纳米晶粒改为2-3nm,效率达到了6.5%。由于仍然采用液态电解质,仅仅经过10min,电池效率就衰减了80%。为解决钙钛矿的稳定性问题,2012年Kim等人将一种固态空穴传输材料(spiro-OMeTAD)引入到钙钛矿太阳电池中,制备出第一块全固态钙钛矿太阳电池,电池效率达到了9.7%。即使未经封装,电池在经过500小时后,效率衰减很小。空穴传输层(HTM)的使用,初步解决了液态电解质钙钛矿太阳电池不稳定和封装困难的问题。随后Snaith等首次将Cl元素引入到钙钛矿中,并使用Al2O3代替TiO2,证明钙钛

浅谈太阳能电池的发展与应用

浅谈太阳能电池的基本原理与应用 摘要:人类面临着有限常规能源和环境破坏严重的双重压力。特别是煤、石油、天然气等不可再生能源的逐渐枯竭,能源问题已经成为制约社会经济发展的重大问题,研究新能源的开发利用已是当务之急。太阳能作为一种清洁、高效、取用不尽的能源已有尽半个世纪的发展历程。并成为当前各国争相开发利用的一种新能源。太阳能光伏发电的最核心的器件是太阳能电池,太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。为全面的了解太阳能电池的相关知识,本文通过查阅大量资料与新闻信息,综述太阳能电池的发展历程与当前应用情况。重点研究太阳能电池的工作原理,基本结构,主要类型,发展现状及趋势。 关键词:太阳能电池;基本原理;材料; 晶体硅;薄膜太阳能电池;转换效率 引言:由于人类对可再生能源的不断需求。促使人们致力于开发新型能源。太阳在40min内照射带地球表面的能量可供全球目前能源消费的速度使用1年。合理的利用好太阳能将是人类解决能源问题的长期发展战略,是其中最受瞩目的研究热点之一。在太阳能的有效利用中, 太阳能的光电利用是近些年来发展最快、最具活力的研究领域. 太阳能电池的研制和开发日益得到重视. 太阳能电池是利用光电材料吸收光能后发生的光电子转移反应而进行工作的. 根据所用材料的不同, 太阳能电池主要可分为四种类型: ( 1) 硅太阳能电池; ( 2) 多元化合物薄膜太阳能电池; ( 3) 有机物太阳能电池; ( 4) 纳米晶太阳能电池.太阳能电池以硅材料为主的主要原因是其对电池材料的要求: ( 1) 半导体材料的禁带宽度不能太宽; ( 2) 要有较高的光电转换效率; ( 3) 材料本身对环境不造成污染; ( 4) 材料便于工业化生产且材料性能稳定. 随着新材料的不断开发和相关技术的发展, 以其他材料为基础的太阳能电池也愈来愈显示出诱人的前景. 本文简要地综述了太阳能电池的原理、种类及其研究现状, 并讨论了太阳能电池的发展趋势. 1 基本原理 太阳能(Solar Energy),一般是指太阳光的辐射能量。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能发电一种新兴的可再生能源。太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。 1.1 半导体的简单介绍 半导体材料指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料,这种材料在某个温度范围内随温度升高而增加电荷载流子的浓度,电阻率下降。半导体材料很多,按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;化合物半导体包括Ⅲ-Ⅴ族化合物(砷化镓、磷化镓等)、Ⅱ-Ⅵ族化合物( 硫化镉、硫化锌等)、氧化物(锰、铬、铁、铜的氧化物),以及由Ⅲ-Ⅴ族化合物和Ⅱ-Ⅵ族化合物组成的固溶体(镓铝砷、镓砷磷等)。除上述晶态半导体外,还有非晶态的玻璃半导体、有机半导体等。 在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。在光照和热辐射条件下,其导电性有明显的变化。 1.1.1关于半导体的基本概念 共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。 空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。 载流子:运载电荷的粒子称为载流子,包括电子与空穴。 杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。 P型半导体:在纯净的硅晶体中掺入三

浅析无机材料在有机太阳能电池中的应用

浅析无机材料在有机太阳能电池中的应用 发表时间:2018-11-19T17:32:32.533Z 来源:《中国经济社会论坛》学术版2018年第1期作者:吴涛熊磊梁溪凯徐龙 [导读] 现阶段伴随着我国科技水平的不断快速发展,我国的无机材料在有机太阳能电池中的应用范围越来越广泛,其中无机材料的迁移效率比较高,光谱效应和太阳能光谱相匹配,而相对于有机材料来说价格便宜,合成方法较简单。 吴涛熊磊梁溪凯徐龙 湖南工业大学冶金学院湖南省株洲市 412007 摘要:现阶段伴随着我国科技水平的不断快速发展,我国的无机材料在有机太阳能电池中的应用范围越来越广泛,其中无机材料的迁移效率比较高,光谱效应和太阳能光谱相匹配,而相对于有机材料来说价格便宜,合成方法较简单。就目前情况来看,无机材料的迁移效率较差,所以导致光电转换效率比较低,并且阻碍了有机太阳能电池的应用。假使能够将无机材料和有机材料相融合在一起,可以大大的提高太阳能电池的光电转换效率。本文主要阐述了无机材料和有机太阳能电池的概述与优点分析,无机材料在OSCs中的应用原理以及目前无机材料在有机太阳能电池中的应用。 关键词:无机材料;有机材料;有机太阳能;效率;电池;应用 一、无机材料和有机太阳能电池的概述与优点分析 无机材料就是指由无机物单独或者是和混合其他物质制成的材料,通常其中包括硅酸盐和铝酸盐以及硼酸盐等原料经一定的工艺制备而成的材料。无机材料的优点具有技术含量高、产品更新换代快以及经济效益明显的特点。 有机太阳能电池就是由有机材料构成核心部分的太阳能电池。主要是以具有光敏性质的有机物作为半导体的材料,并且用光伏效应产生的电压而形成电流,才能够实现太阳能发电的效果。有机太阳能的优点具有价格便宜,有机高分子半导体材料的合成工艺比较简单。比如说酞菁类染料已经实现了工业化的生产,所以它的成本低。还有就是有机太阳能电池可以降解,从而减少对环境的污染。 二、无机材料在OSCs中的应用原理 现如今无机材料在OSCs中的原理是利用有机材料产生的光伏特效应,从而实现的光电能量之间的转化。以下就是无机材料在OSCs中的应用原理过程:先是通过光照射到0SCs上,其中具有能量大于有机材料的光子后被激活,并且产生激子,进而激子在浓度梯度的作用下扩散到异质结处,此时在界面形成孪生的电子空穴;再是由于激子不能够自动解离,所以需要工种不同的最高己占轨道和最低未占轨道的材料相连接,才能够结合到受体LUMO的能极差值作用下分解成自由移动的电子和空穴,那就是电载流子;最后是通过阴阳两极之间的作用存在着功函差,使得电子和空穴在内部的电场作用下产生电流。 三、目前无机材料在有机太阳能电池中的应用 1.无机材料在太阳能电池中阴极缓冲材料的应用。有机太阳能电池器件是稳定性一般的产品,如何提高稳定性就要在阴极与有机层之间添加一层缓冲的材料,这种材料必须使得有机层与电极间接触良好,又不得增加接触的电阻,而且有机层也不能够受到破坏。比如说化合物LiF 常用在电致发光中,但它也可以用于OSCs。何况TiO 2不仅在OSCs 中作为受体,还可以作为阴极缓冲层,阻挡空穴流向阴极,保护了有机层。 2.无机材料在太阳能电池中阳极缓冲材料的应用。有机太阳能电池发光器中的金属氧化物空穴材料在OSCs 中可以作为阳极修饰层,比如说NiO 和WO 3都可以作为阳极修饰层。何况金属氧化物的厚度对于有机太阳能电池器件有明显的影响作用,可以用MoO 3做阳极的修饰层,有机太阳能电池能够在红外区的光吸收能量。从而采取WO 3做阳极修饰,有机太阳能电池器件的效率可以达到 3.1%,主要原因是由于降低了有机太阳能器件中载流子的复合几率。其中NiO 做阳极修饰层,可以有效的调节活性层能级,阳极更容易接纳空穴,从而使得效率不断的提高。过渡金属氧化物与阳极形成良好的能级匹配,有效的阻止了有机层和电极发生电化学反应,进而有利于载流子收集大幅度提高,所以才能够使的有机太阳能电池器件的稳定性提高。 3. 无机材料在太阳能电池中活性层的应用。无机材料在太阳能电池中活性层的应用主要包括铬化合物、硅和低能的纳米粒子以及金属氧化物这四部分构成。 铬化合是指人们常用到的无机受体材料CdS 和CdTe等,铬化合物应用在有机太阳能电池OCSCs 中,首先报道了球形CdSe 与MEH-PPV 结合的有机太阳能电池器件。但是球形粒子表面的绝缘层限制了电荷传输。Huynh 制作了氧化铟锡/聚3-乙基噻吩:CdSe/Al 的有机太阳能电池器件。所以使得纳米棒状CdSe 电子传输有效的提高。 硅是由纳米硅材料制成,具有无毒和对光强吸收以及电子迁移率高的活性层应用。硅不仅可以用作受体材料与有机材料结合制备成了有机太阳能电池,还可以利用蚀刻法形成的硅纳米线阵列可以增加OSCs 在可见和近红外的吸收,从而增大迁移效率。我们可以将硅作为受体串联到有机太阳能电池器件中,能够使得内部电场增大,可以使得电子和空穴转移更加容易,这就充分解决了传输的问题。 低能的纳米粒子主要是为了提高有机太阳能电池的能量转换效率。才能够将波长带隙窄的无机受体与有机受体相融合起来。其中Cui 等制作的有机太阳能电池器件吸收在可见光和近红外区域内。在Tan 改进之后,,不仅减少了活性区载流子的复合数量,并且也保证了光吸收。 金属氧化物其中有TiO 2,它化学稳定性高,可见光区透光良好,有金红石、板钛矿和锐钛矿三种晶型。金红石型TiO 2在热力学上稳定性是最高的,而且光散射性优异。锐钛矿型TiO 2带隙较宽,而且导带能级较高。锐钛矿型TiO 2因为有较高的电子迁移效率,而且在有机太阳能中应用广泛。有一种ZnO 的能级结构和锐钛矿型TiO 2基本相同,也是n 型半导体。ZnO 的缺点是化学稳定性不好,在酸碱环境中都不能稳定很长时间,比较易溶解。 四、结束语 由上可知,目前的无机材料和有机材料能够相融合在一起,他们可以各自发挥各自的优点,但也弥补了材料组成的太阳能电池不足,所以对有机太阳能电池器件有很大的帮助。有机材料的结合,不仅价格便宜,而且工艺简单,并且具有很好的稳定性,可以大大的提高了有机太阳能电池的迁移效率,同时光吸收和太阳能光谱更加匹配。至于有机太阳能电池是否能够实现产业化和居民化,这些都和有机太阳能电池的应用发展有着密切的关联。因为正是有机太阳能电池的这些明显优点——轻快,便宜,原材料容易得,并且可以大面积的制备,用来满足实现产业化、居民化的条件。因此,我们攻克了有机太阳能电池能量转换效率问题,世界的能源界必将迎来有机太阳能电池的时

浅谈光伏跟踪灌溉系统

浅谈光伏跟踪灌溉系统 发表时间:2019-07-22T15:18:10.137Z 来源:《基层建设》2019年第12期作者:文高龙 [导读] 摘要:介绍了光伏灌溉系统的相关配置方案、设计方法及主要设备参数的计算方式。 广东亿腾新能源有限公司 528000 摘要:介绍了光伏灌溉系统的相关配置方案、设计方法及主要设备参数的计算方式。光伏灌溉系统是解决缺水、缺电地区灌溉用水问题的新方法,对农业灌溉、荒漠治理有很好的利用价值。 关键词:光伏;灌溉;设计 1、引言 光伏灌溉系统是将光伏技术与农业灌溉技术有机接合,利用太阳能为灌溉系统提供动力源,实现农业灌溉,有效达到节能、节水、农业增产、增收的目的,是一项具有广阔应用前景和巨大社会及经济价值的现代农业技术。 2、光伏灌溉系统的设计 光伏灌溉系统按照水泵电机类型可分为直流系统和交流系统,本文介绍利用交流水泵电机的光伏灌溉系统。光伏灌溉系统一般由太阳能光伏电池阵列、光伏水泵逆变器、光伏水泵及输水管道组成。光伏灌溉系统利用太阳能光伏电池阵列接收太阳光辐射能量,将其转换为直流电能,通过光伏水泵逆变器的交直流变换,驱动光伏水泵从深井、江、河、湖等水源地提水,再通过输水管道将水输送到目的地,以满足灌溉用水需求。光伏灌溉系统的基本组成如图1所示。 光伏灌溉技术属于太阳能光伏发电利用的前沿应用技术,与光伏并网发电技术和光伏离网发电技术都不相同。与光伏并网系统相比,光伏灌溉系统有独立的用电负载,可选择不进行并网发电;与光伏离网系统相比,光伏灌溉系统没有储电单元。 2.1 光伏水泵 光伏灌溉系统中选用的光伏水泵一般选择专用潜水泵。从液池中被抽吸上来又连续不断地从排出管流出。光伏水泵主要技术性能包括流量、扬程、功率等。 1)流量(Q),是指单位时间内所排出的液体的数量,通常泵的流量用体积计算。2)扬程(H),是指单位重量的液体通过泵所增加的能量,实质上就是水泵能够扬水的高度,又叫总扬程或全扬程。3)功率(P),指输入功率,即原动机传到泵轴上的功率,故又称轴功率。即泵在一定流量和扬程下,动机单位时间内给予泵轴的功。选取电动机的输出功率大于轴功率。 在光伏灌溉系统设计时,首先要确定灌溉用水每天或每小时所需要的系统流量,以及系统所需要的工作扬程,从而确定所需要的光伏水泵的功率。当光伏水泵转速一定时,流量与扬程、流量与功率的关系,如图2所示。对于小功率光伏灌溉系统,尤其是3kW以下的,由于系统输入直流电压一般较低,所以多数采用220V/50Hz的交流光伏水泵。若功率大于5kW的光伏灌溉系统,多建议采用380V/50Hz的交流光伏水泵水泵。 2.2 光伏水泵逆变器 光伏水泵逆变器是将光伏阵列的直流电转换交流电并驱动光伏水泵工作的主要部件。光伏水泵逆变器的主回路示意图如图3所示。在光伏灌溉系统设计中,一般选用的光伏水泵逆变器的功率应当与光伏水泵功率相同,或略大于光伏水泵功率。 2.2.1 主要技术和功能要求 光伏水泵逆变器既不同于并网逆变器,又不同于离网逆变器,是一种新型的光伏逆变器应用方式,其技术要点和难点与离并网逆变器有很多相同的地方,也有很多不同的地方。 1)必须具备最大功率点跟踪技术(MPPT)。尤其在日照强度快速变化时跟踪效果要好。具备良好的最大功率点跟踪技术(MPPT),响应速度要快,运行稳定性要好,能够有效提高太阳能光伏阵列的太阳辐照能的利用率。 2)工作效率要高。光伏水泵逆变器的工作效率的高低对光伏灌溉系统提水能力的高低起到很重要的作用,而且也决定了太阳能光伏阵列所发直流电能利用率的高低。 3)带载能力要强。光伏水泵逆变器由于没有储电单元,光伏水泵逆变器应该具有良好的弱功率工作特性,应具有加入动态V/f曲线控制特性,以适应不同类型的水泵,提高启动阈值和弱功率下的输出转矩,保证光伏水泵在日照较差的情况下也可工作,最大限度利用太阳能光伏电池阵列发的电能。 4)具有完善的保护机制,如防雷、过压、欠压、过流、过载、自动打干识别、电机堵转、故障侦测、低日照、输出短路故障、输出缺相等保护功能。 5)上下水位检测与控制电路,能够根据系统需要设定相关参数,防止蓄水池溢水或水源地缺水等不利情况的出现。

有机光伏电池的研究现状

<有机化学进展>结课论文 题目:有机光伏电池的研究现状 院系: 专业: 班级: 学号: 姓名:

有机光伏电池的研究现状 摘要:本文对有机电致发光显示器件的发展历史,器件结构、工作特征、发光器件(OLED)的优点、发展现状和趋势等都做了简要的概括。详细介绍了有机发光材料的研究状况,包括小分子发光材料、高分子(聚合物)发光材料,以及新材料的开发。最后总结了国内外OLED 技术的发展状况。 关键词:有机光伏材料 Research and development of Organic photovoltaic cells Abstract Organic light-emitting diodes (OLEDs), having excellent properties of low driving voltage and brightemission, have been extensively studied due to their possible applications for flat panel color displays.At the same time, or-ganic electroluminescent materials have been made with an outstanding progress.And thestatus of organic electrolumi-nescent materials(including evaporated molecules and polymers)were reported in this paper. Key words OLED, organic luminescent materials, evaporated molecules and polymers 光伏作用(Photovoltaic effect)光照在不均匀的半导体或半导体与金属结合的不同部位而在其之间产生电位差的现象。(光子→电子;光能→电能) 一、发展历史 术语“光生伏打”(Photovoltaics)来源于希腊语,意思是光、伏特和电气的,来源于意大利物理学家亚历山德罗·伏特的名字,在亚历山德罗·伏特以后“伏特”便作为电压的单位使用。以太阳能发展的历史来说,光照射到材料上所引起的“光起电力”行为,早在19世纪的时候就已经发现了。1849年术语“光-伏”(photo-voltaic)才出现在英语中,意指由光产生电动势,即光产生伏特。1839年,光生伏特效应第一次由法国物理学家A.E.Becquerel发现。1883年第一块太阳电池由Charles Fritts制备成功。Charles用硒半导体上覆上一层极薄的金层形成半导体金属结,器件只有1%的效率。到了1930年代,照相机的曝

相关文档
最新文档