动态规划练习二

动态规划练习二
动态规划练习二

动态规划练习二

1、乘积最大

[问题描述]

在一次数学智力竞赛活动中,主持人给所有参加竞赛的选手出了一到题目:设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的成绩最大。

同时为了帮助选手能够理解题意,主持人还举了如下一个例子:

有一个数字串:312,当N=3,K=1时有两种分法:

(1)3*12=36;

(2)31*2=62

这时,符合题目要求的结果是:31*2=62。现在要求设计一个程序,以求得正确的答案。

输入

Input.in文件共有两行:第一行有两个自然数N,K(2<=N<=40, 1<=K<=6);第二行是一个长度为N的数字串。

输出

一个自然数,即所求得的最大乘积。

输入输出样例

输入(input.in)

4 2

1231

输出(ans.out)

62

2、数字加法问题

[问题描述]

有一个由数字1,2,... ,9组成的数字串(长度不超过200),问如何将M(M<=20)个加号("+")插入到这个数字串中,使所形成的算术表达式的值最小。请编一个程序解决这个问题。

注意:

加号不能加在数字串的最前面或最末尾,也不应有两个或两个以上的加号相邻。M保证小于数字串的长度。

例如:数字串79846,若需要加入两个加号,则最佳方案为79+8+46,算术表达式的值133。

[输入格式]

从键盘读入输入文件名。数字串在输入文件的第一行行首(数字串中间无空格且不折行),M的值在输入文件的第二行行首。

[输出格式]

在屏幕上输出所求得的最小和的精确值。

[输入输出举例]

82363983742

3

输入输出

2170

动态规划练习二

动态规划练习二 1、乘积最大 [问题描述] 在一次数学智力竞赛活动中,主持人给所有参加竞赛的选手出了一到题目:设有一个长度为N的数字串,要求选手使用K个乘号将它分成K+1个部分,找出一种分法,使得这K+1个部分的成绩最大。 同时为了帮助选手能够理解题意,主持人还举了如下一个例子: 有一个数字串:312,当N=3,K=1时有两种分法: (1)3*12=36; (2)31*2=62 这时,符合题目要求的结果是:31*2=62。现在要求设计一个程序,以求得正确的答案。 输入 Input.in文件共有两行:第一行有两个自然数N,K(2<=N<=40, 1<=K<=6);第二行是一个长度为N的数字串。 输出 一个自然数,即所求得的最大乘积。 输入输出样例 输入(input.in) 4 2 1231 输出(ans.out) 62

2、数字加法问题 [问题描述] 有一个由数字1,2,... ,9组成的数字串(长度不超过200),问如何将M(M<=20)个加号("+")插入到这个数字串中,使所形成的算术表达式的值最小。请编一个程序解决这个问题。 注意: 加号不能加在数字串的最前面或最末尾,也不应有两个或两个以上的加号相邻。M保证小于数字串的长度。 例如:数字串79846,若需要加入两个加号,则最佳方案为79+8+46,算术表达式的值133。 [输入格式] 从键盘读入输入文件名。数字串在输入文件的第一行行首(数字串中间无空格且不折行),M的值在输入文件的第二行行首。 [输出格式] 在屏幕上输出所求得的最小和的精确值。 [输入输出举例] 82363983742 3 输入输出 2170

POJ 动态规划题目列表

[1]POJ动态规划题目列表 容易: 1018, 1050, 1083, 1088, 1125, 1143, 1157, 1163, 1178, 1179, 1189, 1208, 1276, 1322, 1414, 1456, 1458, 1609, 1644, 1664, 1690, 1699, 1740(博弈), 1742, 1887, 1926(马尔科夫矩阵,求平衡), 1936,1952, 1953, 1958, 1959, 1962, 1975, 1989, 2018, 2029,2039, 2063, 2081, 2082,2181, 2184, 2192, 2231, 2279, 2329, 2336, 2346, 2353,2355, 2356, 2385, 2392, 2424, 不易: 1019,1037, 1080, 1112, 1141, 1170, 1192, 1239, 1655, 1695, 1707,1733(区间减法加并查集), 1737, 1837, 1850, 1920(加强版汉罗塔), 1934(全部最长公共子序列), 1937(计算几何), 1964(最大矩形面积,O(n)算法), 2138, 2151, 2161(烦,没写), 2178, 推荐: 1015, 1635, 1636(挺好的), 1671, 1682, 1692(优化), 1704, 1717, 1722, 1726, 1732, 1770, 1821, 1853, 1949, 2019, 2127, 2176, 2228, 2287, 2342, 2374, 2378, 2384, 2411 状态 DP 树 DP 构造最优解四边形不等式单调队列 1015 Jury Compromise 1029 False coin 1036 Gangsters 1037 A decorative fence 1038 Bugs Integrated, Inc. 1042 Gone Fishing 1050 To the Max 1062 昂贵的聘礼 1074 Parallel Expectations 1080 Human Gene Functions 1088 滑雪 1093 Formatting Text 1112 Team Them Up! 1141 Brackets Sequence 1143 Number Game

实验二 动态规划算法棋盘覆盖

实验二动态规划算法棋盘覆盖 最长公共子序列问题 一、实验目的 : 1、熟悉最长公共子序列问题的算法; 2、初步掌握动态规划算法。 二、实验内容 若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X和Y的公共子序列。给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。 三、实验步骤 1、代码 // ZXL_1.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include "iostream.h" #include //#include "make2DArray.h" void make2DArray(int** &x , int rows , int cols ) { //创建行指针 x = new int*[rows] ;

//为每一行分配空间 for( int i= 0 ; i

动态规划算法实验

一、实验目的 (2) 二、实验内容 (2) 三、实验步骤 (3) 四.程序调试及运行结果分析 (5) 附录:程序清单(程序过长,可附主要部分) (7)

实验四动态规划算法的应用 一、实验目的 1.掌握动态规划算法的基本思想,包括最优子结构性质和基于表格的最优值计算方法。 2.熟练掌握分阶段的和递推的最优子结构分析方法。 3.学会利用动态规划算法解决实际问题。 二、实验内容 1.问题描述: 题目一:数塔问题 给定一个数塔,其存储形式为如下所示的下三角矩阵。在此数塔中,从顶部出发,在每一节点可以选择向下走还是向右走,一直走到底层。请找出一条路径,使路径上的数值和最大。 输入样例(数塔): 9 12 15 10 6 8 2 18 9 5 19 7 10 4 16 输出样例(最大路径和): 59 题目二:最长单调递增子序列问题(课本184页例28) 设有由n个不相同的整数组成的数列,记为:a(1)、a(2)、……、a(n)且a(i)<>a(j) (i<>j) 若存在i1

题目三 0-1背包问题 给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c,。问应如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 在选择装入背包的物品时,对每种物品只有两个选择:装入或不装入,且不能重复装入。输入数据的第一行分别为:背包的容量c,,物品的个数n。接下来的n 行表示n个物品的重量和价值。输出为最大的总价值。 输入样例: 20 3 11 9 9 10 7 5 输出样例 19 2.数据输入:个人设定,由键盘输入。 3.要求: 1)上述题目任选一做。上机前,完成程序代码的编写 2)独立完成实验及实验报告 三、实验步骤 1.理解算法思想和问题要求; 2.编程实现题目要求; 3.上机输入和调试自己所编的程序; 4.验证分析实验结果; 5.整理出实验报告。

2设计动态规划算法的主要步骤为

2设计动态规划算法的主要步骤为: (1)找出最优解的性质,并刻划其结构特征。(2)递归地定义最优值。(3)以自底向上的方式计算出最优值。(4)根据计算最优值时得到的信息,构造最优解。 3. 分治法与动态规划法的相同点是:将待求解的问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解。 两者的不同点是:适合于用动态规划法求解的问题,经分解得到的子问题往往不是互相独立的。而用分治法求解的问题,经分解得到的子问题往往是互相独立的。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。 6. 分治法所能解决的问题一般具有的几个特征是:(1)该问题的规模缩小到一定的程度就可以容易地解决; (2)该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质; (3)利用该问题分解出的子问题的解可以合并为该问题的解; (4)原问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子问题。 P:也即是多项式复杂程度的问题。 NP就是多项式复杂程度的非确定性问题。 NPC(NP Complete)问题 ADT 抽象数据类型 分析问题→设计算法→编写程序→上机运行和测试 算法特性1. 确定性、可实现性、输入、输出、有穷性 算法分析目的2. 分析算法占用计算机资源的 情况,对算法做出比较和评价,设计出额更好 的算法。 3. 算法的时间复杂性与问题的规模相关,是 问题大小n的函数。 算法的渐进时间复杂性的含义:当问题的规模 n趋向无穷大时,影响算法效率的重要因素是 T(n)的数量级,而其他因素仅是使时间复杂度 相差常数倍,因此可以用T(n)的数量级(阶) 评价算法。时间复杂度T(n)的数量级(阶)称为 渐进时间复杂性。 最坏情况下的时间复杂性和平均时间复杂性有什么不同? 最坏情况下的时间复杂性和平均时间复杂性 考察的是n固定时,不同输入实例下的算法所 耗时间。最坏情况下的时间复杂性取的输入实 例中最大的时间复杂度: W(n) = max{ T(n,I) } , I∈Dn 平均时间复杂性是所有输入实例的处理时间 与各自概率的乘积和: A(n) =∑P(I)T(n,I) I∈Dn 为什么要分析最坏情况下的算法时间复杂 性?最坏情况下的时间复杂性决定算法的优 劣,并且最坏情况下的时间复杂性较平均时间 复杂性游可操作性。 1.贪心算法的基本思想? 是一种依据最优化量度依次选择输入的分级处理方法。基本思路是:首先根据题意,选取一种量度标准;然后按这种量度标准对这n个输入排序,依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 贪心选择算法与动态规划算法的异同点:同:都要求问题具有最优子结构性质;异:动态规划算法为自底向上的方式解各子问题,贪心算法为自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每做一次贪心选择问题就转换为规模更小的字问题。

动 态 规 划 算 法 ( 2 0 2 0 )

01背包问题的动态规划算法、蛮力法和空间优化算法 算法思想: (1)【导师实战恋爱教-程】、动态规划算法:解决背包物品价值最大化问题的最优解,是建立在每一个子问题的最优解的前提下完成的。设Valu【扣扣】e[i,j]表示的是i个物品放进背包容量为j的背包的价值,令i从0【⒈】增至n(物品总数量),j从0增至c(背包总容量)。Value[n,c]就是我【О】们要的背包价值最大化的解。为了得到这个解必须要把之前的都解【1】决,每一个问题的最优解的算法又根据以下确定:当物品重【6】量w小于背包体积j时,此物品不放进背包,价值与上一次【⒐】价值相同;当物品重量w不小于背包体积j时,此物品是否放进背【5】包,取决于Value[i-1,j]和Value[i-1,j-w]+v的大小。写成表达式【2】则为以下内容: ? Va【б】lue[i-1,j]? weight[i]j Value[i,j] ? Max(Value[i-1,j],Value[i-1,j-w[i]]+v[i])? weight[i]=j 而这个表达式的约束条件就是当物品数量为0(i=0)时和背包容量为0(j=0)时,最大价值为0。 (2)、空间优化算法:动态规划法的空间复杂度为O(nw),现将空间复杂度优化到O(w)。我使用的方法为建立一个新的一维数组V[w+1],此数组与上述动态规划的Value数组不同的是只用于记录上一行的价值,如

当我需要求第i行的价值的时候,v数组中存放的是第i-1行的价值。然后从后往前(背包容量从c到0)计算价值、覆盖数组,因为每一次计算背包容量j大小的价值可能会用到j-w的价值,如果从前往后计算的话则数组已被更新,所以要从后往前计算。计算价值的方法也是和上面大致相同:如果物品体积w小于背包容量j,则判断V [j]和V[j-w]+v的大小;如果大于背包容量,则放不进去,V[j]价值不变。 写成表达式如下: ? V[j]? weight[i]j ? Max(V[j],V[j-w[i]]+value[i])? weight[i]=j 由于使用一维数组的方法,内容还一直被覆盖,所以无法得出背包中具体有哪些物品。 (3)、穷举法:用于验证动态规划方法是否正确。以n=4为例,创建一个v[4]的数组,用0和1表示第i个物品是否放进背包,如0001表示只有第四个物品放进背包。然后数组从0000~1111,计算每次摆放的重量以及价值。如果重量小于背包重量,且价值大于当前最大价值,则记录当前的最大价值以及数组。原理是这样在实施的时候为了记录背包的解,将0000和1111看成0和15的二进制形式,所以让i从0到15进行增长,每次将i转换成二进制格式放进数组中,这样做就可以记录最大价值时的i,转换成二进制则可获得具体物品。 伪代码如下: For i 0~2n-1

动态规划(2)

Farmer John's farm consists of a long row of N (1 <= N <= 100,000)fields. Each field contains a certain number of cows, 1 <= ncows <= 2000. FJ wants to build a fence around a contiguous group of these fields in order to maximize the average number of cows per field within that block. The block must contain at least F (1 <= F <= N) fields, where F given as input. Calculate the fence placement that maximizes the average, given the constraint. Input * Line 1: Two space-separated integers, N and F. * Lines 2..N+1: Each line contains a single integer, the number of cows in a field. Line 2 gives the number of cows in field 1,line 3 gives the number in field 2, and so on. Output * Line 1: A single integer that is 1000 times the maximal average.Do not perform rounding, just print the integer that is 1000*ncows/nfields. Sample Input 10 6 6 4 2 10 3 8 5 9 4 1 Sample Output 6500

动态规划练习试题和解答

动态规划练习题 [题1] 多米诺骨牌(DOMINO) 问题描述:有一种多米诺骨牌是平面的,其正面被分成上下两部分,每一部分的表面或者为空,或者被标上1至6个点。现有一行排列在桌面上:顶行骨牌的点数之和为6+1+1+1=9;底行骨牌点数之和为1+5+3+2=11。顶行和底行的差值是2。这个差值是两行点数之和的差的绝对值。每个多米诺骨牌都可以上下倒置转换,即上部变为下部,下部变为上部。 现在的任务是,以最少的翻转次数,使得顶行和底行之间的差值最小。对于上面这个例子,我们只需翻转最后一个骨牌,就可以使得顶行和底行的差值为0,所以例子的答案为1。 输入格式: 文件的第一行是一个整数n(1〈=n〈=1000〉,表示有n个多米诺骨牌在桌面上排成一行。接下来共有n行,每行包含两个整数a、b(0〈=a、b〈=6,中间用空格分开〉。第I+1行的a、b分别表示第I个多米诺骨牌的上部与下部的点数(0表示空)。 输出格式: 只有一个整数在文件的第一行。这个整数表示翻动骨牌的最少次数,从而使得顶行和底行的差值最小。 [题2] Perform巡回演出 题目描述: Flute市的Phlharmoniker乐团2000年准备到Harp市做一次大型演出,本着普及古典音乐的目的,乐团指挥L.Y.M准备在到达Harp市之前先在周围一些小城市作一段时间的巡回演出,此后的几天里,音乐家们将每天搭乘一个航班从一个城市飞到另一个城市,最后才到达目的地Harp市(乐团可多次在同一城市演出). 由于航线的费用和班次每天都在变,城市和城市之间都有一份循环的航班表,每一时间,每一方向,航班表循环的周期都可能不同.现要求寻找一张花费费用最小的演出表. 输入: 输入文件包括若干个场景.每个场景的描述由一对整数n(2<=n<=10)和k(1<=k<=1000)开始,音乐家们要在这n个城市作巡回演出,城市用1..n标号,其中1是起点Flute市,n是终点Harp市,接下来有n*(n-1)份航班表,一份航班表一行,描述每对城市之间的航线和价格,第一组n-1份航班表对应从城市1到其他城市(2,3,...n)的航班,接下的n-1行是从城市2到其他城市(1,3,4...n)的航班,如此下去. 每份航班又一个整数d(1<=d<=30)开始,表示航班表循环的周期,接下来的d个非负整数表示1,2...d天对应的两个城市的航班的价格,价格为零表示那天两个城市之间没有航班.例如"3 75 0 80"表示第一天机票价格是75KOI,第二天没有航班,第三天的机票是80KOI,然后循环:第四天又是75KOI,第五天没有航班,如此循环.输入文件由n=k=0的场景结束. 输出: 对每个场景如果乐团可能从城市1出发,每天都要飞往另一个城市,最后(经过k天)抵达城市n,则输出这k个航班价格之和的最小值.如果不可能存在这样的巡回演出路线,输出0. 样例输入: 样例输出:

算法分析与设计实验二:动态规划法

题目:用动态规划法实现求两序列的最长公共子序列。 程序代码 #include #include //memset需要用到这个库 #include using namespace std; int const MaxLen = 50; class LCS { public: LCS(int nx, int ny, char *x, char *y) //对数据成员m、n、a、b、c、s初始化{ m = nx; //对m和n赋值 n = ny; a = new char[m + 2]; //考虑下标为0的元素和字符串结束标记 b = new char[n + 2]; memset(a, 0, sizeof(a)); memset(b, 0, sizeof(b)); for(int i = 0; i < nx + 2; i++) //将x和y中的字符写入一维数组a和b中a[i + 1] = x[i]; for(int i = 0; i < ny + 2; i++) b[i + 1] = y[i]; c = new int[MaxLen][MaxLen]; //MaxLen为某个常量值 s = new int[MaxLen][MaxLen]; memset(c, 0, sizeof(c)); //对二维数组c和s中元素进行初始化 memset(s, 0, sizeof(s)); } int LCSLength(); //求最优解值(最长公共子序列长度) void CLCS() //构造最优解(最长公共子序列) { CLCS(m, n); //调用私有成员函数CLCS(int,int) } private: void CLCS(int i, int j); int (*c)[MaxLen], (*s)[MaxLen]; int m, n;

南京邮电大学算法设计实验报告——动态规划法

实验报告 (2009/2010学年第一学期) 课程名称算法分析与设计A 实验名称动态规划法 实验时间2009 年11 月20 日指导单位计算机学院软件工程系 指导教师张怡婷 学生姓名丁力琪班级学号B07030907 学院(系) 计算机学院专业软件工程

实验报告 实验名称动态规划法指导教师张怡婷实验类型验证实验学时2×2实验时间2009-11-20一、实验目的和任务 目的:加深对动态规划法的算法原理及实现过程的理解,学习用动态规划法解决实际应用中的最长公共子序列问题。 任务:用动态规划法实现求两序列的最长公共子序列,其比较结果可用于基因比较、文章比较等多个领域。 要求:掌握动态规划法的思想,及动态规划法在实际中的应用;分析最长公共子序列的问题特征,选择算法策略并设计具体算法,编程实现两输入序列的比较,并输出它们的最长公共子序列。 二、实验环境(实验设备) 硬件:计算机 软件:Visual C++

三、实验原理及内容(包括操作过程、结果分析等) 1、最长公共子序列(LCS)问题是:给定两个字符序列X={x1,x2,……,x m}和Y={y1,y2,……,y n},要求找出X和Y的一个最长公共子序列。 例如:X={a,b,c,b,d,a,b},Y={b,d,c,a,b,a}。它们的最长公共子序列LSC={b,c,d,a}。 通过“穷举法”列出所有X的所有子序列,检查其是否为Y的子序列并记录最长公共子序列并记录最长公共子序列的长度这种方法,求解时间为指数级别的,因此不可取。 2、分析LCS问题特征可知,如果Z={z1,z2,……,z k}为它们的最长公共子序列,则它们一定具有以下性质: (1)若x m=y n,则z k=x m=y n,且Z k-1是X m-1和Y n-1的最长公共子序列; (2)若x m≠y n且x m≠z k,则Z是X m-1和Y的最长公共子序列; (3)若x m≠y n且z k≠y n,则Z是X和Y的最长公共子序列。 这样就将求X和Y的最长公共子序列问题,分解为求解较小规模的问题: 若x m=y m,则进一步分解为求解两个(前缀)子字符序列X m-1和Y n-1的最长公共子序列问题; 如果x m≠y n,则原问题转化为求解两个子问题,即找出X m-1和Y的最长公共子序列与找出X 和Y n-1的最长公共子序列,取两者中较长者作为X和Y的最长公共子序列。 由此可见,两个序列的最长公共子序列包含了这两个序列的前缀的最长公共子序列,具有最优子结构性质。 3、令c[i][j]保存字符序列X i={x1,x2,……,x i}和Y j={y1,y2,……,y j}的最长公共子序列的长度,由上述分析可得如下递推式: 0 i=0或j=0 c[i][j]= c[i-1][j-1]+1 i,j>0且x i=y j max{c[i][j-1],c[i-1][j]} i,j>0且x i≠y j 由此可见,最长公共子序列的求解具有重叠子问题性质,如果采用递归算法实现,会得到一个指数时间算法,因此需要采用动态规划法自底向上求解,并保存子问题的解,这样可以避免重复计算子问题,在多项式时间内完成计算。 4、为了能由最优解值进一步得到最优解(即最长公共子序列),还需要一个二维数组s[][],数组中的元素s[i][j]记录c[i][j]的值是由三个子问题c[i-1][j-1]+1,c[i][j-1]和c[i-1][j]中的哪一个计算得到,从而可以得到最优解的当前解分量(即最长公共子序列中的当前字符),最终构造出最长公共子序列自身。

动态规划法求解生产与存储问题

动态规划 一·动态规划法的发展及其研究内容 动态规划是运筹学的一个分支,是求解决策过程最优化的数学方法。20世纪50年代初美国数学家R.E.BELLMAN等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理,把多阶段问题转化为一系列的单阶段问题,逐个求解创立了解决这类过程优化问题的新方法——动态规划。1957年出版的他的名著《Dynamic Proggramming》,这是该领域的第一本著作。 动态规划问世以来,在经济管理·生产调度·工程技术和最优控制等方面得到了广泛的应用。例如最短路线·库存管理·资源分配·设备更新·组合·排序·装载等问题,采用动态规划法求解比用其他方法更为简便。 二·动态规划法基本概念 一个多阶段决策过程最优化问题的动态规划模型通常包括以下几个要素: 1.阶段 阶段(stage)是对整个过程的自然划分。通常根据时间顺序或是空间特征来划分阶段,对于与时间,空间无关的“静态”优化问题,可以根据其自然特征,人为的赋予“时段”概念,将静态问题动态化,以便按阶段的顺序解优化问题。阶段变量一般用k=1.2….n.表示。

1.状态 状态(state)是我们所研究的问题(也叫系统)在过个阶段的初始状态或客观条件。它应能描述过程的特征并且具有无后效性,即当某阶段的状态给定时,这个阶段以后的过程的演变与该阶段以前各阶段的状态无关。通常还要求状态是可以直接或者是间接可以观测的。描述状态的变量称为状态变量(State Virable)用s 表示,状态变量的取值集合称为状态集合,用S表示。变量允许取值的范围称为允许状态集合(set of admissble states).用x(k)表示第k阶段的状态变量,它可以是一个数或者是一个向量。用X(k)表示第k阶段的允许状态集合。 n 个阶段的决策过程有n+1个状态变量,x(n+1)是x(n)的演变的结果。 根据演变过程的具体情况,状态变量可以是离散的或是连续的。为了计算方便有时将连续变量离散化,为了分析的方便有时又将离散的变量视为连续的。 2.决策 当一个阶段的状态确定后,可以做出各种选择从而演变到下一阶段的某个状态,这种选择手段称为决策(decision),在最优控制问题中也称为控制(control)描述决策的变量称为决策变量(decision virable)。变量允许取值的范围称为允许决策集合(set of admissble

运筹学实验_动态规划

实验二用MATLAB解决动态规划问题 问题:有一部货车每天沿着公路给四个售货店卸下6箱货物,如果各零售店出售该货物所得利润如下表所示,试求在各零售店卸下几箱货物,能使获得总利润最 解: 1)将问题按售货店分为四个阶段 2)设s k表示为分配给第k个售货店到第n个工厂的货物数, x k设为决策变量,表示为分配给第k个售货店的货物数, 状态转移方程为s k+1=s k-x k。 P k(x k)表示为x k箱货物分到第k个售货店所得的盈利值。 f k(s k)表示为s k箱货物分配给第k个售货店到第n个售货店的最大盈利值。 3)递推关系式: f k(s k)=max[ P k(x k)+ f k+1(s k-x k) ] k=4,3,2,1 边界条件:f5(s5)=0 4)从最后一个阶段开始向前逆推计算。 第四阶段: 设将s4箱货物(s4=0,1,2,3,4,5,6)全部分配给4售货店时,最大盈利值为: f4(s4)=max[P4(x4)] 其中x4=s4=0,1,2,3,4,5,6 x4*表示使得f4(s4)为最大值时的最优决策。 第三阶段:

设将s3箱货物(s3=0,1,2,3,4,5,6)分配给3售货店与4售货店时,对每一个s3值,都有一种最优分配方案,使得最大盈利值为:f3(s3)=max[ P3(x3)+ f4(s3-x3) ] ,x3= 第二阶段: 设将s2箱货物(s2=0,1,2,3,4,5,6)分配给2售货店、3售货店与4售货店时,则最大盈利值为:f2(s2)=max[ P2(x2)+ f3(s2-x2) ] 第一阶段: 设将s2箱货物(s1=0,1,2,3,4,5,6)分配给1售货店、2售货店、3售货店与4售货店时,则最大盈利值为:f1(s1)=max[ P1(x1)+ f2(s1-x1) ] 按计算表格的顺序反推,可知最优分配方案有6个: 1) x1*=1,x2*=1,x3*=3,x4*=1。 2) x1*=1,x2*=2,x3*=2,x4*=1。 3) x1*=1,x2*=3,x3*=1,x4*=1。

动态规划习题

第七章动态规划 规划问题的最终目的就是确定各决策变量的取值,以使目标函数达到极大或极小。在线性规划和非线性规划中,决策变量都是以集合的形式被一次性处理的;然而,有时我们也会面对决策变量需分期、分批处理的多阶段决策问题。所谓多阶段决策问题是指这样一类活动过程:它可以分解为若干个互相联系的阶段,在每一阶段分别对应着一组可供选取的决策集合;即构成过程的每个阶段都需要进行一次决策的决策问题。将各个阶段的决策综合起来构成一个决策序列,称为一个策略。显然,由于各个阶段选取的决策不同,对应整个过程可以有一系列不同的策略。当过程采取某个具体策略时,相应可以得到一个确定的效果,采取不同的策略,就会得到不同的效果。多阶段的决策问题,就是要在所有可能采取的策略中选取一个最优的策略,以便得到最佳的效果。动态规划(dynamic programming)同前面介绍过的各种优化方法不同,它不是一种算法,而是考察问题的一种途径。动态规划是一种求解多阶段决策问题的系统技术,可以说它横跨整个规划领域(线性规划和非线性规划)。当然,由于动态规划不是一种特定的算法,因而它不象线性规划那样有一个标准的数学表达式和明确定义的一组规则,动态规划必须对具体问题进行具体的分析处理。在多阶段决策问题中,有些问题对阶段的划分具有明显的时序性,动态规划的“动态”二字也由此而得名。动态规划的主要创始人是美国数学家贝尔曼(Bellman)。20世纪40年代末50年代初,当时在兰德公司(Rand Corporation)从事研究工作的贝尔曼首先提出了动态规划的概念。1957年贝尔曼发表了数篇研究论文,并出版了他的第一部著作《动态规划》。该著作成为了当时唯一的进一步研究和应用动态规划的理论源泉。1961年贝尔曼出版了他的第二部著作,并于1962年同杜瑞佛思(Dreyfus)合作出版了第三部著作。在贝尔曼及其助手们致力于发展和推广这一技术的同时,其他一些学者也对动态规划的发展做出了重大的贡献,其中最值得一提的是爱尔思(Aris)和梅特顿(Mitten)。爱尔思先后于1961年和1964年出版了两部关于动态规划的著作,并于1964年同尼母霍思尔(Nemhauser)、威尔德(Wild)一道创建了处理分枝、循环性多阶段决策系统的一般性理论。梅特顿提出了许多对动态规划后来发展有着重要意义的基础性观点,并且对明晰动态规划路径的数学性质做出了巨大的贡献。 动态规划在工程技术、经济管理等社会各个领域都有着广泛的应用,并且获得了显著的效果。在经济管理方面,动态规划可以用来解决最优路径问题、资源分配问题、生产调度问题、库存管理问题、排序问题、设备更新问题以及生产过程最优控制问题等,是经济管理中一种重要的决策技术。许多规划问题用动态规划的方法来处理,常比线性规划或非线性规划更有效。特别是对于离散的问题,由于解析数学无法发挥作用,动态规划便成为了一种非常有用的工具。 动态规划可以按照决策过程的演变是否确定分为确定性动态规划和随机性动态规划;也可以按照决策变量的取值是否连续分为连续性动态规划和离散性动态规划。本教材主要介绍动态规划的基本概念、理论和方法,并通过典型的案例说明这些理论和方法的应用。 §7.1 动态规划的基本理论 1.1多阶段决策过程的数学描述 有这样一类活动过程,其整个过程可分为若干相互联系的阶段,每一阶段都要作出相应的决策,以使整个过程达到最佳的活动效果。任何一个阶段(stage,即决策点)都是由输入(input)、决策(decision)、状态转移律(transformation function)和输出(output)构成的,如图7-1(a)所示。其中输入和输出也称为状态(state),输入称为输入状态,输出称为输出状态。

动态规划试题

动态规划 装箱问题(01背包): 有一个箱子容量为VV(正整数,0≤V≤20000),同时有n个物品(0

完全背包的模板题面是这样的:设有n种物品,每种物品有一个重量及一个价值。但每种物品的数量是无限的,同时有一个背包,最大载重量为M,今从n种物品中选取若干件(同一种物品可以无限选取),使其重量的和小于等于M,而价值的和为最大。 完全背包 [无限量]的采摘药输入: 70 3 71 100 69 1 1 2 输出:140 每个数组在满足条件,可以遍历多次 01背包 实现代码:采药-传送门 输入:

70 3 71 100 69 1 1 2 输出:3 每个数组遍历一遍 题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间。更让他高兴的是,妈妈昨天对他说:“你的房间需要购买哪些物品,怎么布置,你说了算,只要不超过N元钱就行”。今天一早金明就开始做预算,但是他想买的东西太多了,肯定会超过妈妈限定的N元。于是,他把每件物品规定了一个重要度,分为5等:用整数1-5表示,第5等最重要。他还从因特网上查到了每件物品的价格(都是整数元)。他希望在不超过N元(可以等于N 元)的前提下,使每件物品的价格与重要度的乘积的总和最大。 设第jj件物品的价格为v_[j],重要度为w_[j],共选中了k件物品,编号依次为j_1,j_2,…,j_k,则所求的总和为: w_[j_k]v[j1]×w[j1]+v[j2]×w[j2]+…+v[jk]×w[jk]。

动态规划题目和代码

动态规划题目及其代码By LYLtim 1、数塔问题(tower.pas) 设有一个三角形的数塔,如下图所示。顶点结点称为根结点,每个结点有一个整数数值。从顶点出发,在每一结点可以选择向左走或是向右走,一起走到底层,要求找出一条路径,使路径上的值最大。 【样例输入】tower.in 5 {数塔层数} 13 11 8 12 7 26 6 14 15 8 12 7 13 24 11 【样例输出】tower.out max=86 【参考程序】 uses math; var n,i,j:byte; a:array[1..10,1..10]of word; f:array[1..10,1..10]of word; begin assign(input,'tower.in');reset(input);

assign(output,'tower.out');rewrite(output); readln(n); for i:=1 to n do begin for j:=1 to i do read(a[i,j]); readln; end; fillchar(f,sizeof(f),0); for i:=1 to n do f[n,i]:=a[n,i]; for i:=n-1 downto 1 do for j:=1 to i do f[i,j]:=max(f[i+1,j],f[i+1,j+1])+a[i,j]; writeln('max=',f[1,1]); close(input);close(output); end. 2、拦截导弹(missile.pas) 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发炮弹都不能高于前一发的高度。某天,雷达捕捉到敌国的导弹来袭。由于该系统还在试用阶段,所以只有一套系统,因此有可能不能拦截所有的导弹。 输入导弹依次飞来的高度(雷达给出的高度数据是不大于30000的正整数),

实验二 动态规划算法—李明明

实验二动态规划算法(2学时) 一、实验目的与要求 1、熟悉最长公共子序列问题的算法; 2、初步掌握动态规划算法; 二、实验题 若给定序列X={x1,x2,…,xm},则另一序列Z={z1,z2,…,zk},是X的子序列是指存在一个严格递增下标序列{i1,i2,…,ik}使得对于所有j=1,2,…,k有:zj=xij。例如,序列Z={B,C,D,B}是序列X={A,B,C,B,D,A,B}的子序列,相应的递增下标序列为{2,3,5,7}。给定2个序列X和Y,当另一序列Z既是X的子序列又是Y的子序列时,称Z是序列X 和Y的公共子序列。 给定2个序列X={x1,x2,…,xm}和Y={y1,y2,…,yn},找出X和Y的最长公共子序列。 三、实验提示 include "stdlib.h" #include "string.h" void LCSLength(char *x ,char *y,int m,int n, int **c, int **b) { int i ,j; for (i = 1; i <= m; i++) c[i][0] = 0; for (i = 1; i <= n; i++) c[0][i] = 0; for (i = 1; i <= m; i++) for (j = 1; j <= n; j++) { if (x[i]==y[j]) { c[i][j]=c[i-1][j-1]+1; b[i][j]=1; } else if (c[i-1][j]>=c[i][j-1]) { c[i][j]=c[i-1][j]; b[i][j]=2; } else { c[i][j]=c[i][j-1]; b[i][j]=3; } } } void LCS(int i ,int j, char *x ,int **b) { if (i ==0 || j==0) return;

二次_动态规划-图论

§1 二次规划模型 数学模型: ub x lb beq x Aeq b x A x f Hx x T T x ≤≤=?≤?+21min 其中H 为二次型矩阵,A 、Aeq 分别为不等式约束与等式约束系数矩阵,f,b,beq,lb,ub,x 为向量。 求解二次规划问题函数为quadprog( ) 调用格式: X= quadprog(H,f,A,b) X= quadprog(H,f,A,b,Aeq,beq) X= quadprog(H,f,A,b,Aeq,beq,lb,ub) X= quadprog(H,f,A,b,Aeq,beq,lb,ub,x0) X= quadprog(H,f,A,b,Aeq,beq,lb,ub,x0,options) [x,fval]= quadprog(…) [x,fval,exitflag]= quadprog(…) [x,fval,exitflag,output]= quadprog(…) [x,fval,exitflag,output,lambda]= quadprog(…) 说明:输入参数中,x0为初始点;若无等式约束或无不等式约束,就将相应的矩阵和向量设置为空;options 为指定优化参数。输出参数中,x 是返回最优解;fval 是返回解所对应的目标函数值;exitflag 是描述搜索是否收敛;output 是返回包含优化信息的结构。Lambda 是返回解x 入包含拉格朗日乘子的参数。 例1:求解:二次规划问题 min f(x)= x 1-3x 2+3x 12+4x 22 -2x 1x 2 s.t 2x 1+x 2≤2 -x 1+4x 2≤3

算法实验 动态规划上机

实验3动态规划上机 [实验目的] 1.掌握动态规划的基本思想和效率分析方法; 2.掌握使用动态规划算法的基本步骤; 3.学会利用动态规划解决实际问题。 [实验要求] 按以下实验内容完成题目,并把编译、运行过程中出现的问题以及解决方法填入实验报告中,按时上交。 [实验学时] 2学时。 [实验内容] 一、实验内容 利用动态规划算法编程求解多段图问题,要求读入多段图,考虑多段图的排序方式,求源点到汇点的最小成本路径。并请对自己的程序进行复杂性分析。 二、算法描述 先输入点的个数和路径数以及每段路径的起点、长度、终点,再计算所有路径的值大小,比较输出后最小值。 三、源程序 #define N 2147483647 #include #include void main() { int i,pointnum,j; cout<<"输入图中点的个数:"<>pointnum; int **array; //array数组描述多段图 int *array2; //array2记录距离起点的最小路径 int *array3; //array3记录上一点编号 array=new int*[pointnum]; array2=new int[pointnum+1]; array3=new int[pointnum+1]; for(i=0;i

} array2[pointnum]=N; array3[pointnum]=N; for(i=0;i>pathnum; int a,k; cout<<"依次输入图中每段路径"<>i; cin>>a; cin>>j; array[i][j]=a; if(array2[j]>(a+array2[i])) { array3[j]=i; array2[j]=a+array2[i]; } // cout<

相关文档
最新文档